lparams.n_batch = params.n_batch;
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu;
- memcpy(lparams.tensor_split, params.tensor_split, LLAMA_MAX_DEVICES*sizeof(float));
+ lparams.tensor_split = params.tensor_split;
lparams.low_vram = params.low_vram;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
}
void ggml_cuda_set_tensor_split(const float * tensor_split) {
+ if (tensor_split == nullptr) {
+ return;
+ }
bool all_zero = true;
for (int i = 0; i < g_device_count; ++i) {
if (tensor_split[i] != 0.0f) {
/*.n_batch =*/ 512,
/*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
- /*.tensor_split =*/ {0},
+ /*.tensor_split =*/ nullptr,
/*.rope_freq_base =*/ 10000.0f,
/*.rope_freq_scale =*/ 1.0f,
/*.progress_callback =*/ nullptr,
int n_batch,
int n_gpu_layers,
int main_gpu,
- float * tensor_split,
+ const float * tensor_split,
float rope_freq_base,
float rope_freq_scale,
bool low_vram,
int32_t n_batch; // prompt processing batch size
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors
- float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
+
+ const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency