"POOL_2D",
"UPSCALE",
+ "CONV_1D_STAGE_0",
+ "CONV_1D_STAGE_1",
+
"FLASH_ATTN",
"FLASH_FF",
"FLASH_ATTN_BACK",
"CROSS_ENTROPY_LOSS_BACK",
};
-static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
+static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
"pool_2d(x)",
"upscale(x)",
+ "conv_1d_stage_0(x)",
+ "conv_1d_stage_1(x)",
+
"flash_attn(x)",
"flash_ff(x)",
"flash_attn_back(x)",
"cross_entropy_loss_back(x,y)",
};
-static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
+static_assert(GGML_OP_COUNT == 70, "GGML_OP_COUNT != 70");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
p[GGML_OP_DIAG_MASK_INF ] = true;
p[GGML_OP_DIAG_MASK_ZERO ] = true;
p[GGML_OP_CONV_1D ] = true;
+ p[GGML_OP_CONV_1D_STAGE_0 ] = true;
+ p[GGML_OP_CONV_1D_STAGE_1 ] = true;
p[GGML_OP_CONV_2D ] = true;
p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
p[GGML_OP_FLASH_ATTN_BACK ] = true;
return result;
}
-// ggml_conv_1d
+// ggml_conv_1d_stage_0
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}
-GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- GGML_ASSERT(ggml_is_matrix(b));
+// im2col: [N, IC, IL] => [N, OL, IC*K]
+// a: [OC,IC, K]
+// b: [N, IC, IL]
+// result: [N, OL, IC*K]
+static struct ggml_tensor * ggml_conv_1d_stage_0(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int p0,
+ int d0) {
GGML_ASSERT(a->ne[1] == b->ne[1]);
bool is_node = false;
is_node = true;
}
+ const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
+
const int64_t ne[4] = {
- ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
- a->ne[2], 1, 1,
+ a->ne[1] * a->ne[0],
+ OL,
+ b->ne[2],
+ 1,
};
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CONV_1D;
+ result->op = GGML_OP_CONV_1D_STAGE_0;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+// ggml_conv_1d_stage_1
+
+// gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
+// a: [OC, IC, K]
+// b: [N, OL, IC * K]
+// result: [N, OC, OL]
+static struct ggml_tensor * ggml_conv_1d_stage_1(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int64_t ne[4] = {
+ b->ne[1],
+ a->ne[2],
+ b->ne[2],
+ 1,
+ };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ result->op = GGML_OP_CONV_1D_STAGE_1;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
+// ggml_conv_1d
+
+GGML_API struct ggml_tensor * ggml_conv_1d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int p0,
+ int d0) {
+ struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
+ result = ggml_conv_1d_stage_1(ctx, a, result);
+ return result;
+}
+
+// GGML_API struct ggml_tensor * ggml_conv_1d(
+// struct ggml_context * ctx,
+// struct ggml_tensor * a,
+// struct ggml_tensor * b,
+// int s0,
+// int p0,
+// int d0) {
+// GGML_ASSERT(ggml_is_matrix(b));
+// GGML_ASSERT(a->ne[1] == b->ne[1]);
+// bool is_node = false;
+
+// if (a->grad || b->grad) {
+// GGML_ASSERT(false); // TODO: implement backward
+// is_node = true;
+// }
+
+// const int64_t ne[4] = {
+// ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
+// a->ne[2], 1, 1,
+// };
+// struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+
+// int32_t params[] = { s0, p0, d0 };
+// ggml_set_op_params(result, params, sizeof(params));
+
+// result->op = GGML_OP_CONV_1D;
+// result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+// result->src[0] = a;
+// result->src[1] = b;
+
+// return result;
+// }
+
// ggml_conv_1d_ph
struct ggml_tensor* ggml_conv_1d_ph(
// ggml_compute_forward_conv_1d
-static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
+static void ggml_compute_forward_conv_1d_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const int nth = params->nth;
const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
+ // size of the convolution row - the kernel size unrolled across all input channels
+ const int ew0 = nk*ne01;
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+ const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
+ const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
+ for (int64_t i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ ggml_fp16_t * dst_data = wdata;
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
+ for (int64_t i0 = 0; i0 < ne0; i0++) {
+ for (int64_t ik = 0; ik < nk; ik++) {
+ const int idx0 = i0*s0 + ik*d0 - p0;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
+ if(!(idx0 < 0 || idx0 >= ne10)) {
+ dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
+ }
}
}
}
}
// total rows in dst
- const int nr = ne02;
+ const int nr = ne2;
// rows per thread
const int dr = (nr + nth - 1)/nth;
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
- dst_data[i0] += v;
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+ for (int i2 = 0; i2 < ne2; i2++) {
