]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
model-conversion : add embedding prompt file support (#15871)
authorDaniel Bevenius <redacted>
Thu, 25 Sep 2025 10:02:36 +0000 (12:02 +0200)
committerGitHub <redacted>
Thu, 25 Sep 2025 10:02:36 +0000 (12:02 +0200)
This commit adds support for passing a prompt file to the model
conversion targets/scripts. It also updates the logits.cpp to print out
embedding information in the same format as when running the original
embedding model.

The motivation for this is that it allows us to pass files of different
sizes when running the converted models and validating the logits.

This can be particularly important when testing the sliding window
functionality of models where the sequence length needs to exceed a
certain number of tokens to trigger the sliding window logic.

examples/model-conversion/Makefile
examples/model-conversion/logits.cpp
examples/model-conversion/scripts/embedding/compare-embeddings-logits.sh
examples/model-conversion/scripts/embedding/run-converted-model.sh
examples/model-conversion/scripts/embedding/run-original-model.py
examples/model-conversion/scripts/utils/inspect-org-model.py
examples/model-conversion/scripts/utils/semantic_check.py

index ac7a4147297c51707434271640550c5382ed4df8..f0867cfe46c3a52d1e42e918b94405342ff3b48d 100644 (file)
@@ -118,13 +118,17 @@ embedding-convert-model:
 
 embedding-run-original-model:
        $(call validate_embedding_model_path,embedding-run-original-model)
-       @EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/embedding/run-original-model.py
+       @EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
+       ./scripts/embedding/run-original-model.py \
+       $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
 
 embedding-run-converted-model:
-       @CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/embedding/run-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
+       @./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \
+       $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
 
 embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
-       @./scripts/embedding/compare-embeddings-logits.sh
+       @./scripts/embedding/compare-embeddings-logits.sh \
+       $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
 
 embedding-inspect-original-model:
        $(call validate_embedding_model_path,embedding-inspect-original-model)
@@ -156,7 +160,8 @@ embedding-quantize-model:
        $(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)
 
 embedding-run-quantized-model:
-       @./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
+       @./scripts/embedding/run-converted-model.sh $(QUANTIZED_EMBEDDING_MODEL) \
+       $(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
 
 ###
 ### Perplexity targets/recipes
index ddc5e9005f9e00dcd25b87c7d645eae63d9bd203..6dc334189f4be6c81fc716c1a956794ae2c974f0 100644 (file)
@@ -151,6 +151,35 @@ int main(int argc, char ** argv) {
         logits = llama_get_embeddings(ctx);
         n_logits = llama_model_n_embd(model) * batch.n_tokens;
         type = "-embeddings";
+
+        const int n_embd = llama_model_n_embd(model);
+        const int n_embd_count = batch.n_tokens;
+
+        printf("Embedding dimension: %d\n", n_embd);
+        printf("\n");
+
+        // Print embeddings in the specified format
+        for (int j = 0; j < n_embd_count; j++) {
+            printf("embedding %d: ", j);
+
+            // Print first 3 values
+            for (int i = 0; i < 3 && i < n_embd; i++) {
+                printf("%9.6f ", logits[j * n_embd + i]);
+            }
+
+            printf(" ... ");
+
+            // Print last 3 values
+            for (int i = n_embd - 3; i < n_embd; i++) {
+                if (i >= 0) {
+                    printf("%9.6f ", logits[j * n_embd + i]);
+                }
+            }
+
+            printf("\n");
+        }
+        printf("\n");
+
         printf("Embeddings size: %d\n", n_logits);
     } else {
         logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
@@ -183,22 +212,23 @@ int main(int argc, char ** argv) {
         return 1;
     }
     for (int i = 0; i < n_logits; i++) {
-        fprintf(f, "%d: %.6f\n", i, logits[i]);  // Added index and changed format
+        fprintf(f, "%d: %.6f\n", i, logits[i]);
     }
     fclose(f);
 
-    // Print first and last 10 logits for quick verification
-    printf("First 10 logits: ");
-    for (int i = 0; i < 10 && i < n_logits; i++) {
-        printf("%.6f ", logits[i]);
-    }
-    printf("\n");
+    if (!embedding_mode) {
+        printf("First 10 logits: ");
+        for (int i = 0; i < 10 && i < n_logits; i++) {
+            printf("%.6f ", logits[i]);
+        }
+        printf("\n");
 
-    printf("Last 10 logits: ");
-    for (int i = n_logits - 10; i < n_logits; i++) {
-        if (i >= 0) printf("%.6f ", logits[i]);
+        printf("Last 10 logits: ");
+        for (int i = n_logits - 10; i < n_logits; i++) {
+            if (i >= 0) printf("%.6f ", logits[i]);
+        }
+        printf("\n\n");
     }
-    printf("\n\n");
 
     printf("Logits saved to %s\n", bin_filename);
     printf("Logits saved to %s\n", txt_filename);
index 1401dcb43ee9247e3b83ca98e82ef5ca5f8846af..c48af3075c62fc66f9a35f16860b8f70c9dbf9e2 100755 (executable)
@@ -2,8 +2,37 @@
 
 set -e
 
-MODEL_PATH="${1:-"$EMBEDDING_MODEL_PATH"}"
-MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
+# Parse command line arguments
+MODEL_PATH=""
+MODEL_NAME=""
+PROMPTS_FILE=""
+
+# First argument is always model path
+if [ $# -gt 0 ] && [[ "$1" != --* ]]; then
+    MODEL_PATH="$1"
+    shift
+fi
+
+# Parse remaining arguments
+while [[ $# -gt 0 ]]; do
+    case $1 in
+        --prompts-file|-pf)
+            PROMPTS_FILE="$2"
+            shift 2
+            ;;
+        *)
+            # If MODEL_NAME not set and this isn't a flag, use as model name
+            if [ -z "$MODEL_NAME" ] && [[ "$1" != --* ]]; then
+                MODEL_NAME="$1"
+            fi
+            shift
+            ;;
+    esac
+done
+
+# Set defaults
+MODEL_PATH="${MODEL_PATH:-"$EMBEDDING_MODEL_PATH"}"
+MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
 
 if [ -t 0 ]; then
     CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
@@ -35,8 +64,18 @@ with open('$TEMP_FILE', 'wb') as f:
     trap "rm -f $TEMP_FILE" EXIT
 fi
 
-python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
+# Build the semantic_check.py command
+SEMANTIC_CMD="python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
     --python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
-    --cpp-embeddings $CPP_EMBEDDINGS \
-    --prompt "Hello world today"
+    --cpp-embeddings $CPP_EMBEDDINGS"
+
+# Add prompts file if specified, otherwise use default prompt
+if [ -n "$PROMPTS_FILE" ]; then
+    SEMANTIC_CMD="$SEMANTIC_CMD --prompts-file \"$PROMPTS_FILE\""
+else
+    SEMANTIC_CMD="$SEMANTIC_CMD --prompt \"Hello world today\""
+fi
+
+# Execute the command
+eval $SEMANTIC_CMD
 
index 24b28106275dfc80729cf33f711e17220327c2ab..f3e26766320700fecec97bc619ffe2c8d5db25ec 100755 (executable)
@@ -2,8 +2,27 @@
 
 set -e
 
-# First try command line argument, then environment variable, then file
-CONVERTED_MODEL="${1:-"$CONVERTED_EMBEDDING_MODEL"}"
+# Parse command line arguments
+CONVERTED_MODEL=""
+PROMPTS_FILE=""
+
+while [[ $# -gt 0 ]]; do
+    case $1 in
+        -p|--prompts-file)
+            PROMPTS_FILE="$2"
+            shift 2
+            ;;
+        *)
+            if [ -z "$CONVERTED_MODEL" ]; then
+                CONVERTED_MODEL="$1"
+            fi
+            shift
+            ;;
+    esac
+done
+
+# First try command line argument, then environment variable
+CONVERTED_MODEL="${CONVERTED_MODEL:-"$CONVERTED_EMBEDDING_MODEL"}"
 
 # Final check if we have a model path
 if [ -z "$CONVERTED_MODEL" ]; then
@@ -13,8 +32,19 @@ if [ -z "$CONVERTED_MODEL" ]; then
     exit 1
 fi
 
+# Read prompt from file or use default
+if [ -n "$PROMPTS_FILE" ]; then
+    if [ ! -f "$PROMPTS_FILE" ]; then
+        echo "Error: Prompts file '$PROMPTS_FILE' not found" >&2
+        exit 1
+    fi
+    PROMPT=$(cat "$PROMPTS_FILE")
+else
+    PROMPT="Hello world today"
+fi
+
 echo $CONVERTED_MODEL
 
 cmake --build ../../build --target llama-logits -j8
-
-../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "Hello world today"
+# TODO: update logits.cpp to accept a --file/-f option for the prompt
+../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "$PROMPT"
index b9db0b893f13a7fb1646a59b51cc48659b5a6716..4a3e162413fa67cee1dbd54f1d708ab52a2c2277 100755 (executable)
@@ -13,14 +13,37 @@ unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
 
 parser = argparse.ArgumentParser(description='Process model with specified path')
 parser.add_argument('--model-path', '-m', help='Path to the model')
+parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
 args = parser.parse_args()
 
+def read_prompt_from_file(file_path):
+    try:
+        with open(file_path, 'r', encoding='utf-8') as f:
+            return f.read().strip()
+    except FileNotFoundError:
+        print(f"Error: Prompts file '{file_path}' not found")
+        exit(1)
+    except Exception as e:
+        print(f"Error reading prompts file: {e}")
+        exit(1)
+
 model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
 if model_path is None:
     parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
 
 tokenizer = AutoTokenizer.from_pretrained(model_path)
 
+config = AutoConfig.from_pretrained(model_path)
+
+# This can be used to override the sliding window size for manual testing. This
+# can be useful to verify the sliding window attention mask in the original model
+# and compare it with the converted .gguf model.
+if hasattr(config, 'sliding_window'):
+    original_sliding_window = config.sliding_window
+    #original_sliding_window = 6
+    print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
+
+print(f"Using unreleased model: {unreleased_model_name}")
 if unreleased_model_name:
     model_name_lower = unreleased_model_name.lower()
     unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
@@ -29,19 +52,28 @@ if unreleased_model_name:
 
     try:
         model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
-        model = model_class.from_pretrained(model_path)  # Note: from_pretrained, not fromPretrained
+        model = model_class.from_pretrained(model_path, config=config)
     except (ImportError, AttributeError) as e:
         print(f"Failed to import or load model: {e}")
         exit(1)
 else:
-    model = AutoModel.from_pretrained(model_path)
+    model = AutoModel.from_pretrained(model_path, config=config)
 print(f"Model class: {type(model)}")
-#print(f"Model file: {type(model).__module__}")
-config = AutoConfig.from_pretrained(model_path)
+print(f"Model file: {type(model).__module__}")
+
+# Verify the model is using the correct sliding window
+if hasattr(model.config, 'sliding_window'):
+    print(f"Model's sliding_window: {model.config.sliding_window}")
+else:
+    print("Model config does not have sliding_window attribute")
 
 model_name = os.path.basename(model_path)
 
-texts = [ "Hello world today" ]
+if args.prompts_file:
+    prompt_text = read_prompt_from_file(args.prompts_file)
+    texts = [prompt_text]
+else:
+    texts = ["Hello world today"]
 
 encoded = tokenizer(
     texts,
index ea14947fd2ef8e93f1200b568ad447944aeb0d46..bc6f45a5fb7d0b411061215c0c66db926ceccf45 100755 (executable)
@@ -40,7 +40,7 @@ if os.path.exists(index_path):
         file_path = os.path.join(model_path, file_name)
         print(f"\n--- From {file_name} ---")
 
-        with safe_open(file_path, framework="pt") as f:  # type: ignore
+        with safe_open(file_path, framework="pt") as f:
             for tensor_name in sorted(tensor_names):
                 tensor = f.get_tensor(tensor_name)
                 print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
@@ -49,7 +49,7 @@ elif os.path.exists(single_file_path):
     # Single file model (original behavior)
     print("Single-file model detected")
 
-    with safe_open(single_file_path, framework="pt") as f:  # type: ignore
+    with safe_open(single_file_path, framework="pt") as f:
         keys = f.keys()
         print("Tensors in model:")
         for key in sorted(keys):
index d2110480974e729ece216da6cd06db0e433ebff3..7fd417bceaa8b4423774af4077be49e51c0d1586 100644 (file)
@@ -101,6 +101,17 @@ def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
         'rms_diff': np.sqrt(np.mean(diff_matrix**2))
     }
 
+def read_prompt_from_file(file_path):
+    try:
+        with open(file_path, 'r', encoding='utf-8') as f:
+            return f.read().strip()
+    except FileNotFoundError:
+        print(f"Error: Prompts file '{file_path}' not found")
+        exit(1)
+    except Exception as e:
+        print(f"Error reading prompts file: {e}")
+        exit(1)
+
 def main():
     parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
     parser.add_argument('--model-path', '-m', required=True, help='Path to the original Python model')
@@ -108,14 +119,20 @@ def main():
     parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
     parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
     parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
+    parser.add_argument('--prompts-file', '-pf', help='Path to file containing prompts')
 
     args = parser.parse_args()
 
+    if args.prompts_file:
+        prompt = read_prompt_from_file(args.prompts_file)
+    else:
+        prompt = args.prompt
+
     print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
     print("=" * 70)
 
     # Single prompt detailed comparison
-    print(f"\nTesting with prompt: '{args.prompt}'")
+    print(f"\nTesting with prompt: '{prompt}'")
 
     # Load the python model to get configuration information and also to load the tokenizer.
     print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
@@ -144,7 +161,7 @@ def main():
         else:
             model = AutoModel.from_pretrained(args.model_path)
 
-    encoded = tokenizer(args.prompt, return_tensors="pt")
+    encoded = tokenizer(prompt, return_tensors="pt")
     tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
     n_tokens = len(tokens)
     print(f"n_tokens: {n_tokens}");
@@ -155,7 +172,7 @@ def main():
     python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
 
     # Run comparison
-    results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, args.prompt)
+    results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, prompt)
 
     # Summary
     print(f"\n=== SUMMARY ===")