+++ /dev/null
-#!/usr/bin/env python3
-# HF bloom --> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import re
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
-
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
-
-
-# Supported Models:
-# https://huggingface.co/bigscience/bloom-1b7
-# https://huggingface.co/bigscience/bloom-3b
-# https://huggingface.co/bigscience/bloom-7b1
-# https://huggingface.co/Langboat/bloom-1b4-zh
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
- parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
- return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
-
-# possible tensor data types
-# ftype == 0 -> float32
-# ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
- fname_out = args.outfile
-else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
-
-if hparams["architectures"][0] != "BloomForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
- sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.BLOOM
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["n_layer"]
-
-gguf_writer.add_name("Bloom")
-n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
-n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
-gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
-gguf_writer.add_embedding_length(n_embed)
-gguf_writer.add_feed_forward_length(4 * n_embed)
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(n_head)
-gguf_writer.add_head_count_kv(n_head)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
-
-# params for qkv transform
-n_head_kv = hparams.get("n_head_kv", n_head)
-head_dim = n_embed // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
-else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
-
-for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(dir_model / part_name, map_location="cpu")
-
- has_lm_head = True
- if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
- has_lm_head = False
-
- for original_name in model_part.keys():
- data = model_part[original_name]
- name = re.sub(r'transformer\.', '', original_name)
-
- old_dtype = data.dtype
-
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
-
- data = data.squeeze().numpy()
-
- if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
- data = np.concatenate(
- (qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
- axis=0
- )
- print("re-format attention.linear_qkv.weight")
- elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
- qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
- data = np.concatenate(
- (qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,))),
- axis=0
- )
- print("re-format attention.linear_qkv.bias")
-
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
-
- n_dims = len(data.shape)
- data_dtype = data.dtype
-
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
-
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
-
- print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
- gguf_writer.add_tensor(new_name, data)
-
- if not has_lm_head and name == "word_embeddings.weight":
- gguf_writer.add_tensor("output.weight", data)
- print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
+++ /dev/null
-#!/usr/bin/env python3
-# HF falcon--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import contextlib
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path, prefix: str) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith(prefix):
- num_parts += 1
-
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
-
-
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file, or model file itself (*.bin)",
- )
- parser.add_argument(
- "ftype", type=int, choices=[0, 1], default=1, nargs='?',
- help="output format - use 0 for float32, 1 for float16",
- )
- return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
-
-# possible tensor data types
-# ftype == 0 -> float32
-# ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
- fname_out = args.outfile
-else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
-
-if hparams["architectures"][0] not in ("RWForCausalLM", "FalconForCausalLM"):
- print("Model architecture not supported: " + hparams["architectures"][0])
-
- sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model, "model-00")
-if num_parts:
- is_safetensors = True
- from safetensors import safe_open
-else:
- is_safetensors = False
- num_parts = count_model_parts(dir_model, "pytorch_model-")
-
-ARCH=gguf.MODEL_ARCH.FALCON
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams.get("num_hidden_layers")
-if block_count is None:
- block_count = hparams["n_layer"] # old name
-
-n_head = hparams.get("num_attention_heads")
-if n_head is None:
- n_head = hparams["n_head"] # old name
-
-n_head_kv = hparams.get("num_kv_heads")
-if n_head_kv is None:
- n_head_kv = hparams.get("n_head_kv", 1) # old name
-
-gguf_writer.add_name("Falcon")
-gguf_writer.add_context_length(2048) # not in config.json
-gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
-gguf_writer.add_embedding_length(hparams["hidden_size"])
-gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(n_head)
-gguf_writer.add_head_count_kv(n_head_kv)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
- tokens.append(reverse_vocab[i])
- scores.append(0.0) # dummy
- toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_scores(scores)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-head_dim = hparams["hidden_size"] // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
-elif is_safetensors:
- part_names = (
- f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
- )
-else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
-
-for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- if is_safetensors:
- ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
- else:
- ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
-
- with ctx as model_part:
- for name in model_part.keys():
- data = model_part.get_tensor(name) if is_safetensors else model_part[name]
-
- old_dtype = data.dtype
-
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
-
- # QKV tensor transform
- # The original query_key_value tensor contains n_head_kv "kv groups",
- # each consisting of n_head/n_head_kv query weights followed by one key
- # and one value weight (shared by all query heads in the kv group).
