]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
scripts: Generalize convert scripts (#3838)
authorGalunid <redacted>
Thu, 9 Nov 2023 10:09:29 +0000 (11:09 +0100)
committerGitHub <redacted>
Thu, 9 Nov 2023 10:09:29 +0000 (11:09 +0100)
* Replace convert-*-hf-to-gguf.py files with convert-hf-to-gguf.py

convert-bloom-hf-to-gguf.py [deleted file]
convert-falcon-hf-to-gguf.py [deleted file]
convert-gptneox-hf-to-gguf.py [deleted file]
convert-hf-to-gguf.py [new file with mode: 0755]
convert-mpt-hf-to-gguf.py [deleted file]
convert-refact-hf-to-gguf.py [deleted file]
convert-starcoder-hf-to-gguf.py [deleted file]
convert.py
mypy.ini

diff --git a/convert-bloom-hf-to-gguf.py b/convert-bloom-hf-to-gguf.py
deleted file mode 100755 (executable)
index 6e866d9..0000000
+++ /dev/null
@@ -1,247 +0,0 @@
-#!/usr/bin/env python3
-# HF bloom --> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import re
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer  # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
-    num_parts = 0
-    for filename in os.listdir(dir_model):
-        if filename.startswith("pytorch_model-"):
-            num_parts += 1
-
-    if num_parts > 0:
-        print("gguf: found " + str(num_parts) + " model parts")
-    return num_parts
-
-
-# Supported Models:
-#   https://huggingface.co/bigscience/bloom-1b7
-#   https://huggingface.co/bigscience/bloom-3b
-#   https://huggingface.co/bigscience/bloom-7b1
-#   https://huggingface.co/Langboat/bloom-1b4-zh
-def parse_args() -> argparse.Namespace:
-    parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
-    parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
-    parser.add_argument("--outfile",    type=Path,           help="path to write to; default: based on input")
-    parser.add_argument("model",        type=Path,           help="directory containing model file, or model file itself (*.bin)")
-    parser.add_argument("ftype",        type=int,            help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
-    return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
-    print(f'Error: {args.model} is not a directory', file = sys.stderr)
-    sys.exit(1)
-
-# possible tensor data types
-#   ftype == 0 -> float32
-#   ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
-    fname_out = args.outfile
-else:
-    # output in the same directory as the model by default
-    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
-    hparams = json.load(f)
-
-if hparams["architectures"][0] != "BloomForCausalLM":
-    print("Model architecture not supported: " + hparams["architectures"][0])
-    sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.BLOOM
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["n_layer"]
-
-gguf_writer.add_name("Bloom")
-n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
-n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
-gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
-gguf_writer.add_embedding_length(n_embed)
-gguf_writer.add_feed_forward_length(4 * n_embed)
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(n_head)
-gguf_writer.add_head_count_kv(n_head)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
-    if i not in reverse_vocab:
-        tokens.append(f"[PAD{i}]")
-        toktypes.append(gguf.TokenType.USER_DEFINED)
-    elif reverse_vocab[i] in added_vocab:
-        tokens.append(reverse_vocab[i])
-        if tokenizer.added_tokens_decoder[i].special:
-            toktypes.append(gguf.TokenType.CONTROL)
-        else:
-            toktypes.append(gguf.TokenType.USER_DEFINED)
-    else:
-        tokens.append(reverse_vocab[i])
-        toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
-
-# params for qkv transform
-n_head_kv = hparams.get("n_head_kv", n_head)
-head_dim = n_embed // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
-    part_names = iter(("pytorch_model.bin",))
-else:
-    part_names = (
-        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
-    )
-
-for part_name in part_names:
-    if args.vocab_only:
-        break
-    print("gguf: loading model part '" + part_name + "'")
-    model_part = torch.load(dir_model / part_name, map_location="cpu")
-
-    has_lm_head = True
-    if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
-        has_lm_head = False
-
-    for original_name in model_part.keys():
-        data = model_part[original_name]
-        name = re.sub(r'transformer\.', '', original_name)
-
-        old_dtype = data.dtype
-
-        # convert any unsupported data types to float32
-        if data.dtype != torch.float16 and data.dtype != torch.float32:
-            data = data.to(torch.float32)
-
-        data = data.squeeze().numpy()
-
-        if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
-            # Map bloom-style qkv_linear to gpt-style qkv_linear
-            # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
-            # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
-            qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
-            data = np.concatenate(
-                (qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
-                 qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
-                 qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
-                axis=0
-            )
-            print("re-format attention.linear_qkv.weight")
-        elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
-            qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
-            data = np.concatenate(
-                (qkv_bias[:, 0, :].reshape((n_embed,)),
-                 qkv_bias[:, 1, :].reshape((n_embed,)),
-                 qkv_bias[:, 2, :].reshape((n_embed,))),
-                axis=0
-            )
-            print("re-format attention.linear_qkv.bias")
-
-        # map tensor names
-        new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
-        if new_name is None:
-            print("Can not map tensor '" + name + "'")
-            sys.exit()
-
-        n_dims = len(data.shape)
-        data_dtype = data.dtype
-
-        # if f32 desired, convert any float16 to float32
-        if ftype == 0 and data_dtype == np.float16:
-            data = data.astype(np.float32)
-
-        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-            data = data.astype(np.float32)
-
-        # if f16 desired, convert any float32 2-dim weight tensors to float16
-        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
-            data = data.astype(np.float16)
-
-        print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
-        gguf_writer.add_tensor(new_name, data)
-
-        if not has_lm_head and name == "word_embeddings.weight":
-            gguf_writer.add_tensor("output.weight", data)
-            print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))  # noqa
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
diff --git a/convert-falcon-hf-to-gguf.py b/convert-falcon-hf-to-gguf.py
deleted file mode 100755 (executable)
index 8e8f3c3..0000000
+++ /dev/null
@@ -1,253 +0,0 @@
-#!/usr/bin/env python3
-# HF falcon--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import contextlib
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer  # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path, prefix: str) -> int:
-    num_parts = 0
-    for filename in os.listdir(dir_model):
-        if filename.startswith(prefix):
-            num_parts += 1
-
-    if num_parts > 0:
-        print("gguf: found " + str(num_parts) + " model parts")
-    return num_parts
-
-
-def parse_args() -> argparse.Namespace:
-    parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
-    parser.add_argument(
-        "--vocab-only", action="store_true",
-        help="extract only the vocab",
-    )
-    parser.add_argument(
-        "--outfile", type=Path,
-        help="path to write to; default: based on input",
-    )
-    parser.add_argument(
-        "model", type=Path,
-        help="directory containing model file, or model file itself (*.bin)",