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
+
+ for (int i0 = 0; i0 < ne0; i0++) {
+ ggml_vec_dot_f16(ew0, dst_data + i0,
+ (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
+ (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
}
}
}
}
-static void ggml_compute_forward_conv_1d_s1_ph_f32(
+static void ggml_compute_forward_conv_1d_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const int nth = params->nth;
const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
+ const int ew0 = nk*ne01;
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+ const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
+ const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
+ float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
+ for (int64_t i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ float * dst_data = wdata;
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
+ for (int64_t i0 = 0; i0 < ne0; i0++) {
+ for (int64_t ik = 0; ik < nk; ik++) {
+ const int idx0 = i0*s0 + ik*d0 - p0;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
+ if(!(idx0 < 0 || idx0 >= ne10)) {
+ dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
+ }
}
}
}
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
- dst_data[i0] += v;
+ float * const wdata = (float *) params->wdata + 0;
+
+ for (int i2 = 0; i2 < ne2; i2++) {
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
+
+ for (int i0 = 0; i0 < ne0; i0++) {
+ ggml_vec_dot_f32(ew0, dst_data + i0,
+ (float *) ((char *) src0->data + i1*nb02),
+ (float *) wdata + i2*nb2 + i0*ew0);
}
}
}
}
-static void ggml_compute_forward_conv_1d_s1_ph(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
+static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
+ ggml_fp16_t * A,
+ ggml_fp16_t * B,
+ float * C,
+ const int ith, const int nth) {
+ // does not seem to make a difference
+ int64_t m0, m1, n0, n1;
+ // patches per thread
+ if (m > n) {
+ n0 = 0;
+ n1 = n;
+
+ // total patches in dst
+ const int np = m;
+
+ // patches per thread
+ const int dp = (np + nth - 1)/nth;
+
+ // patch range for this thread
+ m0 = dp*ith;
+ m1 = MIN(m0 + dp, np);
+ } else {
+ m0 = 0;
+ m1 = m;
+
+ // total patches in dst
+ const int np = n;
+
+ // patches per thread
+ const int dp = (np + nth - 1)/nth;
+
+ // patch range for this thread
+ n0 = dp*ith;
+ n1 = MIN(n0 + dp, np);
+ }
+
+ // block-tiling attempt
+ int64_t blck_n = 16;
+ int64_t blck_m = 16;
+
+ // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
+ // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
+ // if (blck_size > 0) {
+ // blck_0 = 4;
+ // blck_1 = blck_size / blck_0;
+ // if (blck_1 < 0) {
+ // blck_1 = 1;
+ // }
+ // // blck_0 = (int64_t)sqrt(blck_size);
+ // // blck_1 = blck_0;
+ // }
+ // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
+
+ for (int j = n0; j < n1; j+=blck_n) {
+ for (int i = m0; i < m1; i+=blck_m) {
+ // printf("i j k => %d %d %d\n", i, j, K);
+ for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
+ for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
+ ggml_vec_dot_f16(k,
+ C + ii*n + jj,
+ A + ii * k,
+ B + jj * k);
+ }
+ }
+ }
}
}
-static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
+// src0: kernel [OC, IC, K]
+// src1: signal [N, IC, IL]
+// dst: result [N, OL, IC*K]
+static void ggml_compute_forward_conv_1d_stage_0_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
+ const int64_t N = ne12;
+ const int64_t IC = ne11;
+ const int64_t IL = ne10;
+
+ const int64_t K = ne00;
+
+ const int64_t OL = ne1;
+
const int ith = params->ith;
const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
-
- const int ew0 = ggml_up32(ne01);
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+ const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
+ const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
-
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
-
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
-
+ memset(dst->data, 0, ggml_nbytes(dst));
return;
}
return;
}
- // total rows in dst
- const int nr = ne02;
+ // im2col: [N, IC, IL] => [N, OL, IC*K]
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
+ for (int64_t in = 0; in < N; in++) {
+ for (int64_t iol = 0; iol < OL; iol++) {
+ for (int64_t iic = ith; iic < IC; iic+=nth) {
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
+ // micro kernel
+ ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
+ const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
- dst_data[i0/2] += v;
+ for (int64_t ik = 0; ik < K; ik++) {
+ const int64_t iil = iol*s0 + ik*d0 - p0;
+
+ if (!(iil < 0 || iil >= IL)) {
+ dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
+ }
+ }
+ }
}
}
}
}
-static void ggml_compute_forward_conv_1d_s2_ph_f32(
+// gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
+// src0: [OC, IC, K]
+// src1: [N, OL, IC * K]
+// result: [N, OC, OL]
+static void ggml_compute_forward_conv_1d_stage_1_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00;
- const int nh = nk/2;
-
- const int ew0 = ggml_up32(ne01);
-
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
-
if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
-
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
-
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
-
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
- }
- }
- }
-
return;
}
return;
}
- // total rows in dst
- const int nr = ne02;
+ GGML_TENSOR_BINARY_OP_LOCALS;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb0 == sizeof(float));
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
+ const int N = ne12;
+ const int OL = ne11;
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
- dst_data[i0/2] += v;
- }
- }
+ const int OC = ne02;
+ const int IC = ne01;
+ const int K = ne00;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ int64_t m = OC;
+ int64_t n = OL;
+ int64_t k = IC * K;
+
+ // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
+ for (int i = 0; i < N; i++) {
+ ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
+ ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
+ float * C = (float *)dst->data + i * m * n; // [m, n]
+
+ gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
}
}
-static void ggml_compute_forward_conv_1d_s2_ph(
+static void ggml_compute_forward_conv_1d(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
- switch (src0->type) {
+ switch(src0->type) {
case GGML_TYPE_F16:
{
- ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
+ ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
- ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
+ ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
} break;
default:
{
}
}
-// ggml_compute_forward_conv_1d
+static void ggml_compute_forward_conv_1d_stage_0(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch(src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
-static void ggml_compute_forward_conv_1d(
+static void ggml_compute_forward_conv_1d_stage_1(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
- GGML_ASSERT(d0 == 1); // dilation not supported
- GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
- if (s0 == 1) {
- ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
- } else if (s0 == 2) {
- ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
- } else {
- GGML_ASSERT(false); // only stride 1 and 2 supported
- };
+ switch(src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
}
// ggml_compute_forward_conv_2d
{
ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
} break;
+ case GGML_OP_CONV_1D_STAGE_0:
+ {
+ ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
+ } break;
+ case GGML_OP_CONV_1D_STAGE_1:
+ {
+ ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
+ } break;
case GGML_OP_CONV_2D:
{
ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
{
GGML_ASSERT(false); // TODO: not implemented
} break;
+ case GGML_OP_CONV_1D_STAGE_0:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_CONV_1D_STAGE_1:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
case GGML_OP_CONV_2D:
{
GGML_ASSERT(false); // TODO: not implemented
GGML_ASSERT(node->src[1]->ne[2] == 1);
GGML_ASSERT(node->src[1]->ne[3] == 1);
+ const int64_t ne00 = node->src[0]->ne[0];
+ const int64_t ne01 = node->src[0]->ne[1];
+ const int64_t ne02 = node->src[0]->ne[2];
+
+ const int64_t ne10 = node->src[1]->ne[0];
+ const int64_t ne11 = node->src[1]->ne[1];
+
+ const int64_t ne0 = node->ne[0];
+ const int64_t ne1 = node->ne[1];
+ const int64_t nk = ne00;
+ const int64_t ew0 = nk * ne01;
+
+ UNUSED(ne02);
+ UNUSED(ne10);
+ UNUSED(ne11);
+
size_t cur = 0;
- const int nk = node->src[0]->ne[0];
if (node->src[0]->type == GGML_TYPE_F16 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(
- nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
- ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
- );
+ node->src[1]->type == GGML_TYPE_F32) {
+ cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
} else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*(
- nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
- ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
- );
+ node->src[1]->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*(ne0*ne1*ew0);
} else {
GGML_ASSERT(false);
}
work_size = MAX(work_size, cur);
} break;
+ case GGML_OP_CONV_1D_STAGE_0:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_CONV_1D_STAGE_1:
+ {
+ n_tasks = n_threads;
+ } break;
case GGML_OP_CONV_2D:
{
n_tasks = n_threads;