- # This layout makes it a big pain to work with in GGML.
- # So we rearrange them here,, so that we have n_head query weights
- # followed by n_head_kv key weights followed by n_head_kv value weights,
- # in contiguous fashion.
- # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
-
- if "query_key_value" in name:
- qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
- q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
- k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
- v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
- data = torch.cat((q,k,v)).reshape_as(data)
-
- data = data.squeeze().numpy()
-
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
-
- n_dims = len(data.shape)
- data_dtype = data.dtype
-
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
-
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
-
- print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
- gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
+++ /dev/null
-#!/usr/bin/env python3
-# HF gptneox--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
-
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
-
-
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file, or model file itself (*.bin)",
- )
- parser.add_argument(
- "ftype", type=int, choices=[0, 1], default=1, nargs='?',
- help="output format - use 0 for float32, 1 for float16",
- )
- return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
-
-# possible tensor data types
-# ftype == 0 -> float32
-# ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
- fname_out = args.outfile
-else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
-
-if hparams["architectures"][0] != "GPTNeoXForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
-
- sys.exit()
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.GPTNEOX
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["num_hidden_layers"]
-
-gguf_writer.add_name(dir_model.name)
-gguf_writer.add_context_length(hparams["max_position_embeddings"])
-gguf_writer.add_embedding_length(hparams["hidden_size"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
-gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
-gguf_writer.add_head_count(hparams["num_attention_heads"])
-gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
-else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
-
-for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
-
- for name in model_part.keys():
- data = model_part[name]
-
- # we don't need these
- if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
- continue
-
- old_dtype = data.dtype
-
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
-
- data = data.squeeze().numpy()
-
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
-
- n_dims = len(data.shape)
- data_dtype = data.dtype
-
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
-
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
-
- print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
- gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
--- /dev/null
+#!/usr/bin/env python3
+
+from __future__ import annotations
+
+import argparse
+import contextlib
+import json
+import os
+import re
+import sys
+from enum import IntEnum
+from pathlib import Path
+from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
+
+import numpy as np
+import torch
+
+if TYPE_CHECKING:
+ from torch import Tensor
+
+if 'NO_LOCAL_GGUF' not in os.environ:
+ sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
+import gguf
+
+
+###### MODEL DEFINITIONS ######
+
+class SentencePieceTokenTypes(IntEnum):
+ NORMAL = 1
+ UNKNOWN = 2
+ CONTROL = 3
+ USER_DEFINED = 4
+ UNUSED = 5
+ BYTE = 6
+
+
+class Model:
+ def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
+ self.dir_model = dir_model
+ self.ftype = ftype
+ self.fname_out = fname_out
+ self.is_big_endian = is_big_endian
+ self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
+ self.is_safetensors = self._is_model_safetensors()
+ self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
+ self.part_names = self._get_part_names()
+ self.hparams = Model.load_hparams(self.dir_model)
+ self.model_arch = self._get_model_architecture()