-    )
-    parser.add_argument(
-        "ftype", type=int, choices=[0, 1], default=1, nargs='?',
-        help="output format - use 0 for float32, 1 for float16",
-    )
-    return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
-    print(f'Error: {args.model} is not a directory', file = sys.stderr)
-    sys.exit(1)
-
-# possible tensor data types
-#   ftype == 0 -> float32
-#   ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
-    fname_out = args.outfile
-else:
-    # output in the same directory as the model by default
-    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
-    hparams = json.load(f)
-
-if hparams["architectures"][0] not in ("RWForCausalLM", "FalconForCausalLM"):
-    print("Model architecture not supported: " + hparams["architectures"][0])
-
-    sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model, "model-00")
-if num_parts:
-    is_safetensors = True
-    from safetensors import safe_open
-else:
-    is_safetensors = False
-    num_parts = count_model_parts(dir_model, "pytorch_model-")
-
-ARCH=gguf.MODEL_ARCH.FALCON
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams.get("num_hidden_layers")
-if block_count is None:
-    block_count = hparams["n_layer"]  # old name
-
-n_head = hparams.get("num_attention_heads")
-if n_head is None:
-    n_head = hparams["n_head"]  # old name
-
-n_head_kv = hparams.get("num_kv_heads")
-if n_head_kv is None:
-    n_head_kv = hparams.get("n_head_kv", 1)  # old name
-
-gguf_writer.add_name("Falcon")
-gguf_writer.add_context_length(2048) # not in config.json
-gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
-gguf_writer.add_embedding_length(hparams["hidden_size"])
-gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(n_head)
-gguf_writer.add_head_count_kv(n_head_kv)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
-    tokens.append(reverse_vocab[i])
-    scores.append(0.0) # dummy
-    toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_scores(scores)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-head_dim = hparams["hidden_size"] // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
-    part_names = iter(("pytorch_model.bin",))
-elif is_safetensors:
-    part_names = (
-        f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
-    )
-else:
-    part_names = (
-        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
-    )
-
-for part_name in part_names:
-    if args.vocab_only:
-        break
-    print("gguf: loading model part '" + part_name + "'")
-    if is_safetensors:
-        ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
-    else:
-        ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
-
-    with ctx as model_part:
-        for name in model_part.keys():
-            data = model_part.get_tensor(name) if is_safetensors else model_part[name]
-
-            old_dtype = data.dtype
-
-            # convert any unsupported data types to float32
-            if data.dtype != torch.float16 and data.dtype != torch.float32:
-                data = data.to(torch.float32)
-
-            # QKV tensor transform
-            # The original query_key_value tensor contains n_head_kv "kv groups",
-            # each consisting of n_head/n_head_kv query weights followed by one key
-            # and one value weight (shared by all query heads in the kv group).
-            # This layout makes it a big pain to work with in GGML.
-            # So we rearrange them here,, so that we have n_head query weights
-            # followed by n_head_kv key weights followed by n_head_kv value weights,
-            # in contiguous fashion.
-            # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
-
-            if "query_key_value" in name:
-                qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
-                q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
-                k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
-                v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
-                data = torch.cat((q,k,v)).reshape_as(data)
-
-            data = data.squeeze().numpy()
-
-            # map tensor names
-            new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-            if new_name is None:
-                print("Can not map tensor '" + name + "'")
-                sys.exit()
-
-            n_dims = len(data.shape)
-            data_dtype = data.dtype
-
-            # if f32 desired, convert any float16 to float32
-            if ftype == 0 and data_dtype == np.float16:
-                data = data.astype(np.float32)
-
-            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-            if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-                data = data.astype(np.float32)
-
-            # if f16 desired, convert any float32 2-dim weight tensors to float16
-            if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
-                data = data.astype(np.float16)
-
-            print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
-            gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
diff --git a/convert-gptneox-hf-to-gguf.py b/convert-gptneox-hf-to-gguf.py
deleted file mode 100755 (executable)
index 02d1fdf..0000000
+++ /dev/null
@@ -1,221 +0,0 @@
-#!/usr/bin/env python3
-# HF gptneox--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer  # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
-    num_parts = 0
-    for filename in os.listdir(dir_model):
-        if filename.startswith("pytorch_model-"):
-            num_parts += 1
-
-    if num_parts > 0:
-        print("gguf: found " + str(num_parts) + " model parts")
-    return num_parts
-
-
-def parse_args() -> argparse.Namespace:
-    parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
-    parser.add_argument(
-        "--vocab-only", action="store_true",
-        help="extract only the vocab",
-    )
-    parser.add_argument(
-        "--outfile", type=Path,
-        help="path to write to; default: based on input",
-    )
-    parser.add_argument(
-        "model", type=Path,
-        help="directory containing model file, or model file itself (*.bin)",
-    )
-    parser.add_argument(
-        "ftype", type=int, choices=[0, 1], default=1, nargs='?',
-        help="output format - use 0 for float32, 1 for float16",
-    )
-    return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
-    print(f'Error: {args.model} is not a directory', file = sys.stderr)
-    sys.exit(1)
-
-# possible tensor data types
-#   ftype == 0 -> float32
-#   ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
-    fname_out = args.outfile
-else:
-    # output in the same directory as the model by default
-    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
-    hparams = json.load(f)
-
-if hparams["architectures"][0] != "GPTNeoXForCausalLM":
-    print("Model architecture not supported: " + hparams["architectures"][0])
-
-    sys.exit()
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.GPTNEOX
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["num_hidden_layers"]
-
-gguf_writer.add_name(dir_model.name)
-gguf_writer.add_context_length(hparams["max_position_embeddings"])
-gguf_writer.add_embedding_length(hparams["hidden_size"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
-gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
-gguf_writer.add_head_count(hparams["num_attention_heads"])
-gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
-    if i not in reverse_vocab:
-        tokens.append(f"[PAD{i}]")
-        toktypes.append(gguf.TokenType.USER_DEFINED)
-    elif reverse_vocab[i] in added_vocab:
-        tokens.append(reverse_vocab[i])
-        if tokenizer.added_tokens_decoder[i].special:
-            toktypes.append(gguf.TokenType.CONTROL)
-        else:
-            toktypes.append(gguf.TokenType.USER_DEFINED)
-    else:
-        tokens.append(reverse_vocab[i])
-        toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
-    part_names = iter(("pytorch_model.bin",))
-else:
-    part_names = (
-        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
-    )
-
-for part_name in part_names:
-    if args.vocab_only:
-        break
-    print("gguf: loading model part '" + part_name + "'")
-    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
-
-    for name in model_part.keys():
-        data = model_part[name]
-
-        # we don't need these
-        if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
-            continue
-
-        old_dtype = data.dtype
-
-        # convert any unsupported data types to float32
-        if data.dtype != torch.float16 and data.dtype != torch.float32:
-            data = data.to(torch.float32)
-
-        data = data.squeeze().numpy()
-
-        # map tensor names
-        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-        if new_name is None:
-            print("Can not map tensor '" + name + "'")
-            sys.exit()
-
-        n_dims = len(data.shape)
-        data_dtype = data.dtype
-
-        # if f32 desired, convert any float16 to float32
-        if ftype == 0 and data_dtype == np.float16:
-            data = data.astype(np.float32)
-
-        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-            data = data.astype(np.float32)
-
-        # if f16 desired, convert any float32 2-dim weight tensors to float16
-        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
-            data = data.astype(np.float16)
-
-        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
-        gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
new file mode 100755 (executable)
index 0000000..f7fe29f
--- /dev/null
@@ -0,0 +1,890 @@
+#!/usr/bin/env python3
+
+from __future__ import annotations
+
+import argparse
+import contextlib
+import json
+import os
+import re
+import sys
+from enum import IntEnum
+from pathlib import Path
+from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
+
+import numpy as np
+import torch
+
+if TYPE_CHECKING:
+    from torch import Tensor
+
+if 'NO_LOCAL_GGUF' not in os.environ:
+    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
+import gguf
+
+
+###### MODEL DEFINITIONS ######
+
+class SentencePieceTokenTypes(IntEnum):
+    NORMAL = 1
+    UNKNOWN = 2
+    CONTROL = 3
+    USER_DEFINED = 4
+    UNUSED = 5
+    BYTE = 6
+
+
+class Model:
+    def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
+        self.dir_model = dir_model
+        self.ftype = ftype
+        self.fname_out = fname_out
+        self.is_big_endian = is_big_endian
+        self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
+        self.is_safetensors = self._is_model_safetensors()
+        self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
+        self.part_names = self._get_part_names()
+        self.hparams = Model.load_hparams(self.dir_model)
+        self.model_arch = self._get_model_architecture()
+        self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
+        for part_name in self.part_names:
+            print(f"gguf: loading model part '{part_name}'")
+            ctx: ContextManager[Any]
+            if self.is_safetensors:
+                from safetensors import safe_open
+                ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
+            else:
+                ctx = contextlib.nullcontext(torch.load(self.dir_model / part_name, map_location="cpu"))
+
+            with ctx as model_part:
+                for name in model_part.keys():
+                    data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
+                    yield name, data
+
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_name(self.dir_model.name)
+        self.gguf_writer.add_block_count(self.hparams.get(
+            "n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
+        ))
+        if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
+            self.gguf_writer.add_context_length(n_ctx)
+        if (n_embd := self.hparams.get("hidden_size")) is not None:
+            self.gguf_writer.add_embedding_length(n_embd)
+        if (n_ff := self.hparams.get("intermediate_size")) is not None:
+            self.gguf_writer.add_feed_forward_length(n_ff)
+        if (n_head := self.hparams.get("num_attention_head")) is not None:
+            self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
+
+    def write_tensors(self):
+        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+        for name, data_torch in self.get_tensors():
+            # we don't need these
+            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
+                continue
+
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            data = data_torch.squeeze().numpy()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+            self.gguf_writer.add_tensor(new_name, data)
+
+    def write(self):
+        self.write_tensors()
+        self.gguf_writer.write_header_to_file()
+        self.gguf_writer.write_kv_data_to_file()
+        self.gguf_writer.write_tensors_to_file()
+        self.gguf_writer.close()
+
+    def write_vocab(self):
+        self.gguf_writer.write_header_to_file()
+        self.gguf_writer.write_kv_data_to_file()
+        self.gguf_writer.close()
+
+    @staticmethod
+    def count_model_parts(dir_model: Path, prefix: str) -> int:
+        num_parts = 0
+        for filename in os.listdir(dir_model):
+            if filename.endswith(prefix):
+                num_parts += 1
+
+        return num_parts
+
+    @staticmethod
+    def load_hparams(dir_model):
+        with open(dir_model / "config.json", "r", encoding="utf-8") as f:
+            return json.load(f)
+
+    @staticmethod
+    def from_model_architecture(model_architecture):
+        if model_architecture == "StableLMEpochForCausalLM":
+            return StableLMModel
+        if model_architecture == "GPTNeoXForCausalLM":
+            return GPTNeoXModel
+        if model_architecture == "BloomForCausalLM":
+            return BloomModel
+        if model_architecture == "MPTForCausalLM":
+            return MPTModel
+        if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
+            return BaichuanModel
+        if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
+            return FalconModel
+        if model_architecture == "GPTBigCodeForCausalLM":
+            return StarCoderModel
+        if model_architecture == "GPTRefactForCausalLM":
+            return RefactModel
+        if model_architecture == "PersimmonForCausalLM":
+            return PersimmonModel
+        return Model
+
+    def _is_model_safetensors(self) -> bool:
+        return Model.count_model_parts(self.dir_model, ".safetensors") > 0
+
+    def _get_part_names(self):
+        if self.is_safetensors:
+            if self.num_parts == 1:  # there's only one .safetensors file
+                return ("model.safetensors",)
+            return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
+
+        if self.num_parts == 1:  # there's only one .bin file
+            return ("pytorch_model.bin",)
+        return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
+
+    def _get_model_architecture(self) -> gguf.MODEL_ARCH:
+        arch = self.hparams["architectures"][0]
+        if arch == "GPTNeoXForCausalLM":
+            return gguf.MODEL_ARCH.GPTNEOX
+        if arch == "BloomForCausalLM":
+            return gguf.MODEL_ARCH.BLOOM
+        if arch == "MPTForCausalLM":
+            return gguf.MODEL_ARCH.MPT
+        if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
+            return gguf.MODEL_ARCH.BAICHUAN
+        if arch == "FalconForCausalLM":
+            return gguf.MODEL_ARCH.FALCON
+        if arch == "GPTBigCodeForCausalLM":
+            return gguf.MODEL_ARCH.STARCODER
+        if arch == "GPTRefactForCausalLM":
+            return gguf.MODEL_ARCH.REFACT
+        if arch == "PersimmonForCausalLM":
+            return gguf.MODEL_ARCH.PERSIMMON
+
+        raise NotImplementedError(f'Architecture "{arch}" not supported!')
+
+    def _set_vocab_gpt2(self):
+        dir_model = self.dir_model
+        hparams = self.hparams
+        tokens: list[bytearray] = []
+        toktypes: list[int] = []
+
+        from transformers import AutoTokenizer  # type: ignore[attr-defined]
+        tokenizer = AutoTokenizer.from_pretrained(dir_model)
+        vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
+        assert max(tokenizer.vocab.values()) < vocab_size
+
+        reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
+        added_vocab = tokenizer.get_added_vocab()
+
+        for i in range(vocab_size):
+            if i not in reverse_vocab:
+                pad_token = f"[PAD{i}]".encode('utf-8')
+                tokens.append(bytearray(pad_token))
+                toktypes.append(gguf.TokenType.USER_DEFINED)
+            elif reverse_vocab[i] in added_vocab:
+                tokens.append(reverse_vocab[i])
+                if tokenizer.added_tokens_decoder[i].special:
+                    toktypes.append(gguf.TokenType.CONTROL)
+                else:
+                    toktypes.append(gguf.TokenType.USER_DEFINED)
+            else:
+                tokens.append(reverse_vocab[i])
+                toktypes.append(gguf.TokenType.NORMAL)
+
+        self.gguf_writer.add_tokenizer_model("gpt2")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def _set_vocab_sentencepiece(self):
+        from sentencepiece import SentencePieceProcessor
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        tokens: list[bytes] = []
+        scores: list[float] = []
+        toktypes: list[int] = []
+
+        if not tokenizer_path.is_file():
+            print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
+            sys.exit(1)
+
+        tokenizer = SentencePieceProcessor(str(tokenizer_path))
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        for token_id in range(vocab_size):
+            piece = tokenizer.id_to_piece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.get_score(token_id)
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.is_unknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.is_control(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.is_unused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.is_byte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens.append(text)
+            scores.append(score)
+            toktypes.append(toktype)
+
+        added_tokens_file = self.dir_model / 'added_tokens.json'
+        if added_tokens_file.is_file():
+            with open(added_tokens_file, "r", encoding="utf-8") as f:
+                added_tokens_json = json.load(f)
+
+                for key in added_tokens_json:
+                    tokens.append(key.encode("utf-8"))
+                    scores.append(-1000.0)
+                    toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+
+class StableLMModel(Model):
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_rope_dimension_count(
+            int(self.hparams["rope_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
+        )
+        self.gguf_writer.add_layer_norm_eps(1e-5)
+
+
+class GPTNeoXModel(Model):
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+
+        self.gguf_writer.add_name(self.dir_model.name)
+        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_dimension_count(
+            int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
+        )
+        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+        self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
+
+
+class BloomModel(Model):
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_name("Bloom")
+        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+        self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
+        self.gguf_writer.add_embedding_length(n_embed)
+        self.gguf_writer.add_feed_forward_length(4 * n_embed)
+        self.gguf_writer.add_block_count(self.hparams["n_layer"])
+        self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_head_count_kv(n_head)
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def write_tensors(self):
+        block_count = self.hparams["n_layer"]
+        tensors = dict(self.get_tensors())
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+        has_lm_head = True
+        n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
+        n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
+
+        for name, data_torch in tensors.items():
+            if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
+                has_lm_head = False
+
+            name = re.sub(r'transformer\.', '', name)
+
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            data = data_torch.squeeze().numpy()
+
+            if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
+                # Map bloom-style qkv_linear to gpt-style qkv_linear
+                # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
+                # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
+                qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
+                data = np.concatenate(
+                    (
+                        qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
+                        qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
+                        qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
+                    ),
+                    axis=0,
+                )
+                print("re-format attention.linear_qkv.weight")
+            elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
+                qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
+                data = np.concatenate(
+                    (
+                        qkv_bias[:, 0, :].reshape((n_embed,)),
+                        qkv_bias[:, 1, :].reshape((n_embed,)),
+                        qkv_bias[:, 2, :].reshape((n_embed,)),
+                    ),
+                    axis=0,
+                )
+                print("re-format attention.linear_qkv.bias")
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
+
+            self.gguf_writer.add_tensor(new_name, data)
+
+            if not has_lm_head and name == "word_embeddings.weight":
+                self.gguf_writer.add_tensor("output.weight", data)
+                print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
+
+
+class MPTModel(Model):
+    def set_gguf_parameters(self):
+        block_count = self.hparams["n_layers"]
+        self.gguf_writer.add_name(self.dir_model.name)
+        self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
+        self.gguf_writer.add_embedding_length(self.hparams["d_model"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
+        self.gguf_writer.add_head_count(self.hparams["n_heads"])
+        if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
+            self.gguf_writer.add_head_count_kv(kv_n_heads)
+        self.gguf_writer.add_layer_norm_eps(1e-5)
+        if self.hparams["attn_config"]["clip_qkv"] is not None:
+            self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
+        self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
+
+    def write_tensors(self):
+        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+        for name, data_torch in self.get_tensors():
+            # we don't need these
+            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
+                continue
+
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            data = data_torch.squeeze().numpy()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+            self.gguf_writer.add_tensor(new_name, data)
+
+            # note: MPT output is tied to (same as) wte in original model;
+            # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
+            if new_name == "token_embd.weight":
+                self.gguf_writer.add_tensor("output.weight", data)
+
+
+class BaichuanModel(Model):
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+
+    def set_gguf_parameters(self):
+        block_count = self.hparams["num_hidden_layers"]
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+        hf_repo = self.hparams.get("_name_or_path", "")
+
+        ctx_length = 0
+        if "max_sequence_length" in self.hparams:
+            ctx_length = self.hparams["max_sequence_length"]
+        elif "max_position_embeddings" in self.hparams:
+            ctx_length = self.hparams["max_position_embeddings"]
+        elif "model_max_length" in self.hparams:
+            ctx_length = self.hparams["model_max_length"]
+        else:
+            print("gguf: can not find ctx length parameter.")
