// KleidiAI micro-kernels
#include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h"
-#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
-#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
-#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
-#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h"
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h"
#include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h"
#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h"
#include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h"
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h"
+#include "kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.h"
+
+#include "kai_lhs_pack_bf16p2vlx2_f32_sme.h"
+#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
+#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
+
+#include "kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.h"
+#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
+#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
+
#include "kai_common.h"
#include "kernels.h"
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
},
/* .required_cpu = */ CPU_FEATURE_SME,
+ /* .lhs_type = */ GGML_TYPE_F32,
+ /* .rhs_type = */ GGML_TYPE_Q4_0,
+ /* .op_type = */ GGML_TYPE_F32,
+ },
+ {
+ /* SME GEMM */
+ /* .kern_info = */ {
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ },
+ /* SME GEMV */
+ /* .kern_info = */ {
+ /* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_mr = */ kai_get_mr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ /* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
+ },
+ /* .lhs_info = */ {
+ /* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
+ /* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
+ /* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
+ /* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
+ },
+ /* .rhs_info = */ {
+ /* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
+ /* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
+ },
+ /* .required_cpu = */ CPU_FEATURE_SME,
+ /* .lhs_type = */ GGML_TYPE_F32,
+ /* .rhs_type = */ GGML_TYPE_F16,
+ /* .op_type = */ GGML_TYPE_F32,
},
#endif
#if defined(__APPLE__)
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
+ /* .lhs_type = */ GGML_TYPE_F32,
+ /* .rhs_type = */ GGML_TYPE_Q4_0,
+ /* .op_type = */ GGML_TYPE_F32,
},
#endif
#if defined(__ARM_FEATURE_MATMUL_INT8)
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
+ /* .lhs_type = */ GGML_TYPE_F32,
+ /* .rhs_type = */ GGML_TYPE_Q4_0,
+ /* .op_type = */ GGML_TYPE_F32,
},
#endif
#else
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
+ /* .lhs_type = */ GGML_TYPE_F32,
+ /* .rhs_type = */ GGML_TYPE_Q4_0,
+ /* .op_type = */ GGML_TYPE_F32,
},
#endif
#if defined(__ARM_FEATURE_DOTPROD)
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
+ /* .lhs_type = */ GGML_TYPE_F32,
+ /* .rhs_type = */ GGML_TYPE_Q4_0,
+ /* .op_type = */ GGML_TYPE_F32,
},
#endif
#endif
};
-ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) {
+ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) {
+ ggml_kleidiai_kernels * kernel = nullptr;
+
+ if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) {
+ for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
+ if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu &&
+ gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type &&
+ gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type &&
+ gemm_gemv_kernels[i].op_type == tensor->type) {
+ kernel = &gemm_gemv_kernels[i];
+ break;
+ }
+ }
+ }
+
+ return kernel;
+}
+
+ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) {
ggml_kleidiai_kernels * kernels = nullptr;
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
#pragma once
+#include <functional>
+#include "ggml.h"
+
enum cpu_feature {
CPU_FEATURE_NONE = 0,
CPU_FEATURE_DOTPROD = 1,
size_t (*get_nr)(void);
size_t (*get_kr)(void);
size_t (*get_sr)(void);
- size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl);
- size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl);
+ std::variant<
+ std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
+ std::function<size_t(size_t m_idx, size_t k)>
+ > get_lhs_offset;
+ std::variant<
+ std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
+ std::function<size_t(size_t n_idx, size_t k)>
+ > get_rhs_packed_offset;
size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride);
size_t (*get_dst_size)(size_t m, size_t n);
- void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
- float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max);
+ std::variant<
+ std::function<void(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
+ float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max)>,
+ std::function<void(size_t m, size_t n, size_t k, const void* lhs_packed, const void* rhs_packed, void* dst, size_t dst_stride_row,
+ size_t dst_stride_col, float clamp_min, float clamp_max)>
+ > run_kernel;
};
struct lhs_packing_info {
size_t (*get_offset)(size_t m_idx, size_t lhs_stride);
- size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
- size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
- void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
- size_t lhs_stride, void* lhs_packed);
+ std::variant<
+ std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
+ std::function<size_t(size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr)>
+ > get_packed_offset;
+ std::variant<
+ std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
