]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
vulkan: optimizations for direct convolution (#14933)
authorJeff Bolz <redacted>
Sat, 2 Aug 2025 07:57:04 +0000 (02:57 -0500)
committerGitHub <redacted>
Sat, 2 Aug 2025 07:57:04 +0000 (09:57 +0200)
* vulkan: optimizations for direct convolution

- Empirically choose a better tile size. Reducing BS_K/BS_NPQ helps fill
  the GPU. The new size should be amenable to using coopmat, too.
- Fix shmem bank conflicts. 16B padding should work with coopmat.
- Some explicit loop unrolling.
- Skip math/stores work for parts of the tile that are OOB.
- Apply fastdiv opt.
- Disable shuffles for NV.

* Three tiles sizes for CONV_2D, and a heuristic to choose

* reallow collectives for pre-Turing

* make SHMEM_PAD a spec constant

* fixes for intel perf - no shmem padding, placeholder shader core count

* shader variants with/without unrolling

* 0cc4m's fixes for AMD perf

Co-authored-by: 0cc4m <redacted>
---------

Co-authored-by: 0cc4m <redacted>
ggml/src/ggml-vulkan/ggml-vulkan.cpp
ggml/src/ggml-vulkan/vulkan-shaders/conv2d_mm.comp
ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp

index 75b58c26fc1f51b2a44e893559fbcfe3c94ab90a..2cd32fbb578ad8e8749ccdd7339e036e902905db 100644 (file)
@@ -222,6 +222,7 @@ enum vk_device_architecture {
     AMD_RDNA2,
     AMD_RDNA3,
     INTEL_XE2,
+    NVIDIA_PRE_TURING,
 };
 
 // HSK x HSV
@@ -315,10 +316,33 @@ static vk_device_architecture get_device_architecture(const vk::PhysicalDevice&
             // https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2025-0/intel-xe-gpu-architecture.html
             return vk_device_architecture::INTEL_XE2;
         }
+    } else if (props.vendorID == VK_VENDOR_ID_NVIDIA) {
+        const std::vector<vk::ExtensionProperties> ext_props = device.enumerateDeviceExtensionProperties();
+
+        bool cooperative_matrix = false;
+
+        // Detect "pre-turing" based on lack of coopmat support.
+        for (const auto& properties : ext_props) {
+            if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0) {
+                cooperative_matrix = true;
+                break;
+            }
+        }
+
+        if (!cooperative_matrix) {
+            return vk_device_architecture::NVIDIA_PRE_TURING;
+        }
     }
     return vk_device_architecture::OTHER;
 }
 
+enum vk_conv_shapes {
+    CONV_SHAPE_128x128,
+    CONV_SHAPE_64x32,
+    CONV_SHAPE_32x256,
+    CONV_SHAPE_COUNT,
+};
+
 struct vk_device_struct {
     std::recursive_mutex mutex;
 
@@ -483,8 +507,8 @@ struct vk_device_struct {
     vk_pipeline pipeline_rwkv_wkv6_f32;
     vk_pipeline pipeline_rwkv_wkv7_f32;
     vk_pipeline pipeline_opt_step_adamw_f32;
-    vk_pipeline pipeline_conv2d_f32;
-    vk_pipeline pipeline_conv2d_f16_f32;
+    vk_pipeline pipeline_conv2d_f32[CONV_SHAPE_COUNT];
+    vk_pipeline pipeline_conv2d_f16_f32[CONV_SHAPE_COUNT];
     vk_pipeline pipeline_conv2d_dw_whcn_f32;
     vk_pipeline pipeline_conv2d_dw_cwhn_f32;
 
@@ -908,8 +932,22 @@ struct vk_op_conv2d_push_constants {
     uint32_t nb1;
     uint32_t nb2;
     uint32_t nb3;
+
+    // init_fastdiv_values constants for dividing by KW, KW*KH, OW, OW*OH
+    uint32_t KWmp;   uint32_t KWL;
+    uint32_t KWKHmp; uint32_t KWKHL;
+    uint32_t OWmp;   uint32_t OWL;
+    uint32_t OWOHmp; uint32_t OWOHL;
 };
 
+template <> void init_pushconst_fastdiv(vk_op_conv2d_push_constants &p) {
+    // Compute magic values to divide by KW, KW*KH, OW, OW*OH
+    init_fastdiv_values(p.KW,       p.KWmp,    p.KWL);
+    init_fastdiv_values(p.KW*p.KH,  p.KWKHmp,  p.KWKHL);
+    init_fastdiv_values(p.OW,       p.OWmp,    p.OWL);
+    init_fastdiv_values(p.OW*p.OH,  p.OWOHmp,  p.OWOHL);
+}
+
 struct vk_op_conv2d_dw_push_constants {
     uint32_t ne;
     uint32_t batches;
@@ -3048,48 +3086,89 @@ static void ggml_vk_load_shaders(vk_device& device) {
     ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
 
     // conv2d
-    uint32_t conv2d_WG_SIZE  = 256;
-    uint32_t conv2d_BS_K     = 128;
-    uint32_t conv2d_BS_CRS   = 16;
-    uint32_t use_collectives = 0;  // Enables subgroup ops for preventing the re-calculation of indices.
-    if (device->subgroup_shuffle &&
-        device->vendor_id != VK_VENDOR_ID_INTEL) {  // Do not enable collectives on Intel, see PR 14316
-        use_collectives = 1;
-        conv2d_BS_CRS   = std::min(
-            device->subgroup_size,
-            conv2d_BS_CRS);  // CRS block size should be capped at sugroup size for correctness when shuffle is used.
-    }
-    uint32_t conv2d_BS_NPQ = 128;
-    uint32_t conv2d_TS_K   = 8;
-    uint32_t conv2d_shmem_req =
-        (conv2d_BS_K * (conv2d_BS_CRS + 1) + conv2d_BS_CRS * (conv2d_BS_NPQ + 1)) * sizeof(float);
-    if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) {
-        conv2d_BS_CRS = 8;
-        if (use_collectives) {
-            conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS);
-        }
-    }
-
-    if (use_collectives) {
-        ggml_vk_create_pipeline(
-            device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
-            sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
-            { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true, true);
-        ggml_vk_create_pipeline(
-            device, device->pipeline_conv2d_f16_f32, "conv2d_f16_f32", conv2d_f16_f32_len, conv2d_f16_f32_data, "main", 3,
-            sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
-            { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true, true);
-    } else {
-        ggml_vk_create_pipeline(
-            device, device->pipeline_conv2d_f32, "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
-            sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
-            { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true,
-            false);
-        ggml_vk_create_pipeline(
-            device, device->pipeline_conv2d_f16_f32, "conv2d_f16_f32", conv2d_f16_f32_len, conv2d_f16_f32_data, "main", 3,
-            sizeof(vk_op_conv2d_push_constants), { conv2d_BS_K, conv2d_BS_NPQ, 1 },
-            { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives }, 1, true,
-            false);
+    for (uint32_t s = 0; s < CONV_SHAPE_COUNT; ++s) {
+        uint32_t conv2d_WG_SIZE  = 256;
+        uint32_t conv2d_BS_K     = 128;
+        uint32_t conv2d_BS_CRS   = 16;
+        uint32_t use_collectives = 0;  // Enables subgroup ops for preventing the re-calculation of indices.
+        uint32_t conv2d_BS_NPQ = 128;
+        uint32_t conv2d_TS_K   = 8;
+        uint32_t conv2d_SHMEM_PAD = 4;
+        bool conv2d_UNROLL = true;
+
+        if (device->vendor_id == VK_VENDOR_ID_INTEL) {
+            conv2d_SHMEM_PAD = 0;
+            conv2d_UNROLL = false;
+        } else if (device->vendor_id == VK_VENDOR_ID_AMD) {
+            conv2d_SHMEM_PAD = device->architecture == vk_device_architecture::AMD_GCN ? 1 : 4;
+        }
+
+        switch (s) {
+        default:
+        case CONV_SHAPE_128x128:
+            conv2d_BS_K = 128;
+            conv2d_BS_NPQ = 128;
+            conv2d_BS_CRS = 16;
+            if (device->vendor_id == VK_VENDOR_ID_AMD && device->architecture != vk_device_architecture::AMD_GCN) {
+                conv2d_UNROLL = false;
+            }
+            break;
+        case CONV_SHAPE_64x32:
+            conv2d_BS_K = 64;
+            conv2d_BS_NPQ = 32;
+            conv2d_BS_CRS = 32;
+            conv2d_TS_K   = 4;
+            break;
+        case CONV_SHAPE_32x256:
+            conv2d_BS_K = 32;
+            conv2d_BS_NPQ = 256;
+            conv2d_BS_CRS = 16;
+            break;
+        }
+
+        // Use collectives on pre-Turing NVIDIA GPUs and GCN AMD cards, which had slower integer math.
+        bool allow_collectives_nv = device->vendor_id != VK_VENDOR_ID_NVIDIA ||
+                                    device->architecture == vk_device_architecture::NVIDIA_PRE_TURING;
+        bool allow_collectives_amd = device->vendor_id != VK_VENDOR_ID_AMD ||
+                                     device->architecture == vk_device_architecture::AMD_GCN;
+
+        if (device->subgroup_shuffle &&
+            device->vendor_id != VK_VENDOR_ID_INTEL &&   // Do not enable collectives on Intel, see PR 14316.
+            allow_collectives_nv &&
+            allow_collectives_amd) {
+            use_collectives = 1;
+            conv2d_BS_CRS   = std::min(
+                device->subgroup_size,
+                conv2d_BS_CRS);  // CRS block size should be capped at subgroup size for correctness when shuffle is used.
+        }
+
+        uint32_t conv2d_shmem_req =
+            (conv2d_BS_K * (conv2d_BS_CRS + conv2d_SHMEM_PAD) + conv2d_BS_CRS * (conv2d_BS_NPQ + conv2d_SHMEM_PAD)) * sizeof(float);
+        if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) {
+            conv2d_BS_CRS = 8;
+            if (use_collectives) {
+                conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS);
+            }
+        }
+
+        std::array<uint32_t, 3> wg_denoms = { conv2d_BS_K, conv2d_BS_NPQ, 1 };
+        std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
+
+        if (conv2d_UNROLL) {
+            ggml_vk_create_pipeline(
+                device, device->pipeline_conv2d_f32[s], "conv2d_f32", conv2d_f32_unroll_len, conv2d_f32_unroll_data, "main", 3,
+                sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
+            ggml_vk_create_pipeline(
+                device, device->pipeline_conv2d_f16_f32[s], "conv2d_f16_f32", conv2d_f16_f32_unroll_len, conv2d_f16_f32_unroll_data, "main", 3,
+                sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
+        } else {
+            ggml_vk_create_pipeline(
+                device, device->pipeline_conv2d_f32[s], "conv2d_f32", conv2d_f32_len, conv2d_f32_data, "main", 3,
+                sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
+            ggml_vk_create_pipeline(
+                device, device->pipeline_conv2d_f16_f32[s], "conv2d_f16_f32", conv2d_f16_f32_len, conv2d_f16_f32_data, "main", 3,
+                sizeof(vk_op_conv2d_push_constants), wg_denoms, spec_constants, 1, true, use_collectives);
+        }
     }
 
     ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
@@ -6641,6 +6720,34 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
     }
 }
 
+static std::array<uint32_t, 3> ggml_vk_get_conv_elements(const ggml_tensor *dst) {
+    const ggml_tensor *src0 = dst->src[0];
+    const ggml_tensor *src1 = dst->src[1];
+
+    // src0 - kernel:   [KW, KH, Cin, Cout]
+    // src1 - input:    [W, H, Cin, N]
+    // dst - result:    [OW, OH, Cout, N]
+
+    // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
+    auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
+        return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
+    };
+    // parallelize in {OW/BS_K, OH/BS_NPQ, 1}
+    int64_t W    = src1->ne[0];
+    int64_t H    = src1->ne[1];
+    int64_t KW   = src0->ne[0];
+    int64_t KH   = src0->ne[1];
+    int64_t Cout = src0->ne[3];
+    int64_t N    = src1->ne[3];
+    int64_t OH   = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
+    int64_t OW   = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
+    int64_t NPQ  = N * OW * OH;
+
+    // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
+    std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
+    return elements;
+}
+
 static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
     switch (op) {
     case GGML_OP_GET_ROWS:
@@ -6970,10 +7077,30 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
     case GGML_OP_CONV_2D:
         if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
             ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
+            auto elements = ggml_vk_get_conv_elements(dst);
+            vk_conv_shapes shape;
+
+            uint32_t tiles[CONV_SHAPE_COUNT];
+            for (uint32_t i = 0; i < CONV_SHAPE_COUNT; ++i) {
+                tiles[i] = CEIL_DIV(elements[0], ctx->device->pipeline_conv2d_f32[i]->wg_denoms[0]) * CEIL_DIV(elements[1], ctx->device->pipeline_conv2d_f32[i]->wg_denoms[1]);
+            }
+
+            // We can't query number of shader cores on Intel, use 32 as a placeholder
+            // so small convolutions will still choose a smaller tile.
+            const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
+
+            if (elements[0] > 64 && tiles[CONV_SHAPE_128x128] >= shader_core_count * 2) {
+                shape = CONV_SHAPE_128x128;
+            } else if (elements[0] <= 32 && tiles[CONV_SHAPE_32x256] >= shader_core_count * 2) {
+                shape = CONV_SHAPE_32x256;
+            } else {
+                shape = CONV_SHAPE_64x32;
+            }
+
             if (src0->type == GGML_TYPE_F32) {
-                return ctx->device->pipeline_conv2d_f32;
+                return ctx->device->pipeline_conv2d_f32[shape];
             } else if (src0->type == GGML_TYPE_F16) {
-                return ctx->device->pipeline_conv2d_f16_f32;
+                return ctx->device->pipeline_conv2d_f16_f32[shape];
             }
         }
         return nullptr;
@@ -7301,29 +7428,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
         } break;
     case GGML_OP_CONV_2D:
         {
-            // src0 - kernel:   [KW, KH, Cin, Cout]
-            // src1 - input:    [W, H, Cin, N]
-            // dst - result:    [OW, OH, Cout, N]
-
-            // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
-            auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
-                return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
-            };
-            // parallelize in {OW/BS_K, OH/BS_NPQ, 1}
-            int64_t W    = src1->ne[0];
-            int64_t H    = src1->ne[1];
-            int64_t KW   = src0->ne[0];
-            int64_t KH   = src0->ne[1];
-            int64_t Cout = src0->ne[3];
-            int64_t N    = src1->ne[3];
-            int64_t OH   = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
-            int64_t OW   = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
-            int64_t NPQ  = N * OW * OH;
-
-            // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
-            elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
-        }
-        break;
+            elements = ggml_vk_get_conv_elements(dst);
+        } break;
     case GGML_OP_ADD:
     case GGML_OP_SUB:
     case GGML_OP_DIV:
index 481940a52b3112a1dc0dd15371296ef69cf66fe9..04a10c012f4fe9f1ca19df327661bb24dae66480 100644 (file)
@@ -1,14 +1,13 @@
 #version 450
 
+#extension GL_EXT_control_flow_attributes : enable
+
 #ifdef USE_COLLECTIVES
 #    extension GL_KHR_shader_subgroup_shuffle : enable
 #endif
 
 #include "types.comp"
 
-// Make spec constant
-#define SHMEM_PAD 0
-
 // shape notation: [dim(N), ..., dim(0)] -- stride(dim(j)) >= stride(dim(i)) if i > j
 layout(binding = 0) readonly buffer A {
     A_TYPE knl_data[];
@@ -56,6 +55,12 @@ layout(push_constant) uniform parameter {
     uint32_t nb1;
     uint32_t nb2;
     uint32_t nb3;
+
+    // fastdiv helper values
+    uint32_t KWmp;   uint32_t KWL;
+    uint32_t KWKHmp; uint32_t KWKHL;
+    uint32_t OWmp;   uint32_t OWL;
+    uint32_t OWOHmp; uint32_t OWOHL;
 }
 
 p;
@@ -68,6 +73,7 @@ layout(constant_id = 3) const uint BS_NPQ          = 128;
 // Thread-tile sizes
 layout(constant_id = 4) const uint TS_K            = 8;
 layout(constant_id = 5) const uint use_collectives = 1;
+layout(constant_id = 6) const uint SHMEM_PAD       = 4;
 
 uint32_t       tid     = gl_LocalInvocationID.x;
 const uint32_t WG_SIZE = gl_WorkGroupSize.x;
@@ -131,6 +137,14 @@ uint32_t       Br    = tid / BS_NPQ;
 uint32_t       Bc    = tid % BS_NPQ;
 const uint32_t BrpWg = WG_SIZE / BS_NPQ;
 
+// see init_fastdiv_values in ggml-vulkan.cpp
+uint fastdiv(uint n, uint mp, uint L) {
+    uint msbs, lsbs;
+    // msbs = mulhi(n, mp)
+    umulExtended(n, mp, msbs, lsbs);
+    return (msbs + n) >> L;
+}
+
 void main() {
     for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
         for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
@@ -151,9 +165,9 @@ void main() {
         uint32_t cached_KW_idx;
         if (use_collectives == 1) {
             cached_CRS_idx                = B_idx_CRS * BS_CRS + gl_SubgroupInvocationID;
-            cached_Cin_idx                = cached_CRS_idx / (p.KW * p.KH);
+            cached_Cin_idx                = fastdiv(cached_CRS_idx, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
             uint32_t cached_CRS_remainder = (cached_CRS_idx - cached_Cin_idx * p.KW * p.KH);
-            cached_KH_idx                 = cached_CRS_remainder / p.KW;
+            cached_KH_idx                 = fastdiv(cached_CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
             cached_KW_idx                 = cached_CRS_remainder - cached_KH_idx * p.KW;
 
             CRS_idx_a = subgroupShuffle(cached_CRS_idx, Ac);
@@ -162,16 +176,16 @@ void main() {
             KW_idx_a  = subgroupShuffle(cached_KW_idx, Ac);
         } else {
             CRS_idx_a              = B_idx_CRS * BS_CRS + Ac;  // Global CRS_idx_a (column index of A)
-            Cin_idx_a              = CRS_idx_a / (p.KW * p.KH);
+            Cin_idx_a              = fastdiv(CRS_idx_a, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
             uint32_t CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH;
-            KH_idx_a               = CRS_remainder / p.KW;
+            KH_idx_a               = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
             KW_idx_a               = CRS_remainder - KH_idx_a * p.KW;
         }
 #else
         CRS_idx_a     = B_idx_CRS * BS_CRS + Ac;  // Global CRS_idx_a (column index of A)
-        Cin_idx_a     = CRS_idx_a / (p.KW * p.KH);
+        Cin_idx_a     = fastdiv(CRS_idx_a, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH); / (p.KW * p.KH);
         CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH;
-        KH_idx_a      = CRS_remainder / p.KW;
+        KH_idx_a      = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
         KW_idx_a      = CRS_remainder - KH_idx_a * p.KW;
 #endif
 
@@ -188,13 +202,13 @@ void main() {
             Ash[B_ly * Ash_stride + B_lx] = val;
         }
         /* Load input to B_block: (BS_CRS x BS_NPQ) */
-        for (uint32_t r_offset = 0; r_offset < BS_CRS; r_offset += BrpWg) {
+        UNROLL for (uint32_t r_offset = 0; r_offset < BS_CRS; r_offset += BrpWg) {
             uint32_t B_ly          = r_offset + Br;             /* Row index of B block */
             uint32_t B_lx          = Bc;
             uint32_t NPQ_idx       = B_idx_NPQ * BS_NPQ + B_lx; /* Global NPQ index (column index of B) */
-            uint32_t N_idx         = NPQ_idx / (p.OH * p.OW);
+            uint32_t N_idx         = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW;
             uint32_t NPQ_remainder = NPQ_idx - N_idx * p.OH * p.OW;
-            uint32_t OH_idx        = NPQ_remainder / p.OW;
+            uint32_t OH_idx        = fastdiv(NPQ_remainder, p.OWmp, p.OWL); // divide by p.OW;
             uint32_t OW_idx        = NPQ_remainder - OH_idx * p.OW;
 
             uint32_t CRS_idx_b;
@@ -209,16 +223,16 @@ void main() {
                 KW_idx_b  = subgroupShuffle(cached_KW_idx, r_offset + Br);
             } else {
                 CRS_idx_b              = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */
-                Cin_idx_b              = CRS_idx_b / (p.KW * p.KH);
+                Cin_idx_b              = fastdiv(CRS_idx_b, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
                 uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH;
-                KH_idx_b               = CRS_remainder / p.KW;
+                KH_idx_b               = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
                 KW_idx_b               = CRS_remainder - KH_idx_b * p.KW;
             }
 #else
             CRS_idx_b              = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */
-            Cin_idx_b              = CRS_idx_b / (p.KW * p.KH);
+            Cin_idx_b              = fastdiv(CRS_idx_b, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
             uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH;
-            KH_idx_b               = CRS_remainder / p.KW;
+            KH_idx_b               = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
             KW_idx_b               = CRS_remainder - KH_idx_b * p.KW;
 #endif
 
@@ -233,32 +247,36 @@ void main() {
             Bsh[B_ly * Bsh_stride + B_lx] = val;
         }
         barrier();
-        for (uint32_t CRS_lidx = 0; CRS_lidx < BS_CRS; CRS_lidx++) {
-            for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
-                regA[T_ly] = Ash[(T_y * TS_K + T_ly) * Ash_stride + CRS_lidx];
-            }
-            for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
-                regB[T_lx] = Bsh[CRS_lidx * Bsh_stride + T_x * TS_NPQ + T_lx];
-            }
-            for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
+        if (T_y * TS_K < K) {
+            UNROLL for (uint32_t CRS_lidx = 0; CRS_lidx < BS_CRS; CRS_lidx++) {
+                for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
+                    regA[T_ly] = Ash[(T_y * TS_K + T_ly) * Ash_stride + CRS_lidx];
+                }
                 for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
-                    regC[T_ly][T_lx] = fma(regA[T_ly], regB[T_lx], regC[T_ly][T_lx]);
+                    regB[T_lx] = Bsh[CRS_lidx * Bsh_stride + T_x * TS_NPQ + T_lx];
+                }
+                for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
+                    for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
+                        regC[T_ly][T_lx] = fma(regA[T_ly], regB[T_lx], regC[T_ly][T_lx]);
+                    }
                 }
             }
         }
         barrier();
     }
     /* Save C* */
-    for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
-        for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
-            uint32_t K_idx   = B_idx_K * BS_K + T_y * TS_K + T_ly;
-            uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + T_x * TS_NPQ + T_lx;
-            uint32_t N_idx   = NPQ_idx / (p.OH * p.OW);
-            uint32_t OH_idx  = (NPQ_idx - N_idx * p.OH * p.OW) / p.OW;
-            uint32_t OW_idx  = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW;
-            uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3;
-            if (K_idx < K && NPQ_idx < NPQ) {
-                dst_data[dst_idx] = regC[T_ly][T_lx];
+    if (T_y * TS_K < K) {
+        for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
+            for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
+                uint32_t K_idx   = B_idx_K * BS_K + T_y * TS_K + T_ly;
+                uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + T_x * TS_NPQ + T_lx;
+                uint32_t N_idx   = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW;
+                uint32_t OH_idx  = fastdiv(NPQ_idx - N_idx * p.OH * p.OW, p.OWmp, p.OWL); // divide by p.OW;
+                uint32_t OW_idx  = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW;
+                uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3;
+                if (K_idx < K && NPQ_idx < NPQ) {
+                    dst_data[dst_idx] = regC[T_ly][T_lx];
+                }
             }
         }
     }
index f9f0c95b8b2ad9c42179ac580106a432110ef3cb..b634e52d64d376b1a5a11ef9198f28caba116228 100644 (file)
@@ -655,8 +655,11 @@ void process_shaders() {
 
     string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
 
-    string_to_spv("conv2d_f32", "conv2d_mm.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}});
-    string_to_spv("conv2d_f16_f32", "conv2d_mm.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}});
+    string_to_spv("conv2d_f32_unroll", "conv2d_mm.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}, {"UNROLL", "[[unroll]]"}});
+    string_to_spv("conv2d_f16_f32_unroll", "conv2d_mm.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}, {"UNROLL", "[[unroll]]"}});
+
+    string_to_spv("conv2d_f32", "conv2d_mm.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}, {"UNROLL", ""}});
+    string_to_spv("conv2d_f16_f32", "conv2d_mm.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"USE_COLLECTIVES", "1"}, {"UNROLL", ""}});
 
     string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
     string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));