+            sys.exit()
+
+        self.gguf_writer.add_name(self.dir_model.name)
+        self.gguf_writer.add_source_hf_repo(hf_repo)
+        self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
+        self.gguf_writer.add_context_length(ctx_length)
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+        self.gguf_writer.add_head_count(head_count)
+        self.gguf_writer.add_head_count_kv(head_count_kv)
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    def write_tensors(self):
+        # Collect tensors from generator object
+        model_kv = dict(self.get_tensors())
+        block_count = self.hparams["num_hidden_layers"]
+        head_count = self.hparams["num_attention_heads"]
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+        head_count_kv = self.hparams.get("num_key_value_heads", head_count)
+
+        for i in range(block_count):
+            if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
+                print(f"Unpacking and permuting layer {i}")
+                model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
+                    self._reverse_hf_permute_part(w, 0, head_count, head_count)
+                model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
+                    self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
+                model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
+                    self._reverse_hf_part(w, 2)
+                del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
+
+        for name, data_torch in model_kv.items():
+            # we don't need these
+            if name.endswith(".rotary_emb.inv_freq"):
+                continue
+
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            data = data_torch.squeeze().numpy()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+            self.gguf_writer.add_tensor(new_name, data)
+
+    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
+        if n_kv_head is not None and n_head != n_kv_head:
+            n_head //= n_kv_head
+
+        return (
+            weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+            .swapaxes(1, 2)
+            .reshape(weights.shape)
+        )
+
+    def _reverse_hf_permute_part(
+        self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
+    ) -> Tensor:
+        r = weights.shape[0] // 3
+        return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
+
+    def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
+        r = weights.shape[0] // 3
+        return weights[r * n_part:r * n_part + r, ...]
+
+
+class FalconModel(Model):
+    def set_gguf_parameters(self):
+        block_count = self.hparams.get("num_hidden_layers")
+        if block_count is None:
+            block_count = self.hparams["n_layer"]  # old name
+
+        n_head = self.hparams.get("num_attention_heads")
+        if n_head is None:
+            n_head = self.hparams["n_head"]  # old name
+
+        n_head_kv = self.hparams.get("num_kv_heads")
+        if n_head_kv is None:
+            n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
+
+        self.gguf_writer.add_name("Falcon")
+        self.gguf_writer.add_context_length(2048)  # not in config.json
+        self.gguf_writer.add_tensor_data_layout("jploski")  # qkv tensor transform
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(n_head)
+        self.gguf_writer.add_head_count_kv(n_head_kv)
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def write_tensors(self):
+        block_count = self.hparams.get("num_hidden_layers")
+        if block_count is None:
+            block_count = self.hparams["n_layer"]  # old name
+
+        n_head = self.hparams.get("num_attention_heads")
+        if n_head is None:
+            n_head = self.hparams["n_head"]  # old name
+
+        n_head_kv = self.hparams.get("num_kv_heads")
+        if n_head_kv is None:
+            n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
+
+        head_dim = self.hparams["hidden_size"] // n_head
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+        for name, data_torch in self.get_tensors():
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            # QKV tensor transform
+            # The original query_key_value tensor contains n_head_kv "kv groups",
+            # each consisting of n_head/n_head_kv query weights followed by one key
+            # and one value weight (shared by all query heads in the kv group).
+            # This layout makes it a big pain to work with in GGML.
+            # So we rearrange them here,, so that we have n_head query weights
+            # followed by n_head_kv key weights followed by n_head_kv value weights,
+            # in contiguous fashion.
+            # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
+
+            if "query_key_value" in name:
+                qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
+                q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
+                k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
+                v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
+                data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
+
+            data = data_torch.squeeze().numpy()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+            self.gguf_writer.add_tensor(new_name, data)
+
+
+class StarCoderModel(Model):
+    def set_gguf_parameters(self):
+        block_count = self.hparams["n_layer"]
+
+        self.gguf_writer.add_name("StarCoder")
+        self.gguf_writer.add_context_length(self.hparams["n_positions"])
+        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+        self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(self.hparams["n_head"])
+        self.gguf_writer.add_head_count_kv(1)
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+
+class RefactModel(Model):
+    def set_gguf_parameters(self):
+        hidden_dim = self.hparams["n_embd"]
+        inner_dim = 4 * hidden_dim
+        hidden_dim = int(2 * inner_dim / 3)
+        multiple_of = 256
+        ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+
+        block_count = self.hparams["n_layer"]
+
+        self.gguf_writer.add_name("Refact")
+        # refact uses Alibi. So this is from config.json which might be used by training.
+        self.gguf_writer.add_context_length(self.hparams["n_positions"])
+        self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
+
+        self.gguf_writer.add_feed_forward_length(ff_dim)
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_head_count(self.hparams["n_head"])
+        self.gguf_writer.add_head_count_kv(1)
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
+        self.gguf_writer.add_file_type(self.ftype)
+
+    def write_tensors(self):
+        hidden_dim = self.hparams["n_embd"]
+        inner_dim = 4 * hidden_dim
+        hidden_dim = int(2 * inner_dim / 3)
+        multiple_of = 256
+        ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+        n_head = self.hparams["n_head"]
+        n_head_kv = 1
+        head_dim = self.hparams["n_embd"] // n_head
+        block_count = self.hparams["n_layer"]
+
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+        tensors = dict(self.get_tensors())
+        for i in range(block_count):
+            if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
+                tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
+                tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
+                del tensors[f"transformer.h.{i}.attn.kv.weight"]
+            if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
+                tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
+                del tensors[f"transformer.h.{i}.attn.q.weight"]
+            if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
+                tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
+                tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
+                del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
+
+        for name, data_torch in tensors.items():
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            data = data_torch.squeeze().numpy()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+            self.gguf_writer.add_tensor(new_name, data)
+
+
+class PersimmonModel(Model):
+    def set_gguf_parameters(self):
+        block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
+        head_count = self.hparams["num_attention_heads"]
+        head_count_kv = head_count
+        hidden_size = self.hparams["hidden_size"]
+
+        self.gguf_writer.add_name('persimmon-8b-chat')
+        self.gguf_writer.add_embedding_length(hidden_size)
+        self.gguf_writer.add_block_count(block_count)
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
+        self.gguf_writer.add_head_count(head_count)
+        self.gguf_writer.add_head_count_kv(head_count_kv)
+        self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
+        self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+
+    def set_vocab(self):
+        self._set_vocab_sentencepiece()
+        # self.gguf_writer.add_bos_token_id(71013)
+        # self.gguf_writer.add_eos_token_id(71013)
+
+    def write_tensors(self):
+        block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+        for name, data_torch in self.get_tensors():
+            if name.endswith(".self_attention.rotary_emb.inv_freq"):
+                continue
+            old_dtype = data_torch.dtype
+            # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
+            data = data_torch.to(torch.float32).squeeze().numpy()
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+            n_dims = len(data.shape)
+            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+            self.gguf_writer.add_tensor(new_name, data)
+
+
+###### CONVERSION LOGIC ######
+
+def parse_args() -> argparse.Namespace:
+    parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
+    parser.add_argument(
+        "--vocab-only", action="store_true",
+        help="extract only the vocab",
+    )
+    parser.add_argument(
+        "--outfile", type=Path,
+        help="path to write to; default: based on input",
+    )
+    parser.add_argument(
+        "--outtype", type=str, choices=["f32", "f16"], default="f16",
+        help="output format - use f32 for float32, f16 for float16",
+    )
+    parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
+    parser.add_argument(
+        "model", type=Path,
+        help="directory containing model file",
+    )
+
+    return parser.parse_args()
+
+
+args = parse_args()
+
+dir_model = args.model
+if not dir_model.is_dir():
+    print(f'Error: {args.model} is not a directory', file=sys.stderr)
+    sys.exit(1)
+
+ftype_map = {
+    "f32": gguf.GGMLQuantizationType.F32,
+    "f16": gguf.GGMLQuantizationType.F16,
+}
+
+if args.outfile is not None:
+    fname_out = args.outfile
+else:
+    # output in the same directory as the model by default
+    fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
+
+print(f"Loading model: {dir_model.name}")
+
+hparams = Model.load_hparams(dir_model)
+
+model_class = Model.from_model_architecture(hparams["architectures"][0])
+model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
+
+print("Set model parameters")
+model_instance.set_gguf_parameters()
+
+print("Set model tokenizer")
+model_instance.set_vocab()
+
+if args.vocab_only:
+    print(f"Exporting model vocab to '{fname_out}'")
+    model_instance.write_vocab()
+else:
+    print(f"Exporting model to '{fname_out}'")
+    model_instance.write()
+
+print(f"Model successfully exported to '{fname_out}'")
diff --git a/convert-mpt-hf-to-gguf.py b/convert-mpt-hf-to-gguf.py
deleted file mode 100755 (executable)
index 70d154b..0000000
+++ /dev/null
@@ -1,227 +0,0 @@
-#!/usr/bin/env python3
-# HF mpt--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer  # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
-    num_parts = 0
-    for filename in os.listdir(dir_model):
-        if filename.startswith("pytorch_model-"):
-            num_parts += 1
-
-    if num_parts > 0:
-        print("gguf: found " + str(num_parts) + " model parts")
-    return num_parts
-
-
-def parse_args() -> argparse.Namespace:
-    parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file")
-    parser.add_argument(
-        "--vocab-only", action="store_true",
-        help="extract only the vocab",
-    )
-    parser.add_argument(
-        "--outfile", type=Path,
-        help="path to write to; default: based on input",
-    )
-    parser.add_argument(
-        "model", type=Path,
-        help="directory containing model file, or model file itself (*.bin)",
-    )
-    parser.add_argument(
-        "ftype", type=int, choices=[0, 1], default=1, nargs='?',
-        help="output format - use 0 for float32, 1 for float16",
-    )
-    return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
-    print(f'Error: {args.model} is not a directory', file = sys.stderr)
-    sys.exit(1)
-
-# possible tensor data types
-#   ftype == 0 -> float32
-#   ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
-    fname_out = args.outfile
-else:
-    # output in the same directory as the model by default
-    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
-    hparams = json.load(f)
-
-if hparams["architectures"][0] != "MPTForCausalLM":
-    print("Model architecture not supported: " + hparams["architectures"][0])
-
-    sys.exit()
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.MPT
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["n_layers"]
-
-gguf_writer.add_name(dir_model.name)
-gguf_writer.add_context_length(hparams["max_seq_len"])
-gguf_writer.add_embedding_length(hparams["d_model"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
-gguf_writer.add_head_count(hparams["n_heads"])
-if kv_n_heads := hparams["attn_config"].get("kv_n_heads"):
-    gguf_writer.add_head_count_kv(kv_n_heads)
-gguf_writer.add_layer_norm_eps(1e-05)
-if hparams["attn_config"]["clip_qkv"] is not None:
-    gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
-gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"])
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but
-# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to
-# accomodate some "reserved" tokens; this is causing problems down the line in
-# llama.cpp, so we pad the vocab with dummy tokens:
-
-vocab_size = hparams["vocab_size"]
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
-    if i not in reverse_vocab:
-        tokens.append(f"[PAD{i}]")
-        toktypes.append(gguf.TokenType.USER_DEFINED)
-    elif reverse_vocab[i] in added_vocab:
-        tokens.append(reverse_vocab[i])
-        if tokenizer.added_tokens_decoder[i].special:
-            toktypes.append(gguf.TokenType.CONTROL)
-        else:
-            toktypes.append(gguf.TokenType.USER_DEFINED)
-    else:
-        tokens.append(reverse_vocab[i])
-        toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
-    part_names = iter(("pytorch_model.bin",))
-else:
-    part_names = (
-        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
-    )
-
-for part_name in part_names:
-    if args.vocab_only:
-        break
-    print("gguf: loading model part '" + part_name + "'")
-    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
-
-    for name in model_part.keys():
-        data = model_part[name]
-
-        old_dtype = data.dtype
-
-        # convert any unsupported data types to float32
-        if data.dtype != torch.float16 and data.dtype != torch.float32:
-            data = data.to(torch.float32)
-
-        data = data.squeeze().numpy()
-
-        # map tensor names
-        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-        if new_name is None:
-            print("Cannot map tensor '" + name + "'")
-            continue # for the sake of compatibility with some old published models, don't quit
-            sys.exit()
-
-        n_dims = len(data.shape)
-        data_dtype = data.dtype
-
-        # if f32 desired, convert any float16 to float32
-        if ftype == 0 and data_dtype == np.float16:
-            data = data.astype(np.float32)
-
-        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-            data = data.astype(np.float32)
-
-        # if f16 desired, convert any float32 2-dim weight tensors to float16
-        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
-            data = data.astype(np.float16)
-
-        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
-        gguf_writer.add_tensor(new_name, data)
-
-        # note: MPT output is tied to (same as) wte in original model;
-        # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
-        if new_name == "token_embd.weight":
-            gguf_writer.add_tensor("output.weight", data)
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
diff --git a/convert-refact-hf-to-gguf.py b/convert-refact-hf-to-gguf.py
deleted file mode 100755 (executable)
index f0cfe84..0000000
+++ /dev/null
@@ -1,272 +0,0 @@
-#!/usr/bin/env python3
-# HF refact--> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import sys
-from pathlib import Path
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer  # type: ignore[import]
-
-if "NO_LOCAL_GGUF" not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
-import gguf
-
-def count_model_parts(dir_model: Path) -> int:
-    num_parts = 0
-    for filename in os.listdir(dir_model):
-        if filename.startswith("pytorch_model-"):
-            num_parts += 1
-
-    if num_parts > 0:
-        print("gguf: found " + str(num_parts) + " model parts")
-    return num_parts
-
-
-def parse_args() -> argparse.Namespace:
-    parser = argparse.ArgumentParser(
-        description="Convert a Refact model to a GGML compatible file"
-    )
-    parser.add_argument(
-        "--vocab-only",
-        action="store_true",
-        help="extract only the vocab",
-    )
-    parser.add_argument(
-        "--outfile",
-        type=Path,
-        help="path to write to; default: based on input",
-    )
-    parser.add_argument(
-        "model",
-        type=Path,
-        help="directory containing model file, or model file itself (*.bin)",
-    )
-    parser.add_argument(
-        "ftype",
-        type=int,
-        choices=[0, 1],
-        default=1,
-        nargs="?",
-        help="output format - use 0 for float32, 1 for float16",
-    )
-    return parser.parse_args()
-
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
-    print(f"Error: {args.model} is not a directory", file=sys.stderr)
-    sys.exit(1)
-
-# possible tensor data types
-#   ftype == 0 -> float32
-#   ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
-    fname_out = args.outfile
-else:
-    # output in the same directory as the model by default
-    fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
-
-print("gguf: loading model " + dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
-    hparams = json.load(f)
-
-if hparams["architectures"][0] != "GPTRefactForCausalLM":
-    print("Model architecture not supported: " + hparams["architectures"][0])
-
-    sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH = gguf.MODEL_ARCH.REFACT
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-# Get refact feed forward dimension
-hidden_dim = hparams["n_embd"]
-inner_dim = 4 * hidden_dim
-hidden_dim = int(2 * inner_dim / 3)
-multiple_of = 256
-ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
-
-block_count = hparams["n_layer"]
-
-gguf_writer.add_name("Refact")
-# refact uses Alibi. So this is from config.json which might be used by training.
-gguf_writer.add_context_length(hparams["n_positions"])
-gguf_writer.add_embedding_length(hparams["n_embd"])
-
-gguf_writer.add_feed_forward_length(ff_dim)
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(hparams["n_head"])
-gguf_writer.add_head_count_kv(1)
-gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
-    if i not in reverse_vocab:
-        tokens.append(f"[PAD{i}]")
-        toktypes.append(gguf.TokenType.USER_DEFINED)
-    elif reverse_vocab[i] in added_vocab:
-        tokens.append(reverse_vocab[i])
-        if tokenizer.added_tokens_decoder[i].special:
-            toktypes.append(gguf.TokenType.CONTROL)
-        else:
-            toktypes.append(gguf.TokenType.USER_DEFINED)
-    else:
-        tokens.append(reverse_vocab[i])
-        toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-
-special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
-
-# params for qkv transform
-n_head = hparams["n_head"]
-n_head_kv = 1
-
-head_dim = hparams["n_embd"] // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
-    part_names = iter(("pytorch_model.bin",))
-else:
-    part_names = (
-        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
-    )
-for part_name in part_names:
-    if args.vocab_only:
-        break
-    print("gguf: loading model part '" + part_name + "'")
-    model_part = torch.load(dir_model / part_name, map_location="cpu")
-
-    for i in range(block_count):
-        if f"transformer.h.{i}.attn.kv.weight" in model_part:
-            data = model_part[f"transformer.h.{i}.attn.kv.weight"]
-            model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
-                : n_head_kv * head_dim
-            ]
-            model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
-                n_head_kv * head_dim :
-            ]
-            del model_part[f"transformer.h.{i}.attn.kv.weight"]
-        if f"transformer.h.{i}.attn.q.weight" in model_part:
-            model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
-                f"transformer.h.{i}.attn.q.weight"
-            ]
-            del model_part[f"transformer.h.{i}.attn.q.weight"]
-        if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
-            data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
-            model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
-            model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
-            del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
-
-    for name in model_part.keys():
-        data = model_part[name]
-
-        old_dtype = data.dtype
-
-        # convert any unsupported data types to float32
-        if data.dtype != torch.float16 and data.dtype != torch.float32:
-            data = data.to(torch.float32)
-
-        data = data.squeeze().numpy()
-
-        # map tensor names
-        new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
-        if new_name is None:
-            print("Can not map tensor '" + name + "'")
-            sys.exit()
-
-        n_dims = len(data.shape)
-        data_dtype = data.dtype
-
-        # if f32 desired, convert any float16 to float32
-        if ftype == 0 and data_dtype == np.float16:
-            data = data.astype(np.float32)
-
-        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-            data = data.astype(np.float32)
-
-        # if f16 desired, convert any float32 2-dim weight tensors to float16
-        if (
-            ftype == 1
-            and data_dtype == np.float32
-            and name.endswith(".weight")
-            and n_dims == 2
-        ):
-            data = data.astype(np.float16)
-
-        print(
-            new_name
-            + ", n_dims = "
-            + str(n_dims)
-            + ", "
-            + str(old_dtype)
-            + " --> "
-            + str(data.dtype)
-        )
-
-        gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
diff --git a/convert-starcoder-hf-to-gguf.py b/convert-starcoder-hf-to-gguf.py
deleted file mode 100755 (executable)
index a9bfed8..0000000
+++ /dev/null
@@ -1,210 +0,0 @@
-#!/usr/bin/env python3
-# HF starcoder --> gguf conversion
-
-from __future__ import annotations
-
-import argparse
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-from transformers import AutoTokenizer  # type: ignore[import]
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-
-def count_model_parts(dir_model: Path) -> int:
-    num_parts = 0
-    for filename in os.listdir(dir_model):
-        if filename.startswith("pytorch_model-"):
-            num_parts += 1
-
-    if num_parts > 0:
-        print("gguf: found " + str(num_parts) + " model parts")
-    return num_parts
-
-
-def parse_args() -> argparse.Namespace:
-    parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
-    parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
-    parser.add_argument("--outfile",    type=Path,           help="path to write to; default: based on input")
-    parser.add_argument("model",        type=Path,           help="directory containing model file, or model file itself (*.bin)")
-    parser.add_argument("ftype",        type=int,            help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
-    return parser.parse_args()
-
-args = parse_args()
-
-dir_model = args.model
-ftype = args.ftype
-if not dir_model.is_dir():
-    print(f'Error: {args.model} is not a directory', file = sys.stderr)
-    sys.exit(1)
-
-# possible tensor data types
-#   ftype == 0 -> float32
-#   ftype == 1 -> float16
-
-# map from ftype to string
-ftype_str = ["f32", "f16"]
-
-if args.outfile is not None:
-    fname_out = args.outfile
-else:
-    # output in the same directory as the model by default
-    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
-
-print("gguf: loading model "+dir_model.name)
-
-with open(dir_model / "config.json", "r", encoding="utf-8") as f:
-    hparams = json.load(f)
-
-if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
-    print("Model architecture not supported: " + hparams["architectures"][0])
-
-    sys.exit(1)
-
-# get number of model parts
-num_parts = count_model_parts(dir_model)
-
-ARCH=gguf.MODEL_ARCH.STARCODER
-gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
-
-print("gguf: get model metadata")
-
-block_count = hparams["n_layer"]
-
-gguf_writer.add_name("StarCoder")
-gguf_writer.add_context_length(hparams["n_positions"])
-gguf_writer.add_embedding_length(hparams["n_embd"])
-gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
-gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(hparams["n_head"])
-gguf_writer.add_head_count_kv(1)
-gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
-gguf_writer.add_file_type(ftype)
-
-# TOKENIZATION
-
-print("gguf: get tokenizer metadata")
-
-tokens: list[bytearray] = []
-scores: list[float] = []
-toktypes: list[int] = []
-
-# gpt2 tokenizer
-gguf_writer.add_tokenizer_model("gpt2")
-
-print("gguf: get gpt2 tokenizer vocab")
-
-# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
-tokenizer = AutoTokenizer.from_pretrained(dir_model)
-
-# The number of tokens in tokenizer.json can differ from the expected vocab size.
-# This causes downstream issues with mismatched tensor sizes when running the inference
-vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
-assert max(tokenizer.vocab.values()) < vocab_size
-
-added_vocab = tokenizer.get_added_vocab()
-reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
-
-for i in range(vocab_size):
-    if i not in reverse_vocab:
-        tokens.append(f"[PAD{i}]")
-        toktypes.append(gguf.TokenType.USER_DEFINED)
-    elif reverse_vocab[i] in added_vocab:
-        tokens.append(reverse_vocab[i])
-        if tokenizer.added_tokens_decoder[i].special:
-            toktypes.append(gguf.TokenType.CONTROL)
-        else:
-            toktypes.append(gguf.TokenType.USER_DEFINED)
-    else:
-        tokens.append(reverse_vocab[i])
-        toktypes.append(gguf.TokenType.NORMAL)
-
-gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_types(toktypes)
-special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
-special_vocab.add_to_gguf(gguf_writer)
-
-# TENSORS
-
-tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
-
-# params for qkv transform
-n_head    = hparams["n_head"]
-n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
-
-head_dim = hparams["n_embd"] // n_head
-
-# tensor info
-print("gguf: get tensor metadata")
-
-if num_parts == 0:
-    part_names = iter(("pytorch_model.bin",))
-else:
-    part_names = (
-        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
-    )
-
-for part_name in part_names:
-    if args.vocab_only:
-        break
-    print("gguf: loading model part '" + part_name + "'")
-    model_part = torch.load(dir_model / part_name, map_location="cpu")
-
-    for name in model_part.keys():
-        data = model_part[name]
-
-        old_dtype = data.dtype
-
-        # convert any unsupported data types to float32
-        if data.dtype != torch.float16 and data.dtype != torch.float32:
-            data = data.to(torch.float32)
-
-        data = data.squeeze().numpy()
-
-        # map tensor names
-        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-        if new_name is None:
-            print("Can not map tensor '" + name + "'")
-            sys.exit()
-
-        n_dims = len(data.shape)
-        data_dtype = data.dtype
-
-        # if f32 desired, convert any float16 to float32
-        if ftype == 0 and data_dtype == np.float16:
-            data = data.astype(np.float32)
-
-        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-            data = data.astype(np.float32)
-
-        # if f16 desired, convert any float32 2-dim weight tensors to float16
-        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
-            data = data.astype(np.float16)
-
-        print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
-        gguf_writer.add_tensor(new_name, data)
-
-
-print("gguf: write header")
-gguf_writer.write_header_to_file()
-print("gguf: write metadata")
-gguf_writer.write_kv_data_to_file()
-if not args.vocab_only:
-    print("gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-
-gguf_writer.close()
-
-print(f"gguf: model successfully exported to '{fname_out}'")
-print("")
index 9110f15806c6bc0962014f1b6919197eb013233c..b0f44dbef8332a83510e492c2267690b31993ae7 100755 (executable)
@@ -26,7 +26,7 @@ from pathlib import Path
 from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
 
 import numpy as np
-from sentencepiece import SentencePieceProcessor  # type: ignore[import]
+from sentencepiece import SentencePieceProcessor
 
 import os
 if 'NO_LOCAL_GGUF' not in os.environ:
@@ -328,7 +328,7 @@ class BpeVocab:
 
     def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
         tokenizer = self.bpe_tokenizer
-        from transformers.models.gpt2 import tokenization_gpt2  # type: ignore[import]
+        from transformers.models.gpt2 import tokenization_gpt2
         reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
 
         for i, _ in enumerate(tokenizer):
index 55c168f2d7d1272f5c9e807deb10957e5051796b..7215a05dd2516d6b8b4bba18523c452cf489b204 100644 (file)
--- a/mypy.ini
+++ b/mypy.ini
@@ -3,3 +3,4 @@ strict = true
 allow_untyped_calls = true
 allow_untyped_defs = true
 allow_incomplete_defs = true
+disable_error_code = import-untyped