]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add simple-chat example (#10124)
authorDiego Devesa <redacted>
Fri, 1 Nov 2024 22:50:59 +0000 (23:50 +0100)
committerGitHub <redacted>
Fri, 1 Nov 2024 22:50:59 +0000 (23:50 +0100)
* llama : add simple-chat example

---------

Co-authored-by: Xuan Son Nguyen <redacted>
Makefile
examples/CMakeLists.txt
examples/simple-chat/CMakeLists.txt [new file with mode: 0644]
examples/simple-chat/README.md [new file with mode: 0644]
examples/simple-chat/simple-chat.cpp [new file with mode: 0644]
ggml/include/ggml.h

index 719f45d1674636d6e120b2bd71776eebee4f09e3..0514363449e8d046082ccdbc7252ee4c2c2bfafa 100644 (file)
--- a/Makefile
+++ b/Makefile
@@ -34,6 +34,7 @@ BUILD_TARGETS = \
        llama-save-load-state \
        llama-server \
        llama-simple \
+       llama-simple-chat \
        llama-speculative \
        llama-tokenize \
        llama-vdot \
@@ -1287,6 +1288,11 @@ llama-simple: examples/simple/simple.cpp \
        $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
        $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
 
+llama-simple-chat: examples/simple-chat/simple-chat.cpp \
+       $(OBJ_ALL)
+       $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
+       $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
+
 llama-tokenize: examples/tokenize/tokenize.cpp \
        $(OBJ_ALL)
        $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
index ead630661c8e290ebab276630dbe050743bb87bb..6df318c1970a5f66247b9e44d044f17081354e65 100644 (file)
@@ -49,6 +49,7 @@ else()
     endif()
     add_subdirectory(save-load-state)
     add_subdirectory(simple)
+    add_subdirectory(simple-chat)
     add_subdirectory(speculative)
     add_subdirectory(tokenize)
 endif()
diff --git a/examples/simple-chat/CMakeLists.txt b/examples/simple-chat/CMakeLists.txt
new file mode 100644 (file)
index 0000000..8772353
--- /dev/null
@@ -0,0 +1,5 @@
+set(TARGET llama-simple-chat)
+add_executable(${TARGET} simple-chat.cpp)
+install(TARGETS ${TARGET} RUNTIME)
+target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
diff --git a/examples/simple-chat/README.md b/examples/simple-chat/README.md
new file mode 100644 (file)
index 0000000..f0099ce
--- /dev/null
@@ -0,0 +1,7 @@
+# llama.cpp/example/simple-chat
+
+The purpose of this example is to demonstrate a minimal usage of llama.cpp to create a simple chat program using the chat template from the GGUF file.
+
+```bash
+./llama-simple-chat -m Meta-Llama-3.1-8B-Instruct.gguf -c 2048
+...
diff --git a/examples/simple-chat/simple-chat.cpp b/examples/simple-chat/simple-chat.cpp
new file mode 100644 (file)
index 0000000..14264cf
--- /dev/null
@@ -0,0 +1,197 @@
+#include "llama.h"
+#include <cstdio>
+#include <cstring>
+#include <iostream>
+#include <string>
+#include <vector>
+
+static void print_usage(int, char ** argv) {
+    printf("\nexample usage:\n");
+    printf("\n    %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
+    printf("\n");
+}
+
+int main(int argc, char ** argv) {
+    std::string model_path;
+    int ngl = 99;
+    int n_ctx = 2048;
+
+    // parse command line arguments
+    for (int i = 1; i < argc; i++) {
+        try {
+            if (strcmp(argv[i], "-m") == 0) {
+                if (i + 1 < argc) {
+                    model_path = argv[++i];
+                } else {
+                    print_usage(argc, argv);
+                    return 1;
+                }
+            } else if (strcmp(argv[i], "-c") == 0) {
+                if (i + 1 < argc) {
+                    n_ctx = std::stoi(argv[++i]);
+                } else {
+                    print_usage(argc, argv);
+                    return 1;
+                }
+            } else if (strcmp(argv[i], "-ngl") == 0) {
+                if (i + 1 < argc) {
+                    ngl = std::stoi(argv[++i]);
+                } else {
+                    print_usage(argc, argv);
+                    return 1;
+                }
+            } else {
+                print_usage(argc, argv);
+                return 1;
+            }
+        } catch (std::exception & e) {
+            fprintf(stderr, "error: %s\n", e.what());
+            print_usage(argc, argv);
+            return 1;
+        }
+    }
+    if (model_path.empty()) {
+        print_usage(argc, argv);
+        return 1;
+    }
+
+    // only print errors
+    llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
+        if (level >= GGML_LOG_LEVEL_ERROR) {
+            fprintf(stderr, "%s", text);
+        }
+    }, nullptr);
+
+    // initialize the model
+    llama_model_params model_params = llama_model_default_params();
+    model_params.n_gpu_layers = ngl;
+
+    llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
+    if (!model) {
+        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
+        return 1;
+    }
+
+    // initialize the context
+    llama_context_params ctx_params = llama_context_default_params();
+    ctx_params.n_ctx = n_ctx;
+    ctx_params.n_batch = n_ctx;
+
+    llama_context * ctx = llama_new_context_with_model(model, ctx_params);
+    if (!ctx) {
+        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
+        return 1;
+    }
+
+    // initialize the sampler
+    llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
+    llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
+    llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
+    llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
+
+    // helper function to evaluate a prompt and generate a response
+    auto generate = [&](const std::string & prompt) {
+        std::string response;
+
+        // tokenize the prompt
+        const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
+        std::vector<llama_token> prompt_tokens(n_prompt_tokens);
+        if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
+            GGML_ABORT("failed to tokenize the prompt\n");
+        }
+
+        // prepare a batch for the prompt
+        llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
+        llama_token new_token_id;
+        while (true) {
+            // check if we have enough space in the context to evaluate this batch
+            int n_ctx = llama_n_ctx(ctx);
+            int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
+            if (n_ctx_used + batch.n_tokens > n_ctx) {
+                printf("\033[0m\n");
+                fprintf(stderr, "context size exceeded\n");
+                exit(0);
+            }
+
+            if (llama_decode(ctx, batch)) {
+                GGML_ABORT("failed to decode\n");
+            }
+
+            // sample the next token
+            new_token_id = llama_sampler_sample(smpl, ctx, -1);
+
+            // is it an end of generation?
+            if (llama_token_is_eog(model, new_token_id)) {
+                break;
+            }
+
+            // convert the token to a string, print it and add it to the response
+            char buf[256];
+            int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
+            if (n < 0) {
+                GGML_ABORT("failed to convert token to piece\n");
+            }
+            std::string piece(buf, n);
+            printf("%s", piece.c_str());
+            fflush(stdout);
+            response += piece;
+
+            // prepare the next batch with the sampled token
+            batch = llama_batch_get_one(&new_token_id, 1);
+        }
+
+        return response;
+    };
+
+    std::vector<llama_chat_message> messages;
+    std::vector<char> formatted(llama_n_ctx(ctx));
+    int prev_len = 0;
+    while (true) {
+        // get user input
+        printf("\033[32m> \033[0m");
+        std::string user;
+        std::getline(std::cin, user);
+
+        if (user.empty()) {
+            break;
+        }
+
+        // add the user input to the message list and format it
+        messages.push_back({"user", strdup(user.c_str())});
+        int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
+        if (new_len > (int)formatted.size()) {
+            formatted.resize(new_len);
+            new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
+        }
+        if (new_len < 0) {
+            fprintf(stderr, "failed to apply the chat template\n");
+            return 1;
+        }
+
+        // remove previous messages to obtain the prompt to generate the response
+        std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);
+
+        // generate a response
+        printf("\033[33m");
+        std::string response = generate(prompt);
+        printf("\n\033[0m");
+
+        // add the response to the messages
+        messages.push_back({"assistant", strdup(response.c_str())});
+        prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0);
+        if (prev_len < 0) {
+            fprintf(stderr, "failed to apply the chat template\n");
+            return 1;
+        }
+    }
+
+    // free resources
+    for (auto & msg : messages) {
+        free(const_cast<char *>(msg.content));
+    }
+    llama_sampler_free(smpl);
+    llama_free(ctx);
+    llama_free_model(model);
+
+    return 0;
+}
index 41df85557c1ef0721ba0b31530691472a0cbef1f..2d93f31fac0969cf36052adcb3fc0bc993889787 100644 (file)
@@ -558,10 +558,10 @@ extern "C" {
 
     enum ggml_log_level {
         GGML_LOG_LEVEL_NONE  = 0,
-        GGML_LOG_LEVEL_INFO  = 1,
-        GGML_LOG_LEVEL_WARN  = 2,
-        GGML_LOG_LEVEL_ERROR = 3,
-        GGML_LOG_LEVEL_DEBUG = 4,
+        GGML_LOG_LEVEL_DEBUG = 1,
+        GGML_LOG_LEVEL_INFO  = 2,
+        GGML_LOG_LEVEL_WARN  = 3,
+        GGML_LOG_LEVEL_ERROR = 4,
         GGML_LOG_LEVEL_CONT  = 5, // continue previous log
     };