+ self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
+
+ def set_vocab(self):
+ self._set_vocab_gpt2()
+
+ def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
+ for part_name in self.part_names:
+ print(f"gguf: loading model part '{part_name}'")
+ ctx: ContextManager[Any]
+ if self.is_safetensors:
+ from safetensors import safe_open
+ ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
+ else:
+ ctx = contextlib.nullcontext(torch.load(self.dir_model / part_name, map_location="cpu"))
+
+ with ctx as model_part:
+ for name in model_part.keys():
+ data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
+ yield name, data
+
+ def set_gguf_parameters(self):
+ self.gguf_writer.add_name(self.dir_model.name)
+ self.gguf_writer.add_block_count(self.hparams.get(
+ "n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
+ ))
+ if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
+ self.gguf_writer.add_context_length(n_ctx)
+ if (n_embd := self.hparams.get("hidden_size")) is not None:
+ self.gguf_writer.add_embedding_length(n_embd)
+ if (n_ff := self.hparams.get("intermediate_size")) is not None:
+ self.gguf_writer.add_feed_forward_length(n_ff)
+ if (n_head := self.hparams.get("num_attention_head")) is not None:
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
+
+ def write_tensors(self):
+ block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+ for name, data_torch in self.get_tensors():
+ # we don't need these
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
+ continue
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+ def write(self):
+ self.write_tensors()
+ self.gguf_writer.write_header_to_file()
+ self.gguf_writer.write_kv_data_to_file()
+ self.gguf_writer.write_tensors_to_file()
+ self.gguf_writer.close()
+
+ def write_vocab(self):
+ self.gguf_writer.write_header_to_file()
+ self.gguf_writer.write_kv_data_to_file()
+ self.gguf_writer.close()
+
+ @staticmethod
+ def count_model_parts(dir_model: Path, prefix: str) -> int:
+ num_parts = 0
+ for filename in os.listdir(dir_model):
+ if filename.endswith(prefix):
+ num_parts += 1
+
+ return num_parts
+
+ @staticmethod
+ def load_hparams(dir_model):
+ with open(dir_model / "config.json", "r", encoding="utf-8") as f:
+ return json.load(f)
+
+ @staticmethod
+ def from_model_architecture(model_architecture):
+ if model_architecture == "StableLMEpochForCausalLM":
+ return StableLMModel
+ if model_architecture == "GPTNeoXForCausalLM":
+ return GPTNeoXModel
+ if model_architecture == "BloomForCausalLM":
+ return BloomModel
+ if model_architecture == "MPTForCausalLM":
+ return MPTModel
+ if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
+ return BaichuanModel
+ if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
+ return FalconModel
+ if model_architecture == "GPTBigCodeForCausalLM":
+ return StarCoderModel
+ if model_architecture == "GPTRefactForCausalLM":
+ return RefactModel
+ if model_architecture == "PersimmonForCausalLM":
+ return PersimmonModel
+ return Model
+
+ def _is_model_safetensors(self) -> bool:
+ return Model.count_model_parts(self.dir_model, ".safetensors") > 0
+
+ def _get_part_names(self):
+ if self.is_safetensors:
+ if self.num_parts == 1: # there's only one .safetensors file
+ return ("model.safetensors",)
+ return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
+
+ if self.num_parts == 1: # there's only one .bin file
+ return ("pytorch_model.bin",)
+ return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
+
+ def _get_model_architecture(self) -> gguf.MODEL_ARCH:
+ arch = self.hparams["architectures"][0]
+ if arch == "GPTNeoXForCausalLM":
+ return gguf.MODEL_ARCH.GPTNEOX
+ if arch == "BloomForCausalLM":
+ return gguf.MODEL_ARCH.BLOOM
+ if arch == "MPTForCausalLM":
+ return gguf.MODEL_ARCH.MPT
+ if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
+ return gguf.MODEL_ARCH.BAICHUAN
+ if arch == "FalconForCausalLM":
+ return gguf.MODEL_ARCH.FALCON
+ if arch == "GPTBigCodeForCausalLM":
+ return gguf.MODEL_ARCH.STARCODER
+ if arch == "GPTRefactForCausalLM":
+ return gguf.MODEL_ARCH.REFACT
+ if arch == "PersimmonForCausalLM":
+ return gguf.MODEL_ARCH.PERSIMMON
+
+ raise NotImplementedError(f'Architecture "{arch}" not supported!')
+
+ def _set_vocab_gpt2(self):
+ dir_model = self.dir_model
+ hparams = self.hparams
+ tokens: list[bytearray] = []
+ toktypes: list[int] = []
+
+ from transformers import AutoTokenizer # type: ignore[attr-defined]
+ tokenizer = AutoTokenizer.from_pretrained(dir_model)
+ vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
+ assert max(tokenizer.vocab.values()) < vocab_size
+
+ reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
+ added_vocab = tokenizer.get_added_vocab()
+
+ for i in range(vocab_size):
+ if i not in reverse_vocab:
+ pad_token = f"[PAD{i}]".encode('utf-8')
+ tokens.append(bytearray(pad_token))
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ elif reverse_vocab[i] in added_vocab:
+ tokens.append(reverse_vocab[i])
+ if tokenizer.added_tokens_decoder[i].special:
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.NORMAL)
+
+ self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def _set_vocab_sentencepiece(self):
+ from sentencepiece import SentencePieceProcessor
+
+ tokenizer_path = self.dir_model / 'tokenizer.model'
+
+ tokens: list[bytes] = []
+ scores: list[float] = []
+ toktypes: list[int] = []
+
+ if not tokenizer_path.is_file():
+ print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
+ sys.exit(1)
+
+ tokenizer = SentencePieceProcessor(str(tokenizer_path))
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+ for token_id in range(vocab_size):
+ piece = tokenizer.id_to_piece(token_id)
+ text = piece.encode("utf-8")
+ score = tokenizer.get_score(token_id)
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.is_unknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.is_control(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.is_unused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.is_byte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+
+ tokens.append(text)
+ scores.append(score)
+ toktypes.append(toktype)
+
+ added_tokens_file = self.dir_model / 'added_tokens.json'
+ if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ added_tokens_json = json.load(f)
+
+ for key in added_tokens_json:
+ tokens.append(key.encode("utf-8"))
+ scores.append(-1000.0)
+ toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+
+class StableLMModel(Model):
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_rope_dimension_count(
+ int(self.hparams["rope_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
+ )
+ self.gguf_writer.add_layer_norm_eps(1e-5)
+
+
+class GPTNeoXModel(Model):
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_name(self.dir_model.name)
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(
+ int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
+ )
+ self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+ self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
+
+
+class BloomModel(Model):
+ def set_gguf_parameters(self):
+ self.gguf_writer.add_name("Bloom")
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+ self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
+ self.gguf_writer.add_embedding_length(n_embed)
+ self.gguf_writer.add_feed_forward_length(4 * n_embed)
+ self.gguf_writer.add_block_count(self.hparams["n_layer"])
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head)
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def write_tensors(self):
+ block_count = self.hparams["n_layer"]
+ tensors = dict(self.get_tensors())
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+ has_lm_head = True
+ n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+ n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+
+ for name, data_torch in tensors.items():
+ if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
+ has_lm_head = False
+
+ name = re.sub(r'transformer\.', '', name)
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
+ # Map bloom-style qkv_linear to gpt-style qkv_linear
+ # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
+ # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
+ qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
+ data = np.concatenate(
+ (
+ qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
+ qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
+ qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
+ ),
+ axis=0,
+ )
+ print("re-format attention.linear_qkv.weight")
+ elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
+ qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
+ data = np.concatenate(
+ (
+ qkv_bias[:, 0, :].reshape((n_embed,)),
+ qkv_bias[:, 1, :].reshape((n_embed,)),
+ qkv_bias[:, 2, :].reshape((n_embed,)),
+ ),
+ axis=0,
+ )
+ print("re-format attention.linear_qkv.bias")
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+ if not has_lm_head and name == "word_embeddings.weight":
+ self.gguf_writer.add_tensor("output.weight", data)
+ print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
+
+
+class MPTModel(Model):
+ def set_gguf_parameters(self):
+ block_count = self.hparams["n_layers"]
+ self.gguf_writer.add_name(self.dir_model.name)
+ self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
+ self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
+ self.gguf_writer.add_head_count(self.hparams["n_heads"])
+ if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
+ self.gguf_writer.add_head_count_kv(kv_n_heads)
+ self.gguf_writer.add_layer_norm_eps(1e-5)
+ if self.hparams["attn_config"]["clip_qkv"] is not None:
+ self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
+ self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
+
+ def write_tensors(self):
+ block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+ for name, data_torch in self.get_tensors():
+ # we don't need these
+ if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
+ continue
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+ # note: MPT output is tied to (same as) wte in original model;
+ # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
+ if new_name == "token_embd.weight":
+ self.gguf_writer.add_tensor("output.weight", data)
+
+
+class BaichuanModel(Model):
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def set_gguf_parameters(self):
+ block_count = self.hparams["num_hidden_layers"]
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+ hf_repo = self.hparams.get("_name_or_path", "")
+
+ ctx_length = 0
+ if "max_sequence_length" in self.hparams:
+ ctx_length = self.hparams["max_sequence_length"]
+ elif "max_position_embeddings" in self.hparams:
+ ctx_length = self.hparams["max_position_embeddings"]
+ elif "model_max_length" in self.hparams:
+ ctx_length = self.hparams["model_max_length"]
+ else:
+ print("gguf: can not find ctx length parameter.")
+ sys.exit()
+
+ self.gguf_writer.add_name(self.dir_model.name)
+ self.gguf_writer.add_source_hf_repo(hf_repo)
+ self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+ self.gguf_writer.add_context_length(ctx_length)
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count(head_count)
+ self.gguf_writer.add_head_count_kv(head_count_kv)
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+ def write_tensors(self):
+ # Collect tensors from generator object
+ model_kv = dict(self.get_tensors())
+ block_count = self.hparams["num_hidden_layers"]
+ head_count = self.hparams["num_attention_heads"]
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+ head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+ for i in range(block_count):
+ if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
+ print(f"Unpacking and permuting layer {i}")
+ model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
+ self._reverse_hf_permute_part(w, 0, head_count, head_count)
+ model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
+ self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
+ model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
+ self._reverse_hf_part(w, 2)
+ del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
+
+ for name, data_torch in model_kv.items():
+ # we don't need these
+ if name.endswith(".rotary_emb.inv_freq"):
+ continue
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+ self.gguf_writer.add_tensor(new_name, data)
+
+ def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
+
+ return (
+ weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape)
+ )
+
+ def _reverse_hf_permute_part(
+ self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
+ ) -> Tensor:
+ r = weights.shape[0] // 3
+ return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
+
+ def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
+ r = weights.shape[0] // 3
+ return weights[r * n_part:r * n_part + r, ...]
+
+
+class FalconModel(Model):
+ def set_gguf_parameters(self):
+ block_count = self.hparams.get("num_hidden_layers")
+ if block_count is None:
+ block_count = self.hparams["n_layer"] # old name
+
+ n_head = self.hparams.get("num_attention_heads")
+ if n_head is None:
+ n_head = self.hparams["n_head"] # old name
+
+ n_head_kv = self.hparams.get("num_kv_heads")
+ if n_head_kv is None:
+ n_head_kv = self.hparams.get("n_head_kv", 1) # old name
+
+ self.gguf_writer.add_name("Falcon")
+ self.gguf_writer.add_context_length(2048) # not in config.json
+ self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head_kv)
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def write_tensors(self):
+ block_count = self.hparams.get("num_hidden_layers")
+ if block_count is None:
+ block_count = self.hparams["n_layer"] # old name
+
+ n_head = self.hparams.get("num_attention_heads")
+ if n_head is None:
+ n_head = self.hparams["n_head"] # old name
+
+ n_head_kv = self.hparams.get("num_kv_heads")
+ if n_head_kv is None:
+ n_head_kv = self.hparams.get("n_head_kv", 1) # old name
+
+ head_dim = self.hparams["hidden_size"] // n_head
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+ for name, data_torch in self.get_tensors():
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ # QKV tensor transform
+ # The original query_key_value tensor contains n_head_kv "kv groups",
+ # each consisting of n_head/n_head_kv query weights followed by one key
+ # and one value weight (shared by all query heads in the kv group).
+ # This layout makes it a big pain to work with in GGML.
+ # So we rearrange them here,, so that we have n_head query weights
+ # followed by n_head_kv key weights followed by n_head_kv value weights,
+ # in contiguous fashion.
+ # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
+
+ if "query_key_value" in name:
+ qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
+ q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
+ k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
+ v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
+ data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
+
+ data = data_torch.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+
+class StarCoderModel(Model):
+ def set_gguf_parameters(self):
+ block_count = self.hparams["n_layer"]
+
+ self.gguf_writer.add_name("StarCoder")
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+ self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
+ self.gguf_writer.add_head_count_kv(1)
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+
+class RefactModel(Model):
+ def set_gguf_parameters(self):
+ hidden_dim = self.hparams["n_embd"]
+ inner_dim = 4 * hidden_dim
+ hidden_dim = int(2 * inner_dim / 3)
+ multiple_of = 256
+ ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+
+ block_count = self.hparams["n_layer"]
+
+ self.gguf_writer.add_name("Refact")
+ # refact uses Alibi. So this is from config.json which might be used by training.
+ self.gguf_writer.add_context_length(self.hparams["n_positions"])
+ self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+
+ self.gguf_writer.add_feed_forward_length(ff_dim)
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(self.hparams["n_head"])
+ self.gguf_writer.add_head_count_kv(1)
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+ self.gguf_writer.add_file_type(self.ftype)
+
+ def write_tensors(self):
+ hidden_dim = self.hparams["n_embd"]
+ inner_dim = 4 * hidden_dim
+ hidden_dim = int(2 * inner_dim / 3)
+ multiple_of = 256
+ ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+ n_head = self.hparams["n_head"]
+ n_head_kv = 1
+ head_dim = self.hparams["n_embd"] // n_head
+ block_count = self.hparams["n_layer"]
+
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+ tensors = dict(self.get_tensors())
+ for i in range(block_count):
+ if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
+ tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
+ tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
+ del tensors[f"transformer.h.{i}.attn.kv.weight"]
+ if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
+ tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
+ del tensors[f"transformer.h.{i}.attn.q.weight"]
+ if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
+ tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
+ tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
+ del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
+
+ for name, data_torch in tensors.items():
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+
+class PersimmonModel(Model):
+ def set_gguf_parameters(self):
+ block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
+ head_count = self.hparams["num_attention_heads"]
+ head_count_kv = head_count
+ hidden_size = self.hparams["hidden_size"]
+
+ self.gguf_writer.add_name('persimmon-8b-chat')
+ self.gguf_writer.add_embedding_length(hidden_size)
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+ self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
+ self.gguf_writer.add_head_count(head_count)
+ self.gguf_writer.add_head_count_kv(head_count_kv)
+ self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
+ self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+ # self.gguf_writer.add_bos_token_id(71013)
+ # self.gguf_writer.add_eos_token_id(71013)
+
+ def write_tensors(self):
+ block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+ for name, data_torch in self.get_tensors():
+ if name.endswith(".self_attention.rotary_emb.inv_freq"):
+ continue
+ old_dtype = data_torch.dtype
+ # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
+ data = data_torch.to(torch.float32).squeeze().numpy()
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+ n_dims = len(data.shape)
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+ self.gguf_writer.add_tensor(new_name, data)
+
+
+###### CONVERSION LOGIC ######
+
+def parse_args() -> argparse.Namespace:
+ parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
+ parser.add_argument(
+ "--vocab-only", action="store_true",
+ help="extract only the vocab",
+ )
+ parser.add_argument(
+ "--outfile", type=Path,
+ help="path to write to; default: based on input",
+ )
+ parser.add_argument(
+ "--outtype", type=str, choices=["f32", "f16"], default="f16",
+ help="output format - use f32 for float32, f16 for float16",
+ )
+ parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
+ parser.add_argument(
+ "model", type=Path,
+ help="directory containing model file",
+ )
+
+ return parser.parse_args()
+
+
+args = parse_args()
+
+dir_model = args.model
+if not dir_model.is_dir():
+ print(f'Error: {args.model} is not a directory', file=sys.stderr)
+ sys.exit(1)
+
+ftype_map = {
+ "f32": gguf.GGMLQuantizationType.F32,
+ "f16": gguf.GGMLQuantizationType.F16,
+}
+
+if args.outfile is not None:
+ fname_out = args.outfile
+else:
+ # output in the same directory as the model by default
+ fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
+
+print(f"Loading model: {dir_model.name}")
