vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16, pipeline_contig_cpy_f32_i32, pipeline_contig_cpy_i32_f32;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
+ vk_pipeline pipeline_cpy_transpose_16, pipeline_cpy_transpose_32;
vk_pipeline pipeline_set_rows_i32[GGML_TYPE_COUNT];
vk_pipeline pipeline_set_rows_i64[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_i32_f32, "contig_cpy_i32_f32", contig_cpy_i32_f32_len, contig_cpy_i32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_i32, "contig_cpy_f32_i32", contig_cpy_f32_i32_len, contig_cpy_f32_i32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
+ ggml_vk_create_pipeline(device, device->pipeline_cpy_transpose_32, "cpy_transpose_32", cpy_transpose_32_len, cpy_transpose_32_data, "main", 2, sizeof(vk_op_unary_push_constants), {1, 1, 1}, {}, 1);
+ ggml_vk_create_pipeline(device, device->pipeline_cpy_transpose_16, "cpy_transpose_16", cpy_transpose_16_len, cpy_transpose_16_data, "main", 2, sizeof(vk_op_unary_push_constants), {1, 1, 1}, {}, 1);
+
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
// Choose "contiguous copy" shader if src/dst are contiguous
bool contig = ggml_is_contiguous(src) && (!dst || ggml_is_contiguous(dst));
+ // Use optimized "transpose" shader if src dim1 is the innermost dimension.
+ bool transpose = dst && src->nb[1] == ggml_type_size(to) && ggml_are_same_shape(dst, src);
+
+ if (transpose && src->type == to) {
+ if (ggml_type_size(to) == 4) {
+ return ctx->device->pipeline_cpy_transpose_32;
+ } else if (ggml_type_size(to) == 2) {
+ return ctx->device->pipeline_cpy_transpose_16;
+ }
+ }
+
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_f32;
} else {
elements = { ne, 1, 1 };
}
+
+ if (pipeline == ctx->device->pipeline_cpy_transpose_32 ||
+ pipeline == ctx->device->pipeline_cpy_transpose_16) {
+ // 32x32 tiles
+ elements[0] = (uint32_t)CEIL_DIV(dst->ne[0], 32);
+ elements[1] = (uint32_t)CEIL_DIV(dst->ne[1], 32);
+ elements[2] = (uint32_t)(dst->ne[2]*dst->ne[3]);
+ elements[0] = std::min(elements[0], ctx->device->properties.limits.maxComputeWorkGroupCount[0]);
+ elements[1] = std::min(elements[1], ctx->device->properties.limits.maxComputeWorkGroupCount[1]);
+ elements[2] = std::min(elements[2], ctx->device->properties.limits.maxComputeWorkGroupCount[2]);
+ }
} break;
case GGML_OP_ADD_ID:
{
--- /dev/null
+#version 450
+
+#include "types.glsl"
+#include "generic_unary_head.glsl"
+
+// workgroup does 32x32 tile, but uses 32x8 threads
+#define TILE_DIM 32
+layout(local_size_x = 32, local_size_y = 8, local_size_z = 1) in;
+
+shared uint sh[TILE_DIM][TILE_DIM + 1];
+
+void iter(uvec3 wg_id) {
+ const uint tile_col = wg_id.x;
+ const uint tile_row = wg_id.y;
+
+ const uint tid_col = gl_LocalInvocationID.x;
+ const uint tid_row = gl_LocalInvocationID.y;
+
+ const uint i2 = wg_id.z % p.ne12;
+ const uint i3 = wg_id.z / p.ne12;
+ const uint i02 = i2;
+ const uint i03 = i3;
+
+ // The workgroup does TILE_DIM x TILE_DIM, but swaps the LSBs of the
+ // src coords to make memory accesses contiguous, dst has tid.x in i0,
+ // src has tid.x in i01
+
+ [[unroll]] for (uint y = 0; y < 4; ++y) {
+ const uint i00 = tile_col * TILE_DIM + tid_row + 8 * y;
+ const uint i01 = tile_row * TILE_DIM + tid_col;
+ if (i00 < p.ne00 && i01 < p.ne01 && i02 < p.ne02 && i03 < p.ne03) {
+ const uint src_idx = i00 * p.nb00 + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
+ sh[tid_row + 8 * y][tid_col] = uint(data_a[get_aoffset() + src_idx]);
+ }
+ }
+
+ barrier();
+
+ [[unroll]] for (uint y = 0; y < 4; ++y) {
+ const uint i0 = tile_col * TILE_DIM + tid_col;
+ const uint i1 = tile_row * TILE_DIM + tid_row + 8 * y;
+ if (i0 < p.ne10 && i1 < p.ne11 && i2 < p.ne12 && i3 < p.ne13) {
+ const uint dst_idx = i0 * p.nb10 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13;
+ // load transposed
+ data_d[get_doffset() + dst_idx] = D_TYPE(sh[tid_col][tid_row + 8 * y]);
+ }
+ }
+}
+
+#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
+
+void main() {
+ uint z = gl_WorkGroupID.z;
+ uint y = gl_WorkGroupID.y;
+ bool need_barrier = false;
+ for (uint z = gl_WorkGroupID.z; z < p.ne12 * p.ne13; z += gl_NumWorkGroups.z) {
+ for (uint y = gl_WorkGroupID.y; y < CEIL_DIV(p.ne11, TILE_DIM); y += gl_NumWorkGroups.y) {
+ for (uint x = gl_WorkGroupID.x; x < CEIL_DIV(p.ne10, TILE_DIM); x += gl_NumWorkGroups.x) {
+ if (need_barrier) {
+ barrier();
+ }
+ need_barrier = true;
+ iter(uvec3(x, y, z));
+ }
+ }
+ }
+}
string_to_spv("cpy_f32_i32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "int"}});
string_to_spv("cpy_i32_f32", "copy.comp", {{"A_TYPE", "int"}, {"D_TYPE", "float"}});
+ string_to_spv("cpy_transpose_16", "copy_transpose.comp", {{"A_TYPE", "uint16_t"}, {"D_TYPE", "uint16_t"}});
+ string_to_spv("cpy_transpose_32", "copy_transpose.comp", {{"A_TYPE", "uint"}, {"D_TYPE", "uint"}});
+
for (std::string t : {"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
string_to_spv("cpy_f32_" + t, "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("cpy_f32_" + t + "_rte", "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}});