]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add OLMo November 2024 support (#10394)
authorShane A <redacted>
Tue, 19 Nov 2024 09:04:08 +0000 (01:04 -0800)
committerGitHub <redacted>
Tue, 19 Nov 2024 09:04:08 +0000 (11:04 +0200)
* Add OLMo November 2024 constants

* Add OLMo November 2024 converter

* Add loading of OLMo November 2024 tensors and hyper parameters

* Add building of OLMo November 2024 model

convert_hf_to_gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama.cpp

index 39afa5ef4f27227f93fb60b5f6134661facef087..9f4b8154b88a883d0bc8517d1cbc7460fc6dc3b6 100755 (executable)
@@ -3040,6 +3040,11 @@ class OlmoModel(Model):
         return [(self.map_tensor_name(name), data_torch)]
 
 
+@Model.register("Olmo1124ForCausalLM")
+class Olmo1124Model(Model):
+    model_arch = gguf.MODEL_ARCH.OLMO_1124
+
+
 @Model.register("OlmoeForCausalLM")
 class OlmoeModel(Model):
     model_arch = gguf.MODEL_ARCH.OLMOE
index bc2b649d1a83dc6763fc58ce9512fb8059e51629..d83b72f761951efe76e2aa6968923d3fdc39de31 100644 (file)
@@ -243,6 +243,7 @@ class MODEL_ARCH(IntEnum):
     COMMAND_R    = auto()
     DBRX         = auto()
     OLMO         = auto()
+    OLMO_1124    = auto()
     OLMOE        = auto()
     OPENELM      = auto()
     ARCTIC       = auto()
@@ -404,6 +405,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.COMMAND_R:      "command-r",
     MODEL_ARCH.DBRX:           "dbrx",
     MODEL_ARCH.OLMO:           "olmo",
+    MODEL_ARCH.OLMO_1124:      "olmo_1124",
     MODEL_ARCH.OLMOE:          "olmoe",
     MODEL_ARCH.OPENELM:        "openelm",
     MODEL_ARCH.ARCTIC:         "arctic",
@@ -1069,6 +1071,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.OLMO_1124: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_POST_NORM,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.FFN_POST_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+    ],
     MODEL_ARCH.OLMOE: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index f4a787c56993ab9a96a0c407ba61e22096b509a9..4cbd39e03e9427423de2daa07e7965aa4766659a 100644 (file)
@@ -13,7 +13,7 @@ class TensorNameMap:
             "transformer.wte",                           # gpt2 gpt-j mpt refact qwen dbrx jais exaone
             "transformer.word_embeddings",               # falcon
             "word_embeddings",                           # bloom
-            "model.embed_tokens",                        # llama-hf nemotron olmoe
+            "model.embed_tokens",                        # llama-hf nemotron olmoe olmo_1124
             "tok_embeddings",                            # llama-pth
             "embeddings.word_embeddings",                # bert nomic-bert
             "language_model.embedding.word_embeddings",  # persimmon
@@ -54,7 +54,7 @@ class TensorNameMap:
         # Output
         MODEL_TENSOR.OUTPUT: (
             "embed_out",                 # gptneox
-            "lm_head",                   # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
+            "lm_head",                   # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo_1124
             "output",                    # llama-pth bloom internlm2
             "word_embeddings_for_head",  # persimmon
             "lm_head.linear",            # phi2
@@ -66,7 +66,7 @@ class TensorNameMap:
         MODEL_TENSOR.OUTPUT_NORM: (
             "gpt_neox.final_layer_norm",               # gptneox
             "transformer.ln_f",                        # gpt2 gpt-j falcon jais exaone
-            "model.norm",                              # llama-hf baichuan internlm2 olmoe
+            "model.norm",                              # llama-hf baichuan internlm2 olmoe olmo_1124
             "norm",                                    # llama-pth
             "transformer.norm_f",                      # mpt dbrx
             "ln_f",                                    # refact bloom qwen gpt2
@@ -145,7 +145,7 @@ class TensorNameMap:
 
         # Attention query
         MODEL_TENSOR.ATTN_Q: (
-            "model.layers.{bid}.self_attn.q_proj",                       # llama-hf nemotron olmoe
+            "model.layers.{bid}.self_attn.q_proj",                       # llama-hf nemotron olmoe olmo_1124
             "layers.{bid}.attention.wq",                                 # llama-pth
             "encoder.layer.{bid}.attention.self.query",                  # bert
             "transformer.h.{bid}.attn.q_proj",                           # gpt-j
@@ -157,7 +157,7 @@ class TensorNameMap:
 
         # Attention key
         MODEL_TENSOR.ATTN_K: (
-            "model.layers.{bid}.self_attn.k_proj",                     # llama-hf nemotron olmoe
+            "model.layers.{bid}.self_attn.k_proj",                     # llama-hf nemotron olmoe olmo_1124
             "layers.{bid}.attention.wk",                               # llama-pth
             "encoder.layer.{bid}.attention.self.key",                  # bert
             "transformer.h.{bid}.attn.k_proj",                         # gpt-j
@@ -170,7 +170,7 @@ class TensorNameMap:
 
         # Attention value
         MODEL_TENSOR.ATTN_V: (
-            "model.layers.{bid}.self_attn.v_proj",                       # llama-hf nemotron olmoe
+            "model.layers.{bid}.self_attn.v_proj",                       # llama-hf nemotron olmoe olmo_1124
             "layers.{bid}.attention.wv",                                 # llama-pth
             "encoder.layer.{bid}.attention.self.value",                  # bert
             "transformer.h.{bid}.attn.v_proj",                           # gpt-j
@@ -188,7 +188,7 @@ class TensorNameMap:
             "transformer.blocks.{bid}.attn.out_proj",                       # mpt
             "transformer.h.{bid}.self_attention.dense",                     # falcon
             "h.{bid}.self_attention.dense",                                 # bloom
-            "model.layers.{bid}.self_attn.o_proj",                          # llama-hf nemotron olmoe
+            "model.layers.{bid}.self_attn.o_proj",                          # llama-hf nemotron olmoe olmo_1124
             "layers.{bid}.attention.wo",                                    # llama-pth
             "encoder.layer.{bid}.attention.output.dense",                   # bert
             "transformer.h.{bid}.attn.out_proj",                            # gpt-j
@@ -215,7 +215,7 @@ class TensorNameMap:
         ),
 
         MODEL_TENSOR.ATTN_POST_NORM: (
-            "model.layers.{bid}.post_attention_layernorm",     # gemma2
+            "model.layers.{bid}.post_attention_layernorm",     # gemma2 olmo_1124
         ),
 
         # Rotary embeddings
@@ -250,7 +250,7 @@ class TensorNameMap:
 
         # Post feed-forward norm
         MODEL_TENSOR.FFN_POST_NORM: (
-            "model.layers.{bid}.post_feedforward_layernorm", # gemma2
+            "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo_1124
         ),
 
         MODEL_TENSOR.FFN_GATE_INP: (
@@ -273,7 +273,7 @@ class TensorNameMap:
             "transformer.blocks.{bid}.ffn.up_proj",                   # mpt
             "transformer.h.{bid}.mlp.dense_h_to_4h",                  # falcon
             "h.{bid}.mlp.dense_h_to_4h",                              # bloom
-            "model.layers.{bid}.mlp.up_proj",                         # llama-hf refact nemotron
+            "model.layers.{bid}.mlp.up_proj",                         # llama-hf refact nemotron olmo_1124
             "layers.{bid}.feed_forward.w3",                           # llama-pth
             "encoder.layer.{bid}.intermediate.dense",                 # bert
             "transformer.h.{bid}.mlp.fc_in",                          # gpt-j
@@ -314,7 +314,7 @@ class TensorNameMap:
 