+
+hparams = Model.load_hparams(dir_model)
+
+model_class = Model.from_model_architecture(hparams["architectures"][0])
+model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
+
+print("Set model parameters")
+model_instance.set_gguf_parameters()
+
+print("Set model tokenizer")
+model_instance.set_vocab()
+
+if args.vocab_only:
+ print(f"Exporting model vocab to '{fname_out}'")
+ model_instance.write_vocab()
+else:
+ print(f"Exporting model to '{fname_out}'")
+ model_instance.write()
+
+print(f"Model successfully exported to '{fname_out}'")
+++ /dev/null
-#!/usr/bin/env python3
-# HF mpt--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
-
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
-
-
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file, or model file itself (*.bin)",
- )
- parser.add_argument(
- "ftype", type=int, choices=[0, 1], default=1, nargs='?',
- help="output format - use 0 for float32, 1 for float16",
- )
- return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
-
-# possible tensor data types
-# ftype == 0 -> float32
-# ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
- fname_out = args.outfile
-else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
-
-if hparams["architectures"][0] != "MPTForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
-
- sys.exit()
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.MPT
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["n_layers"]
-
-gguf_writer.add_name(dir_model.name)
-gguf_writer.add_context_length(hparams["max_seq_len"])
-gguf_writer.add_embedding_length(hparams["d_model"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
-gguf_writer.add_head_count(hparams["n_heads"])
-if kv_n_heads := hparams["attn_config"].get("kv_n_heads"):
- gguf_writer.add_head_count_kv(kv_n_heads)
-gguf_writer.add_layer_norm_eps(1e-05)
-if hparams["attn_config"]["clip_qkv"] is not None:
- gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
-gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"])
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but
-# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to
-# accomodate some "reserved" tokens; this is causing problems down the line in
-# llama.cpp, so we pad the vocab with dummy tokens:
-
-vocab_size = hparams["vocab_size"]
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
-else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
-
-for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
-
- for name in model_part.keys():
- data = model_part[name]
-
- old_dtype = data.dtype
-
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
-
- data = data.squeeze().numpy()
-
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Cannot map tensor '" + name + "'")
- continue # for the sake of compatibility with some old published models, don't quit
- sys.exit()
-
- n_dims = len(data.shape)
- data_dtype = data.dtype
-
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
-
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
-
- print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
- gguf_writer.add_tensor(new_name, data)
-
- # note: MPT output is tied to (same as) wte in original model;
- # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
- if new_name == "token_embd.weight":
- gguf_writer.add_tensor("output.weight", data)
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
+++ /dev/null
-#!/usr/bin/env python3
-# HF refact--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import sys
-from pathlib import Path
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer # type: ignore[import]
-
-if "NO_LOCAL_GGUF" not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
-import gguf
-
-def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
-
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
-
-
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(
- description="Convert a Refact model to a GGML compatible file"
- )
- parser.add_argument(
- "--vocab-only",
- action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--outfile",
- type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "model",
- type=Path,
- help="directory containing model file, or model file itself (*.bin)",
- )
- parser.add_argument(
- "ftype",
- type=int,
- choices=[0, 1],
- default=1,
- nargs="?",
- help="output format - use 0 for float32, 1 for float16",
- )
- return parser.parse_args()
-
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
- print(f"Error: {args.model} is not a directory", file=sys.stderr)
- sys.exit(1)
-
-# possible tensor data types
-# ftype == 0 -> float32
-# ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
- fname_out = args.outfile
-else:
- # output in the same directory as the model by default
- fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
-
-print("gguf: loading model " + dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
-
-if hparams["architectures"][0] != "GPTRefactForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
-
- sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH = gguf.MODEL_ARCH.REFACT
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-# Get refact feed forward dimension
-hidden_dim = hparams["n_embd"]
-inner_dim = 4 * hidden_dim
-hidden_dim = int(2 * inner_dim / 3)
-multiple_of = 256
-ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
-
-block_count = hparams["n_layer"]
-
-gguf_writer.add_name("Refact")
-# refact uses Alibi. So this is from config.json which might be used by training.