+ std::function<size_t(size_t m, size_t k, size_t mr, size_t kr, size_t sr)>
+ > packed_size;
+ std::variant<
+ std::function<void(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
+ size_t lhs_stride, void* lhs_packed)>,
+ std::function<void(size_t m, size_t k, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const void* lhs, size_t lhs_stride,
+ void* lhs_packed)>
+ > pack_func;
};
struct rhs_packing_info {
- size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl);
- void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
- const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params);
+ std::variant<
+ std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>,
+ std::function<size_t(size_t n, size_t k)>
+ > packed_size;
+ std::variant<
+ std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
+ const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>,
+ std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs,
+ const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)>
+ > pack_func;
};
struct ggml_kleidiai_kernels {
rhs_packing_info rhs_info;
cpu_feature required_cpu;
+ ggml_type lhs_type;
+ ggml_type rhs_type;
+ ggml_type op_type;
};
-ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features);
+ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor);
+ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features);
#include "ggml-common.h"
struct ggml_kleidiai_context {
+ cpu_feature features;
ggml_kleidiai_kernels * kernels;
-} static ctx = { NULL };
+} static ctx = { CPU_FEATURE_NONE, NULL };
static void init_kleidiai_context(void) {
const char *env_var = getenv("GGML_KLEIDIAI_SME");
int sme_enabled = 0;
- cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
- (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
- (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
+ ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
+ (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
+ (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
if (env_var) {
sme_enabled = atoi(env_var);
}
if (sme_enabled != 0) {
- features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
+ ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
}
- ctx.kernels = ggml_kleidiai_select_kernels(features);
+ ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features);
}
ggml_critical_section_end();
}
return tensor->ne[dim];
}
+template<typename Ret, typename Variant, typename... Args>
+static Ret variant_call(const Variant & var, Args&&... args) {
+ return std::visit([&](auto&& func) -> Ret {
+ if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
+ return func(std::forward<Args>(args)...);
+ } else {
+ throw std::runtime_error("Invalid function type in variant_call");
+ }
+ }, var);
+}
+
namespace ggml::cpu::kleidiai {
+
+static size_t round_down(size_t x, size_t y) {
+ return y == 0 ? x : x - (x % y);
+}
+
+static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) {
+ size_t src_stride = rhs_stride / sizeof(uint16_t);
+ size_t dst_stride = n;
+
+ for (size_t k_idx = 0; k_idx < k; ++k_idx) {
+ for (size_t n_idx = 0; n_idx < n; ++n_idx) {
+ uint16_t v = *(src + k_idx + n_idx * src_stride);
+ *(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v);
+ }
+ }
+}
+
class tensor_traits : public ggml::cpu::tensor_traits {
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
- GGML_ASSERT(ctx.kernels);
- kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
+ ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
+ GGML_ASSERT(kernels);
+ kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
size_t k = op->src[0]->ne[0];
+ size_t n = op->src[0]->ne[1];
size_t m = op->src[1]->ne[1];
size_t mr = kernel->get_mr();
size_t kr = kernel->get_kr();
size_t sr = kernel->get_sr();
- size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr);
+ if (kernels->rhs_type == GGML_TYPE_Q4_0) {
+ size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr);
+ } else if (kernels->rhs_type == GGML_TYPE_F16) {
+ size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr) +
+ variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
+ k * n * sizeof(float) + n * sizeof(float);
+ } else {
+ GGML_ASSERT(false);
+ }
return true;
}
+
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
if (dst->op == GGML_OP_MUL_MAT) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
+ if (dst->src[0]->type == GGML_TYPE_Q4_0) {
+ return compute_forward_q4_0(params, dst);
+ } else if (dst->src[0]->type == GGML_TYPE_F16) {
+ return compute_forward_kv_cache(params, dst);
+ }
+ }
+ return false;
+ }
- GGML_TENSOR_BINARY_OP_LOCALS
+ bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) {
+ static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
- GGML_ASSERT(ctx.kernels);
- kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
- lhs_packing_info * lhs_info = &ctx.kernels->lhs_info;
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(kernel);
+ GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
+ ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
+ GGML_ASSERT(kernels);
- const size_t k = ne00;
- const size_t m = ne11;
- const size_t n = ne01;
+ kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
+ GGML_ASSERT(kernel);
- const size_t n_step = kernel->get_n_step();
- const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
- const size_t n_start = ith * num_n_per_thread;
+ const int nth = params->nth;
+ const int ith = params->ith;
- size_t n_to_process = num_n_per_thread;
- if ((n_start + n_to_process) > n) {
- n_to_process = n - n_start;
- }
+ const int64_t lhs_batch_size0 = ne12;
+ const int64_t rhs_batch_size0 = ne02;
+ const int64_t batch_size = rhs_batch_size0;
+
+ const int64_t r = lhs_batch_size0 / rhs_batch_size0;
+
+ const int64_t m = ne11 * r;
+ const int64_t n = ne01;
+ const int64_t k = ne00;
+
+ const size_t lhs_stride = src1->nb[1];
+ const size_t rhs_stride = src0->nb[1];
+ const size_t dst_stride = dst->nb[1];
+
+ const int64_t mr = static_cast<int64_t>(kernel->get_mr());
+ const int64_t nr = static_cast<int64_t>(kernel->get_nr());
+ const int64_t kr = static_cast<int64_t>(kernel->get_kr());
+ const int64_t sr = static_cast<int64_t>(kernel->get_sr());
+
+ const size_t lhs_packed_size = variant_call<size_t>(kernels->lhs_info.packed_size, m, k, mr, kr, sr);
+ const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
+ const size_t kxn_size = k * n * sizeof(float);
+ const size_t bias_size = n * sizeof(float);
+
+ const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
+ GGML_ASSERT(wsize_required <= params->wsize);
+
+ uint8_t * lhs_packed = static_cast<uint8_t *>(params->wdata);
+ uint8_t * rhs_packed = lhs_packed + lhs_packed_size;
+ uint8_t * rhs_kxn = rhs_packed + rhs_packed_size;
+ uint8_t * bias = rhs_kxn + kxn_size;
+
+ for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
+ const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
+ const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
+ uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
- const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
- uint8_t * lhs_packed = (uint8_t*)params->wdata;
- const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
+ // LHS packing
+ {
+ const int64_t m_roundup_mr = kai_roundup(m, mr);
+ const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);
- size_t mr = kernel->get_mr();
- size_t kr = kernel->get_kr();
- size_t sr = kernel->get_sr();
+ if (ith < num_threads) {
+ const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
+ const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;
- // Calculate number of columns to be processed per thread
- const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
- const size_t m_start = ith * num_m_per_thread;
- size_t m_to_process = num_m_per_thread;
- if ((m_start + m_to_process) > m) {
- m_to_process = m - m_start;
+ const int64_t m_start = ith * num_m_per_thread0;
+ const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
+
+ const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
+ const size_t lhs_packed_offset = variant_call<size_t>(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr);
+
+ const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
+ void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
+
+ variant_call<void>(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
+ }
}
- if(m_start < m) {
- // Transform LHS
- const size_t src_stride = src1->nb[1];
- const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
- const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr);
- void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
+ // RHS packing
+ if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
+ // First thread to reach this point handles RHS packing
+ memset(bias, 0, n * sizeof(float));
+ transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
+ reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);
- lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
+ variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
+ rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
}
ggml_barrier(params->threadpool);
- // Perform the operation
- const size_t dst_stride = dst->nb[1];
- const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr);
- const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0);
- const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
- const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
- const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
- float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
-
- kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr,
- dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
- return true;
+ first_to_arrive.clear(std::memory_order_release);
+
+ // Perform the matmul
+ {
+ const int64_t m_to_process = m;
+ const int64_t m_start = 0;
+
+ const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
+ const int64_t num_threads = KAI_MIN(n / n_step, nth);
+
+ if (ith < num_threads) {
+ const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
+ const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
+
+ const int64_t n_start = ith * num_n_per_thread0;
+ const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
+
+ const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
+ const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
+ const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
+
+ const void * lhs_ptr = lhs_packed + lhs_packed_offset;
+ const void * rhs_ptr = rhs_packed + rhs_packed_offset;
+ float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
+
+ variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
+ }
+ }
+
+ if (batch_idx != batch_size - 1) {
+ // This barrier is necessary when the batch size is larger than 1. While processing a batch,
+ // the work data buffer (params->wdata) is used as temporary storage which means that only
+ // a single batch can be processed at any given time. No barrier is needed for the last
+ // batch since GGML inserts a barrier between the execution of every operator.
+ ggml_barrier(params->threadpool);
+ }
}
- return false;
+
+ return true;
+ }
+
+ bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
+ GGML_ASSERT(kernels);
+
+ kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
+ lhs_packing_info * lhs_info = &kernels->lhs_info;
+
+ GGML_ASSERT(kernel);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const size_t k = ne00;
+ const size_t m = ne11;
+ const size_t n = ne01;
+
+ size_t mr = kernel->get_mr();
+ size_t kr = kernel->get_kr();
+ size_t sr = kernel->get_sr();
+
+ const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
+ uint8_t * lhs_packed = (uint8_t*)params->wdata;
+ const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
+
+ const size_t n_step = kernel->get_n_step();
+ const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
+ const size_t n_start = ith * num_n_per_thread;
+
+ size_t n_to_process = num_n_per_thread;
+ if ((n_start + n_to_process) > n) {
+ n_to_process = n - n_start;
+ }
+
+ // Calculate number of columns to be processed per thread
+ const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
+ const size_t m_start = ith * num_m_per_thread;
+ size_t m_to_process = num_m_per_thread;
+ if ((m_start + m_to_process) > m) {
+ m_to_process = m - m_start;
+ }
+
+ if (m_start < m) {
+ // Transform LHS
+ const size_t src_stride = src1->nb[1];
+ const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
+ const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr);
+ void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
+
+ variant_call<void>(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
+ }
+
+ ggml_barrier(params->threadpool);
+
+ // Perform the operation
+ const size_t dst_stride = dst->nb[1];
+ const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr);
+ const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k, QK4_0);
+ const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
+ const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
+ const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
+ float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
+
+ variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
+ sizeof(float), -FLT_MAX, FLT_MAX);
+
+ return true;
}
public:
size_t sr = ctx.kernels->gemm.get_sr();
#ifndef NDEBUG
- const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0);
+ const size_t repacked_size = variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
#endif
struct kai_rhs_pack_qs4cxs1s0_param params;
params.lhs_zero_point = 1;
params.rhs_zero_point = 8;
- ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms);
+ variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms);
return 0;
}
} // namespace ggml::cpu::kleidiai
-GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
GGML_UNUSED(buffer);
namespace ggml::cpu::kleidiai {
class extra_buffer_type : ggml::cpu::extra_buffer_type {
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
- if ( op->op == GGML_OP_MUL_MAT &&
- op->src[0]->type == GGML_TYPE_Q4_0 &&
- op->src[0]->buffer &&
- (ggml_n_dims(op->src[0]) == 2) &&
- op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels
- ) {
+ if (op->op == GGML_OP_MUL_MAT &&
+ op->src[0]->type == GGML_TYPE_Q4_0 &&
+ op->src[0]->buffer &&
+ (ggml_n_dims(op->src[0]) == 2) &&
+ op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
+ else if (ggml_kleidiai_select_kernels(ctx.features, op) &&
+ op->src[0]->op == GGML_OP_VIEW &&
+ (op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) &&
+ op->src[1]->ne[1] > 1) {
+ if ((op->src[0]->nb[0] != 2) ||
+ (op->src[1]->nb[0] != 4) ||
+ (op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
+ (op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
+ return nullptr;
+ }
+
+ return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL);
+ }
}
return nullptr;
}