         # Feed-forward gate
         MODEL_TENSOR.FFN_GATE: (
-            "model.layers.{bid}.mlp.gate_proj",           # llama-hf refact
+            "model.layers.{bid}.mlp.gate_proj",           # llama-hf refact olmo_1124
             "layers.{bid}.feed_forward.w1",               # llama-pth
             "transformer.h.{bid}.mlp.w2",                 # qwen
             "transformer.h.{bid}.mlp.c_fc2",              # jais
@@ -346,7 +346,7 @@ class TensorNameMap:
             "transformer.blocks.{bid}.ffn.down_proj",                 # mpt
             "transformer.h.{bid}.mlp.dense_4h_to_h",                  # falcon
             "h.{bid}.mlp.dense_4h_to_h",                              # bloom
-            "model.layers.{bid}.mlp.down_proj",                       # llama-hf nemotron
+            "model.layers.{bid}.mlp.down_proj",                       # llama-hf nemotron olmo_1124
             "layers.{bid}.feed_forward.w2",                           # llama-pth
             "encoder.layer.{bid}.output.dense",                       # bert
             "transformer.h.{bid}.mlp.fc_out",                         # gpt-j
@@ -383,7 +383,7 @@ class TensorNameMap:
         MODEL_TENSOR.ATTN_Q_NORM: (
             "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
             "model.layers.{bid}.self_attn.q_layernorm",                       # persimmon
-            "model.layers.{bid}.self_attn.q_norm",                            # cohere olmoe chameleon
+            "model.layers.{bid}.self_attn.q_norm",                            # cohere olmoe chameleon olmo_1124
             "transformer.blocks.{bid}.attn.q_ln",                             # sea-lion
             "encoder.layer.{bid}.attention.self.layer_norm_q",                # jina-bert-v2
             "transformer.layers.{bid}.attn.q_norm",                           # openelm
@@ -392,7 +392,7 @@ class TensorNameMap:
         MODEL_TENSOR.ATTN_K_NORM: (
             "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
             "model.layers.{bid}.self_attn.k_layernorm",                       # persimmon
-            "model.layers.{bid}.self_attn.k_norm",                            # cohere olmoe chameleon
+            "model.layers.{bid}.self_attn.k_norm",                            # cohere olmoe chameleon olmo_1124
             "transformer.blocks.{bid}.attn.k_ln",                             # sea-lion
             "encoder.layer.{bid}.attention.self.layer_norm_k",                # jina-bert-v2
             "transformer.layers.{bid}.attn.k_norm",                           # openelm
index de96959f266326bb0951b69ea634563bf2194ad6..4f31f25b1d355d0246a3d4c389da3c9e42f3d257 100644 (file)
@@ -179,6 +179,7 @@ enum llm_arch {
     LLM_ARCH_COMMAND_R,
     LLM_ARCH_DBRX,
     LLM_ARCH_OLMO,
+    LLM_ARCH_OLMO_1124,
     LLM_ARCH_OLMOE,
     LLM_ARCH_OPENELM,
     LLM_ARCH_ARCTIC,
@@ -232,6 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_COMMAND_R,       "command-r"    },
     { LLM_ARCH_DBRX,            "dbrx"         },
     { LLM_ARCH_OLMO,            "olmo"         },
+    { LLM_ARCH_OLMO_1124,       "olmo_1124"    },
     { LLM_ARCH_OLMOE,           "olmoe"        },
     { LLM_ARCH_OPENELM,         "openelm"      },
     { LLM_ARCH_ARCTIC,          "arctic"       },
@@ -1207,6 +1209,25 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_OLMO_1124,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_OLMOE,
         {
@@ -5877,6 +5898,17 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_OLMO_1124:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                switch (hparams.n_layer) {
+                    case 16: model.type = e_model::MODEL_1B; break;
+                    case 32: model.type = e_model::MODEL_7B; break;
+                    case 40: model.type = e_model::MODEL_13B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_OLMOE:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -8559,6 +8591,31 @@ static bool llm_load_tensors(
                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                     }
                 } break;
+            case LLM_ARCH_OLMO_1124:
+                {
+                    model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    model.output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = model.layers[i];
+
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
+                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+                    }
+                } break;
             case LLM_ARCH_OLMOE:
                 {
                     model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -14424,6 +14481,130 @@ struct llm_build_context {
         return gf;
     }
 
+    struct ggml_cgraph * build_olmo_1124() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = inpL;
+
+            // self_attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(Qcur, "Qcur_normed", il);
+
+                Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(Kcur, "Kcur_normed", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur_rope", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur_rope", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                    model.layers[il].attn_post_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_post_norm", il);
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_ffn(ctx0, lctx, ffn_inp,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                model.layers[il].ffn_post_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+            cb(cur, "ffn_post_norm", -1);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
     // based on the build_qwen2moe() function, changes:
     //   * removed shared experts
     //   * removed bias
@@ -16616,6 +16797,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_olmo();
             } break;
+        case LLM_ARCH_OLMO_1124:
+            {
+                result = llm.build_olmo_1124();
+            } break;
         case LLM_ARCH_OLMOE:
             {
                 result = llm.build_olmoe();
@@ -19885,6 +20070,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
         case LLM_ARCH_QWEN:
         case LLM_ARCH_QWEN2:
         case LLM_ARCH_QWEN2MOE:
+        case LLM_ARCH_OLMO_1124:
         case LLM_ARCH_OLMOE:
         case LLM_ARCH_PHI2:
         case LLM_ARCH_PHI3: