struct ggml_tensor * a,
struct ggml_tensor * b);
- // concat a and b on dim 2
+ // concat a and b along dim
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_concat(
struct ggml_context * ctx,
struct ggml_tensor * a,
- struct ggml_tensor * b);
+ struct ggml_tensor * b,
+ int dim);
GGML_API struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
#include "concat.cuh"
-static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
+static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
- // operation
+
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+
+ if (nidx < ne00) { // src0
+ int offset_src =
+ nidx +
+ blockIdx.y * ne00 +
+ blockIdx.z * ne00 * gridDim.y;
+ dst[offset_dst] = x[offset_src];
+ } else {
+ int offset_src =
+ (nidx - ne00) +
+ blockIdx.y * (ne0 - ne00) +
+ blockIdx.z * (ne0 - ne00) * gridDim.y;
+ dst[offset_dst] = y[offset_src];
+ }
+}
+
+static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+
+ if (blockIdx.y < ne01) { // src0
+ int offset_src =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * ne01;
+ dst[offset_dst] = x[offset_src];
+ } else {
+ int offset_src =
+ nidx +
+ (blockIdx.y - ne01) * ne0 +
+ blockIdx.z * ne0 * (gridDim.y - ne01);
+ dst[offset_dst] = y[offset_src];
+ }
+}
+
+static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
+
if (blockIdx.z < ne02) { // src0
int offset_src =
nidx +
}
}
-static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
+static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2);
- concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
+ if (dim == 0) {
+ concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
+ return;
+ }
+ if (dim == 1) {
+ concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
+ return;
+ }
+ concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
}
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
+
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
+
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
+ const int32_t dim = ((int32_t *) dst->op_params)[0];
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
- concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
+ if (dim != 3) {
+ for (int i3 = 0; i3 < dst->ne[3]; i3++) {
+ concat_f32_cuda(
+ src0_d + i3 * (src0->nb[3] / 4),
+ src1_d + i3 * (src1->nb[3] / 4),
+ dst_d + i3 * ( dst->nb[3] / 4),
+ src0->ne[0], src0->ne[1], src0->ne[2],
+ dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
+ }
+ } else {
+ const size_t size0 = ggml_nbytes(src0);
+ const size_t size1 = ggml_nbytes(src1);
+
+ CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
+ CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
}
}
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
+ const int32_t dim = ((int32_t *) dst->op_params)[0];
+
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
+ [encoder setBytes:&dim length:sizeof(dim) atIndex:27];
const int nth = MIN(1024, ne0);
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
+ constant int32_t & dim,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
- const int64_t i03 = tgpig.z;
- const int64_t i02 = tgpig.y;
- const int64_t i01 = tgpig.x;
+ const int64_t i3 = tgpig.z;
+ const int64_t i2 = tgpig.y;
+ const int64_t i1 = tgpig.x;
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
+ int64_t o[4] = {0, 0, 0, 0};
+ o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
- device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
- device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
- device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
+ device const float * x;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
- if (i02 < ne02) {
- ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
- src0_ptr += ntg.x*nb00;
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
} else {
- ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
- src1_ptr += ntg.x*nb10;
+ x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
}
- dst_ptr += ntg.x*nb0;
+
+ device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ *y = *x;
}
}
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const dpct::queue_ptr &main_stream) {
+#pragma message("TODO: generalize concat kernel for dim != 2")
+#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563")
+ int dim = dst->op_params[0];
+ GGML_ASSERT(dim != 2);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// ggml_concat
struct ggml_tensor * ggml_concat(
- struct ggml_context* ctx,
- struct ggml_tensor* a,
- struct ggml_tensor* b) {
- GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int dim) {
+ GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
+
+ int64_t ne[GGML_MAX_DIMS];
+ for (int d = 0; d < GGML_MAX_DIMS; ++d) {
+ if (d == dim) {
+ ne[d] = a->ne[d] + b->ne[d];
+ continue;
+ }
+ GGML_ASSERT(a->ne[d] == b->ne[d]);
+ ne[d] = a->ne[d];
+ }
bool is_node = false;
is_node = true;
}
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
+
+ ggml_set_op_params_i32(result, 0, dim);
result->op = GGML_OP_CONCAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
result->op = GGML_OP_LEAKY_RELU;
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
+ const int32_t dim = ggml_get_op_params_i32(dst, 0);
+
+ GGML_ASSERT(dim >= 0 && dim < 4);
+
+ int64_t o[4] = {0, 0, 0, 0};
+ o[dim] = src0->ne[dim];
+
+ const float * x;
+
+ // TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
- if (i2 < ne02) { // src0
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
-
- float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
- *y = *x;
- }
- }
- } // src1
- else {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
-
- float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
- *y = *x;
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < ne0; i0++) {
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
+ } else {
+ x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
}
+
+ float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
+
+ *y = *x;
}
}
}
}
static void ggml_compute_forward_concat(
- const struct ggml_compute_params* params,
+ const struct ggml_compute_params * params,
struct ggml_tensor* dst) {
const struct ggml_tensor * src0 = dst->src[0];
// GGML_OP_CONCAT
struct test_concat : public test_case {
const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int64_t b_ne2;
+ const std::array<int64_t, 4> ne_a;
+ const int64_t ne_b_d;
+ const int dim;
std::string vars() override {
- return VARS_TO_STR3(type, ne, b_ne2);
+ return VARS_TO_STR4(type, ne_a, ne_b_d, dim);
}
test_concat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- int64_t b_ne2 = 10)
- : type(type), ne(ne), b_ne2(b_ne2) {}
+ std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
+ int64_t ne_b_d = 10,
+ int dim = 2)
+ : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
- ggml_tensor * out = ggml_concat(ctx, a, b);
+ auto ne_b = ne_a;
+ ne_b[dim] = ne_b_d;
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
+ ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
+ ggml_tensor * out = ggml_concat(ctx, a, b, dim);
return out;
}
};
}
}
- test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
- test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
+ for (int dim : { 0, 1, 2, 3, }) {
+ test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim));
+ test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim));
+ }
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));