--- /dev/null
+#include "llama.h"
+#include <cstdio>
+#include <cstring>
+#include <iostream>
+#include <string>
+#include <vector>
+
+static void print_usage(int, char ** argv) {
+ printf("\nexample usage:\n");
+ printf("\n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
+ printf("\n");
+}
+
+int main(int argc, char ** argv) {
+ std::string model_path;
+ int ngl = 99;
+ int n_ctx = 2048;
+
+ // parse command line arguments
+ for (int i = 1; i < argc; i++) {
+ try {
+ if (strcmp(argv[i], "-m") == 0) {
+ if (i + 1 < argc) {
+ model_path = argv[++i];
+ } else {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else if (strcmp(argv[i], "-c") == 0) {
+ if (i + 1 < argc) {
+ n_ctx = std::stoi(argv[++i]);
+ } else {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else if (strcmp(argv[i], "-ngl") == 0) {
+ if (i + 1 < argc) {
+ ngl = std::stoi(argv[++i]);
+ } else {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } catch (std::exception & e) {
+ fprintf(stderr, "error: %s\n", e.what());
+ print_usage(argc, argv);
+ return 1;
+ }
+ }
+ if (model_path.empty()) {
+ print_usage(argc, argv);
+ return 1;
+ }
+
+ // only print errors
+ llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
+ if (level >= GGML_LOG_LEVEL_ERROR) {
+ fprintf(stderr, "%s", text);
+ }
+ }, nullptr);
+
+ // initialize the model
+ llama_model_params model_params = llama_model_default_params();
+ model_params.n_gpu_layers = ngl;
+
+ llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
+ if (!model) {
+ fprintf(stderr , "%s: error: unable to load model\n" , __func__);
+ return 1;
+ }
+
+ // initialize the context
+ llama_context_params ctx_params = llama_context_default_params();
+ ctx_params.n_ctx = n_ctx;
+ ctx_params.n_batch = n_ctx;
+
+ llama_context * ctx = llama_new_context_with_model(model, ctx_params);
+ if (!ctx) {
+ fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
+ return 1;
+ }
+
+ // initialize the sampler
+ llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
+ llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
+ llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
+ llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
+
+ // helper function to evaluate a prompt and generate a response
+ auto generate = [&](const std::string & prompt) {
+ std::string response;
+
+ // tokenize the prompt
+ const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
+ std::vector<llama_token> prompt_tokens(n_prompt_tokens);
+ if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
+ GGML_ABORT("failed to tokenize the prompt\n");
+ }
+
+ // prepare a batch for the prompt
+ llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
+ llama_token new_token_id;
+ while (true) {
+ // check if we have enough space in the context to evaluate this batch
+ int n_ctx = llama_n_ctx(ctx);
+ int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
+ if (n_ctx_used + batch.n_tokens > n_ctx) {
+ printf("\033[0m\n");
+ fprintf(stderr, "context size exceeded\n");
+ exit(0);
+ }
+
+ if (llama_decode(ctx, batch)) {
+ GGML_ABORT("failed to decode\n");
+ }
+
+ // sample the next token
+ new_token_id = llama_sampler_sample(smpl, ctx, -1);
+
+ // is it an end of generation?
+ if (llama_token_is_eog(model, new_token_id)) {
+ break;
+ }
+
+ // convert the token to a string, print it and add it to the response
+ char buf[256];
+ int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
+ if (n < 0) {
+ GGML_ABORT("failed to convert token to piece\n");
+ }
+ std::string piece(buf, n);
+ printf("%s", piece.c_str());
+ fflush(stdout);
+ response += piece;
+
+ // prepare the next batch with the sampled token
+ batch = llama_batch_get_one(&new_token_id, 1);
+ }
+
+ return response;
+ };
+
+ std::vector<llama_chat_message> messages;
+ std::vector<char> formatted(llama_n_ctx(ctx));
+ int prev_len = 0;
+ while (true) {
+ // get user input
+ printf("\033[32m> \033[0m");
+ std::string user;
+ std::getline(std::cin, user);
+
+ if (user.empty()) {
+ break;
+ }
+
+ // add the user input to the message list and format it
+ messages.push_back({"user", strdup(user.c_str())});
+ int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
+ if (new_len > (int)formatted.size()) {
+ formatted.resize(new_len);
+ new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
+ }
+ if (new_len < 0) {
+ fprintf(stderr, "failed to apply the chat template\n");
+ return 1;
+ }
+
+ // remove previous messages to obtain the prompt to generate the response
+ std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);
+
+ // generate a response
+ printf("\033[33m");
+ std::string response = generate(prompt);
+ printf("\n\033[0m");
+
+ // add the response to the messages
+ messages.push_back({"assistant", strdup(response.c_str())});
+ prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0);
+ if (prev_len < 0) {
+ fprintf(stderr, "failed to apply the chat template\n");
+ return 1;
+ }
+ }
+
+ // free resources
+ for (auto & msg : messages) {
+ free(const_cast<char *>(msg.content));
+ }
+ llama_sampler_free(smpl);
+ llama_free(ctx);
+ llama_free_model(model);
+
+ return 0;
+}