--- /dev/null
+#include "mtmd.h"
+#include "llama.h"
+
+#include <algorithm>
+#include <cinttypes>
+#include <vector>
+
+#define LOG_INF(...) fprintf(stdout, __VA_ARGS__)
+#define LOG_ERR(...) fprintf(stderr, __VA_ARGS__)
+
+size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
+ size_t n_tokens = 0;
+ for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
+ auto chunk = mtmd_input_chunks_get(chunks, i);
+ auto chunk_type = mtmd_input_chunk_get_type(chunk);
+ if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
+ size_t n_tokens_text;
+ mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
+ n_tokens += n_tokens_text;
+ } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
+ auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
+ n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
+ } else {
+ GGML_ASSERT(false && "chunk type not supported");
+ }
+ }
+ return n_tokens;
+}
+
+llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
+ llama_pos n_pos = 0;
+ for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
+ auto chunk = mtmd_input_chunks_get(chunks, i);
+ auto chunk_type = mtmd_input_chunk_get_type(chunk);
+ if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
+ size_t n_tokens_text;
+ mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
+ n_pos += n_tokens_text;
+ } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
+ auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
+ n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
+ } else {
+ GGML_ASSERT(false && "chunk type not supported");
+ }
+ }
+ return n_pos;
+}
+
+// helper struct to make working with embd batch easier
+// note: this will be removed after llama_batch_ext refactoring
+struct decode_embd_batch {
+ int n_pos_per_embd;
+ int n_mmproj_embd;
+ std::vector<llama_pos> pos;
+ std::vector<llama_pos> pos_view; // used by mrope
+ std::vector<int32_t> n_seq_id;
+ std::vector<llama_seq_id> seq_id_0;
+ std::vector<llama_seq_id *> seq_ids;
+ std::vector<int8_t> logits;
+ llama_batch batch;
+ decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
+ pos .resize(n_tokens * n_pos_per_embd);
+ n_seq_id.resize(n_tokens);
+ seq_ids .resize(n_tokens + 1);
+ logits .resize(n_tokens);
+ seq_id_0.resize(1);
+ seq_ids [n_tokens] = nullptr;
+ batch = {
+ /*n_tokens =*/ n_tokens,
+ /*tokens =*/ nullptr,
+ /*embd =*/ embd,
+ /*pos =*/ pos.data(),
+ /*n_seq_id =*/ n_seq_id.data(),
+ /*seq_id =*/ seq_ids.data(),
+ /*logits =*/ logits.data(),
+ };
+ }
+
+ void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
+ seq_id_0[0] = seq_id;
+ for (int i = 0; i < batch.n_tokens; i++) {
+ batch.pos [i] = pos_0 + i;
+ batch.n_seq_id[i] = 1;
+ batch.seq_id [i] = seq_id_0.data();
+ batch.logits [i] = false;
+ }
+ }
+
+ void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
+ GGML_ASSERT(n_pos_per_embd == 4);
+ seq_id_0[0] = seq_id;
+ for (int y = 0; y < ny; y++) {
+ for (int x = 0; x < nx; x++) {
+ int i = y * nx + x;
+ pos[i ] = pos_0;
+ pos[i + batch.n_tokens ] = pos_0 + y;
+ pos[i + batch.n_tokens * 2] = pos_0 + x;
+ pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
+ }
+ }
+ for (int i = 0; i < batch.n_tokens; i++) {
+ batch.n_seq_id[i] = 1;
+ batch.seq_id [i] = seq_id_0.data();
+ batch.logits [i] = false;
+ }
+ }
+
+ llama_batch get_view(int offset, int n_tokens) {
+ llama_pos * pos_ptr;
+ pos_view.clear();
+ pos_view.reserve(n_tokens * n_pos_per_embd);
+ if (n_pos_per_embd > 1) {
+ // mrope
+ // for example, with layout of src: 1234...1234...1234...1234...
+ // offset 2 will give us dst: 34...34...34...34...