-gguf_writer.add_context_length(hparams["n_positions"])
-gguf_writer.add_embedding_length(hparams["n_embd"])
-
-gguf_writer.add_feed_forward_length(ff_dim)
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(hparams["n_head"])
-gguf_writer.add_head_count_kv(1)
-gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
-
-# params for qkv transform
-n_head = hparams["n_head"]
-n_head_kv = 1
-
-head_dim = hparams["n_embd"] // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
-else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
-for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(dir_model / part_name, map_location="cpu")
-
- for i in range(block_count):
- if f"transformer.h.{i}.attn.kv.weight" in model_part:
- data = model_part[f"transformer.h.{i}.attn.kv.weight"]
- model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
- : n_head_kv * head_dim
- ]
- model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
- n_head_kv * head_dim :
- ]
- del model_part[f"transformer.h.{i}.attn.kv.weight"]
- if f"transformer.h.{i}.attn.q.weight" in model_part:
- model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
- f"transformer.h.{i}.attn.q.weight"
- ]
- del model_part[f"transformer.h.{i}.attn.q.weight"]
- if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
- data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
- model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
- model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
- del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
-
- for name in model_part.keys():
- data = model_part[name]
-
- old_dtype = data.dtype
-
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
-
- data = data.squeeze().numpy()
-
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
-
- n_dims = len(data.shape)
- data_dtype = data.dtype
-
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
-
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if (
- ftype == 1
- and data_dtype == np.float32
- and name.endswith(".weight")
- and n_dims == 2
- ):
- data = data.astype(np.float16)
-
- print(
- new_name
- + ", n_dims = "
- + str(n_dims)
- + ", "
- + str(old_dtype)
- + " --> "
- + str(data.dtype)
- )
-
- gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
+++ /dev/null
-#!/usr/bin/env python3
-# HF starcoder --> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
-
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
-
-
-def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
- parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
- return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
-
-# possible tensor data types
-# ftype == 0 -> float32
-# ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
- fname_out = args.outfile
-else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
-
-if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
-
- sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.STARCODER
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["n_layer"]
-
-gguf_writer.add_name("StarCoder")
-gguf_writer.add_context_length(hparams["n_positions"])
-gguf_writer.add_embedding_length(hparams["n_embd"])
-gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(hparams["n_head"])
-gguf_writer.add_head_count_kv(1)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-# params for qkv transform
-n_head = hparams["n_head"]
-n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
-
-head_dim = hparams["n_embd"] // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
-else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
-
-for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(dir_model / part_name, map_location="cpu")
-
- for name in model_part.keys():
- data = model_part[name]
-
- old_dtype = data.dtype
-
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
-
- data = data.squeeze().numpy()
-
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
-
- n_dims = len(data.shape)
- data_dtype = data.dtype
-
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
-
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
-
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
-
- print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
- gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
import numpy as np
-from sentencepiece import SentencePieceProcessor # type: ignore[import]
+from sentencepiece import SentencePieceProcessor
import os
if 'NO_LOCAL_GGUF' not in os.environ:
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.bpe_tokenizer
- from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
+ from transformers.models.gpt2 import tokenization_gpt2
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
for i, _ in enumerate(tokenizer):
allow_untyped_calls = true
allow_untyped_defs = true
allow_incomplete_defs = true
+disable_error_code = import-untyped