#include "argsort.cuh"
+#ifdef GGML_CUDA_USE_CUB
+# include <cub/cub.cuh>
+using namespace cub;
+#endif // GGML_CUDA_USE_CUB
+
+static __global__ void init_indices(int * indices, const int ncols, const int nrows) {
+ const int col = blockIdx.x * blockDim.x + threadIdx.x;
+ const int row = blockIdx.y;
+
+ if (col < ncols && row < nrows) {
+ indices[row * ncols + col] = col;
+ }
+}
+
+static __global__ void init_offsets(int * offsets, const int ncols, const int nrows) {
+ const int idx = blockIdx.x * blockDim.x + threadIdx.x;
+ if (idx <= nrows) {
+ offsets[idx] = idx * ncols;
+ }
+}
+
+#ifdef GGML_CUDA_USE_CUB
+static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
+ const float * x,
+ int * dst,
+ const int ncols,
+ const int nrows,
+ ggml_sort_order order,
+ cudaStream_t stream) {
+ ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ncols * nrows);
+ ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ncols * nrows);
+ ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
+
+ int * temp_indices = temp_indices_alloc.get();
+ float * temp_keys = temp_keys_alloc.get();
+ int * d_offsets = offsets_alloc.get();
+
+ static const int block_size = 256;
+ const dim3 grid_size((ncols + block_size - 1) / block_size, nrows);
+ init_indices<<<grid_size, block_size, 0, stream>>>(temp_indices, ncols, nrows);
+
+ const dim3 offset_grid((nrows + block_size - 1) / block_size);
+ init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
+
+ cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream);
+
+ size_t temp_storage_bytes = 0;
+
+ if (order == GGML_SORT_ORDER_ASC) {
+ DeviceSegmentedRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
+ temp_indices, dst, // values (indices)
+ ncols * nrows, nrows, // num items, num segments
+ d_offsets, d_offsets + 1, 0, sizeof(float) * 8, // all bits
+ stream);
+ } else {
+ DeviceSegmentedRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
+ dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, 0,
+ sizeof(float) * 8, stream);
+ }
+
+ ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
+ void * d_temp_storage = temp_storage_alloc.get();
+
+ if (order == GGML_SORT_ORDER_ASC) {
+ DeviceSegmentedRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
+ ncols * nrows, nrows, d_offsets, d_offsets + 1, 0, sizeof(float) * 8,
+ stream);
+ } else {
+ DeviceSegmentedRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
+ temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
+ 0, sizeof(float) * 8, stream);
+ }
+}
+#endif // GGML_CUDA_USE_CUB
+
+// Bitonic sort implementation
template<typename T>
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
T tmp = a;
return n;
}
-static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
+static void argsort_f32_i32_cuda_bitonic(const float * x,
+ int * dst,
+ const int ncols,
+ const int nrows,
+ ggml_sort_order order,
+ cudaStream_t stream) {
// bitonic sort requires ncols to be power of 2
const int ncols_pad = next_power_of_2(ncols);
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
if (order == GGML_SORT_ORDER_ASC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
+ k_argsort_f32_i32<GGML_SORT_ORDER_ASC>
+ <<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else if (order == GGML_SORT_ORDER_DESC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
+ k_argsort_f32_i32<GGML_SORT_ORDER_DESC>
+ <<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else {
GGML_ABORT("fatal error");
}
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
+#ifdef GGML_CUDA_USE_CUB
+ const int ncols_pad = next_power_of_2(ncols);
+ const size_t shared_mem = ncols_pad * sizeof(int);
+ const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
+
+ if (shared_mem > max_shared_mem || ncols > 1024) {
+ ggml_cuda_pool & pool = ctx.pool();
+ argsort_f32_i32_cuda_cub(pool, src0_d, (int *) dst_d, ncols, nrows, order, stream);
+ } else {
+ argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
+ }
+#else
+ argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
+#endif
}