+ for (int i = 0; i < n_pos_per_embd; i++) {
+ // assume n_tokens is less than or equal to batch.n_tokens
+ // batch.n_tokens is number of **total** tokens
+ // n_tokens is number of viewed token
+ size_t src_idx = i * batch.n_tokens + offset;
+ pos_view.insert(pos_view.end(),
+ pos.data() + src_idx,
+ pos.data() + src_idx + n_tokens);
+ }
+ pos_ptr = pos_view.data();
+ } else {
+ // normal
+ pos_ptr = pos.data() + offset;
+ }
+ return {
+ /*n_tokens =*/ n_tokens,
+ /*tokens =*/ nullptr,
+ /*embd =*/ batch.embd + offset * n_mmproj_embd,
+ /*pos =*/ pos_ptr,
+ /*n_seq_id =*/ batch.n_seq_id + offset,
+ /*seq_id =*/ batch.seq_id + offset,
+ /*logits =*/ batch.logits + offset,
+ };
+ }
+};
+
+// Helper function for decoding an image whose embeddings have already been calculated
+int32_t mtmd_helper_decode_image_chunk(
+ mtmd_context * ctx,
+ struct llama_context * lctx,
+ const mtmd_input_chunk * chunk,
+ float * encoded_embd,
+ llama_pos n_past,
+ llama_seq_id seq_id,
+ int32_t n_batch,
+ llama_pos * new_n_past) {
+ if (mtmd_input_chunk_get_type(chunk) != MTMD_INPUT_CHUNK_TYPE_IMAGE) {
+ LOG_ERR("failed to decode image chunk: input chunk not of image type\n");
+ return -1;
+ }
+ const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
+ if (!image_tokens) {
+ LOG_ERR("failed to decode image chunk: image tokens are null\n");
+ return -1;
+ }
+
+ const llama_model * model = llama_get_model(lctx);
+ int n_mmproj_embd = llama_model_n_embd(model);
+ int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
+
+ int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
+ int32_t i_batch = 0;
+ int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
+ decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
+
+ const int nx = mtmd_image_tokens_get_nx(image_tokens);
+ const int ny = mtmd_image_tokens_get_ny(image_tokens);
+
+ if (mtmd_decode_use_mrope(ctx)) {
+ batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
+ } else {
+ batch_embd.set_position_normal(n_past, seq_id);
+ }
+
+ if (mtmd_decode_use_non_causal(ctx)) {
+ llama_set_causal_attn(lctx, false);
+ // TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
+ }
+
+ while (i_batch < n_img_batches) { // split into batches
+ int pos_offset = i_batch*n_batch;
+ int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
+ llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
+
+ LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
+
+ int64_t t1 = ggml_time_ms();
+ int32_t ret = llama_decode(lctx, batch_embd_view);
+ if (ret != 0) {
+ LOG_ERR("failed to decode image\n");
+ llama_set_causal_attn(lctx, true); // restore causal attn
+ return ret;
+ }
+
+ LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
+
+ i_batch++;
+ }
+
+ n_past += mtmd_image_tokens_get_n_pos(image_tokens);
+ *new_n_past = n_past;
+
+ if (mtmd_decode_use_non_causal(ctx)) {
+ llama_set_causal_attn(lctx, true);
+ }
+ return 0;
+}
+
+int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
+ struct llama_context * lctx,
+ const mtmd_input_chunk * chunk,
+ llama_pos n_past,
+ llama_seq_id seq_id,
+ int32_t n_batch,
+ bool logits_last,
+ llama_pos * new_n_past) {
+ int32_t ret;
+ llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
+ auto chunk_type = mtmd_input_chunk_get_type(chunk);
+
+ if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
+ size_t n_tokens;
+ const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
+ // LOG_INF("decoding text chunk, n_tokens = %zu\n", n_tokens);
+ size_t i = 0;
+ while (i < n_tokens) { // split into batches
+ text_batch.n_tokens = 0; // clear the batch
+ for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
+ text_batch.n_tokens++;
+ text_batch.token [i] = tokens[i];
+ text_batch.pos [i] = n_past++;
+ text_batch.n_seq_id[i] = 1;
+ text_batch.seq_id [i][0] = seq_id;
+ text_batch.logits [i] = false;
+ }
+ bool is_last_token = (i == n_tokens);
+ if (logits_last && is_last_token) {
+ text_batch.logits[text_batch.n_tokens - 1] = true;
+ }
+ ret = llama_decode(lctx, text_batch);
+ if (ret != 0) {
+ LOG_ERR("failed to decode text\n");
+ llama_batch_free(text_batch);
+ return ret;
+ }
+ *new_n_past += text_batch.n_tokens;
+ }
+
+ } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
+ const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
+ int64_t t0 = ggml_time_ms();
+
+ LOG_INF("encoding image or slice...\n");
+
+ ret = mtmd_encode(ctx, image_tokens);
+ if (ret != 0) {
+ LOG_ERR("failed to encode image\n");
+ llama_batch_free(text_batch);
+ return ret;
+ }
+
+ LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
+
+ float * embd = mtmd_get_output_embd(ctx);
+ ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past);
+ if (ret != 0) {
+ LOG_ERR("failed to decode image\n");
+ llama_batch_free(text_batch);
+ return ret;
+ }
+ } else {
+ GGML_ABORT("chunk type not supported");
+ }
+
+ return 0;
+}
+
+int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
+ struct llama_context * lctx,
+ const mtmd_input_chunks * chunks,
+ llama_pos n_past,
+ llama_seq_id seq_id,
+ int32_t n_batch,
+ bool logits_last,
+ llama_pos * new_n_past) {
+ size_t n_chunks = mtmd_input_chunks_size(chunks);
+ if (n_chunks == 0) {
+ LOG_ERR("no chunks to eval\n");
+ return 0;
+ }
+
+ for (size_t i = 0; i < n_chunks; i++) {
+ bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
+ auto chunk = mtmd_input_chunks_get(chunks, i);
+
+ int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
+ if (res != 0) {
+ LOG_ERR("failed to eval chunk %zu\n", i);
+ return res;
+ }
+ *new_n_past = n_past;
+ }
+
+ return 0;
+}
return ctx->image_embd_v.data();
}
-size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
- size_t n_tokens = 0;
- for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
- auto chunk = mtmd_input_chunks_get(chunks, i);
- auto chunk_type = mtmd_input_chunk_get_type(chunk);
- if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
- size_t n_tokens_text;
- mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
- n_tokens += n_tokens_text;
- } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
- auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
- n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
- } else {
- GGML_ASSERT(false && "chunk type not supported");
- }
- }
- return n_tokens;
-}
-
-llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
- llama_pos n_pos = 0;
- for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
- auto chunk = mtmd_input_chunks_get(chunks, i);
- auto chunk_type = mtmd_input_chunk_get_type(chunk);
- if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
- size_t n_tokens_text;
- mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
- n_pos += n_tokens_text;
- } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
- auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
- n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
- } else {
- GGML_ASSERT(false && "chunk type not supported");
- }
- }
- return n_pos;
-}
-
-// helper struct to make working with embd batch easier
-// note: this will be removed after llama_batch_ext refactoring
-struct decode_embd_batch {
- int n_pos_per_embd;
- int n_mmproj_embd;
- std::vector<llama_pos> pos;
- std::vector<llama_pos> pos_view; // used by mrope
- std::vector<int32_t> n_seq_id;
- std::vector<llama_seq_id> seq_id_0;
- std::vector<llama_seq_id *> seq_ids;
- std::vector<int8_t> logits;
- llama_batch batch;
- decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
- pos .resize(n_tokens * n_pos_per_embd);
- n_seq_id.resize(n_tokens);
- seq_ids .resize(n_tokens + 1);
- logits .resize(n_tokens);
- seq_id_0.resize(1);
- seq_ids [n_tokens] = nullptr;
- batch = {
- /*n_tokens =*/ n_tokens,
- /*tokens =*/ nullptr,
- /*embd =*/ embd,
- /*pos =*/ pos.data(),
- /*n_seq_id =*/ n_seq_id.data(),
- /*seq_id =*/ seq_ids.data(),
- /*logits =*/ logits.data(),
- };
- }
-
- void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
- seq_id_0[0] = seq_id;
- for (int i = 0; i < batch.n_tokens; i++) {
- batch.pos [i] = pos_0 + i;
- batch.n_seq_id[i] = 1;
- batch.seq_id [i] = seq_id_0.data();
- batch.logits [i] = false;
- }
- }
-
- void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
- GGML_ASSERT(n_pos_per_embd == 4);
- seq_id_0[0] = seq_id;
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- int i = y * nx + x;
- pos[i ] = pos_0;
- pos[i + batch.n_tokens ] = pos_0 + y;
- pos[i + batch.n_tokens * 2] = pos_0 + x;
- pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
- }
- }
- for (int i = 0; i < batch.n_tokens; i++) {
- batch.n_seq_id[i] = 1;
- batch.seq_id [i] = seq_id_0.data();
- batch.logits [i] = false;
- }
- }
-
- llama_batch get_view(int offset, int n_tokens) {
- llama_pos * pos_ptr;
- pos_view.clear();
- pos_view.reserve(n_tokens * n_pos_per_embd);
- if (n_pos_per_embd > 1) {
- // mrope
- // for example, with layout of src: 1234...1234...1234...1234...
- // offset 2 will give us dst: 34...34...34...34...
- for (int i = 0; i < n_pos_per_embd; i++) {
- // assume n_tokens is less than or equal to batch.n_tokens
- // batch.n_tokens is number of **total** tokens
- // n_tokens is number of viewed token
- size_t src_idx = i * batch.n_tokens + offset;
- pos_view.insert(pos_view.end(),
- pos.data() + src_idx,
- pos.data() + src_idx + n_tokens);
- }
- pos_ptr = pos_view.data();
- } else {
- // normal
- pos_ptr = pos.data() + offset;
- }
- return {
- /*n_tokens =*/ n_tokens,
- /*tokens =*/ nullptr,
- /*embd =*/ batch.embd + offset * n_mmproj_embd,
- /*pos =*/ pos_ptr,
- /*n_seq_id =*/ batch.n_seq_id + offset,
- /*seq_id =*/ batch.seq_id + offset,
- /*logits =*/ batch.logits + offset,
- };
- }
-};
-
-// Helper function for decoding an image whose embeddings have already been calculated
-int32_t mtmd_helper_decode_image_chunk(
- mtmd_context * ctx,
- struct llama_context * lctx,
- const mtmd_input_chunk * chunk,
- float * encoded_embd,
- llama_pos n_past,
- llama_seq_id seq_id,
- int32_t n_batch,
- llama_pos * new_n_past) {
- if (mtmd_input_chunk_get_type(chunk) != MTMD_INPUT_CHUNK_TYPE_IMAGE) {
- LOG_ERR("failed to decode image chunk: input chunk not of image type\n");
- return -1;
- }
- const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
- if (!image_tokens) {
- LOG_ERR("failed to decode image chunk: image tokens are null\n");
- return -1;
- }
-
- int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
- int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
-
- int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
- int32_t i_batch = 0;
- int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
- decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
-
- const int nx = mtmd_image_tokens_get_nx(image_tokens);
- const int ny = mtmd_image_tokens_get_ny(image_tokens);
-
- if (mtmd_decode_use_mrope(ctx)) {
- batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
- } else {
- batch_embd.set_position_normal(n_past, seq_id);
- }
-
- if (mtmd_decode_use_non_causal(ctx)) {
- llama_set_causal_attn(lctx, false);
- // TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
- }
-
- while (i_batch < n_img_batches) { // split into batches
- int pos_offset = i_batch*n_batch;
- int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
- llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
-
- LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
-
- int64_t t1 = ggml_time_ms();
- int32_t ret = llama_decode(lctx, batch_embd_view);
- if (ret != 0) {
- LOG_ERR("failed to decode image\n");
- llama_set_causal_attn(lctx, true); // restore causal attn
- return ret;
- }
-
- if (ctx->print_timings) {
- LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
- }
-
- i_batch++;
- }
-
- n_past += mtmd_image_tokens_get_n_pos(image_tokens);
- *new_n_past = n_past;
-
- if (mtmd_decode_use_non_causal(ctx)) {
- llama_set_causal_attn(lctx, true);
+bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
+ projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
+ if (proj_type == PROJECTOR_TYPE_GEMMA3) {
+ return true;
}
- return 0;
+ return false;
}
-int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
- struct llama_context * lctx,
- const mtmd_input_chunk * chunk,
- llama_pos n_past,
- llama_seq_id seq_id,
- int32_t n_batch,
- bool logits_last,
- llama_pos * new_n_past) {
- int32_t ret;
- llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
- auto chunk_type = mtmd_input_chunk_get_type(chunk);
-
- if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
- size_t n_tokens;
- const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
- LOG_DBG("decoding text chunk, n_tokens = %zu\n", n_tokens);
- size_t i = 0;
- while (i < n_tokens) { // split into batches
- text_batch.n_tokens = 0; // clear the batch
- for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
- text_batch.n_tokens++;
- text_batch.token [i] = tokens[i];
- text_batch.pos [i] = n_past++;
- text_batch.n_seq_id[i] = 1;
- text_batch.seq_id [i][0] = seq_id;
- text_batch.logits [i] = false;
- }
- bool is_last_token = (i == n_tokens);
- if (logits_last && is_last_token) {
- text_batch.logits[text_batch.n_tokens - 1] = true;
- }
- ret = llama_decode(lctx, text_batch);
- if (ret != 0) {
- LOG_ERR("failed to decode text\n");
- llama_batch_free(text_batch);
- return ret;
- }
- *new_n_past += text_batch.n_tokens;
- }
-
- } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
- const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
- int64_t t0 = ggml_time_ms();
- if (ctx->print_timings) {
- LOG_INF("encoding image or slice...\n");
- }
- ret = mtmd_encode(ctx, image_tokens);
- if (ret != 0) {
- LOG_ERR("failed to encode image\n");
- llama_batch_free(text_batch);
- return ret;
- }
- if (ctx->print_timings) {
- LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
- }
- float * embd = mtmd_get_output_embd(ctx);
- ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past);
- if (ret != 0) {
- LOG_ERR("failed to decode image\n");
- llama_batch_free(text_batch);
- return ret;
- }
- } else {
- GGML_ABORT("chunk type not supported");
- }
-
- return 0;
+bool mtmd_decode_use_mrope(mtmd_context * ctx) {
+ return ctx->use_mrope;
}
-int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
- struct llama_context * lctx,
- const mtmd_input_chunks * chunks,
- llama_pos n_past,
- llama_seq_id seq_id,
- int32_t n_batch,
- bool logits_last,
- llama_pos * new_n_past) {
- size_t n_chunks = mtmd_input_chunks_size(chunks);
- if (n_chunks == 0) {
- LOG_WRN("no chunks to eval\n");
- return 0;
- }
-
- for (size_t i = 0; i < n_chunks; i++) {
- bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
- auto chunk = mtmd_input_chunks_get(chunks, i);
-
- int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
- if (res != 0) {
- LOG_ERR("failed to eval chunk %zu\n", i);
- return res;
- }
- *new_n_past = n_past;
- }
-
- return 0;
+void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
+ mtmd_image_tokens_free(val);
}
+// these 2 helpers below use internal clip_image_u8_ptr,
+// so unfortunately they cannot moved to mtmd-helper.h
+// however, in theory, user can decode image file to bitmap using
+// whichever library they want, and then use mtmd_bitmap_init() to create bitmap
+
mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
return mtmd_bitmap_init(nx, ny, data);
}
-bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
- projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
- if (proj_type == PROJECTOR_TYPE_GEMMA3) {
- return true;
- }
- return false;
-}
-
-bool mtmd_decode_use_mrope(mtmd_context * ctx) {
- return ctx->use_mrope;
-}
-
-void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
- mtmd_image_tokens_free(val);
-}
-
-
//
// public API functions
//