cpy_blck(cx + x_offset, cdst + dst_offset);
}
-static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
- return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
-}
-
-struct rope_corr_dims {
- float v[4];
-};
-
-// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
-// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
-static void rope_yarn(
- float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
-) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
-
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
- }
- *cos_theta = sycl::cos(theta) * mscale;
- *sin_theta = sycl::sin(theta) * mscale;
-}
-
-// rope == RoPE == rotary positional embedding
-template<typename T, bool has_pos>
-static void rope(
- const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims
-,
- const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
-
- if (col >= ncols) {
- return;
- }
-
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
-
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
-
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
-
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
-
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
-}
-
-template<typename T, bool has_pos, bool has_freq_facs>
-static void rope_neox(
- const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
- const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
-
- if (col >= ncols) {
- return;
- }
-
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int ib = col / n_dims;
- const int ic = col % n_dims;
-
- if (ib > 0) {
- const int i = row*ncols + ib*n_dims + ic;
-
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
-
- return;
- }
-
- const int i = row*ncols + ib*n_dims + ic/2;
- const int i2 = row/p_delta_rows;
-
- float cur_rot = inv_ndims * ic - ib;
-
- const int p = has_pos ? pos[i2] : 0;
- const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
-
- const float theta_base =
- p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
-
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
-
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
-
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
-}
-
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
const sycl::nd_item<3> &item_ct1) {
const int row = item_ct1.get_group(1);
});
}
-template <typename T>
-static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
- const int32_t *pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor,
- rope_corr_dims corr_dims, queue_ptr stream) {
- GGML_ASSERT(ncols % 2 == 0);
- const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, num_blocks_x, nrows);
- if (pos == nullptr) {
- /*
- DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
- freq_base, ext_factor, attn_factor, corr_dims,
- item_ct1);
- });
- } else {
- /*
- DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
- freq_base, ext_factor, attn_factor, corr_dims,
- item_ct1);
- });
- }
-}
-
-template <typename T>
-static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
- const int32_t *pos, float freq_scale,
- int p_delta_rows, float freq_base, float ext_factor,
- float attn_factor, rope_corr_dims corr_dims,
- const float * freq_factors, queue_ptr stream) {
- GGML_ASSERT(ncols % 2 == 0);
- const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, num_blocks_x, nrows);
-
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.0f / n_dims;
-
- if (pos == nullptr) {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- if (freq_factors == nullptr) {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, false, false>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors,
- item_ct1);
- });
- } else {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, false, true>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors,
- item_ct1);
- });
- }
- } else {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- if (freq_factors == nullptr) {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, true, false>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
- });
- } else {
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, true, true>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
- });
- }
- }
-}
-
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
const int nrows, queue_ptr stream) {
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
std::exit(1);
}
-inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const queue_ptr &main_stream) {
- const ggml_tensor * src2 = dst->src[2];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t nrows = ggml_nrows(src0);
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
-
- // RoPE alteration for extended context
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
-
- const float * freq_factors = nullptr;
- const int32_t * pos = nullptr;
- if ((mode & 1) == 0) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->ne[0] == ne2);
- pos = (const int32_t *) src1_dd;
- }
-
- const bool is_neox = mode & 2;
-
-#pragma message("TODO: update rope NORM mode to match NEOX mode")
-#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
-
- if (is_neox) {
- pos = (const int32_t *) src1_dd;
-
- if (src2 != nullptr) {
- freq_factors = (const float *) src2->data;
- }
- } else {
- GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
- }
-
- rope_corr_dims corr_dims;
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
-
- // compute
- if (is_neox) {
- if (src0->type == GGML_TYPE_F32) {
- rope_neox_sycl(
- (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, freq_factors, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
- ne00, n_dims, nrows, pos, freq_scale, ne01,
- freq_base, ext_factor, attn_factor, corr_dims,
- freq_factors, main_stream);
- } else {
- GGML_ASSERT(false);
- }
- } else {
- if (src0->type == GGML_TYPE_F32) {
- rope_sycl(
- (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
- nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream);
- } else {
- GGML_ASSERT(false);
- }
- }
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
-
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
+ return true;
case GGML_OP_ROPE:
+ return ggml_is_contiguous(op->src[0]);
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
--- /dev/null
+#include "rope.hpp"
+
+struct rope_corr_dims {
+ float v[2];
+};
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
+ return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+ float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
+ }
+ *cos_theta = sycl::cos(theta) * mscale;
+ *sin_theta = sycl::sin(theta) * mscale;
+}
+
+template<typename T, bool has_ff>
+static void rope_norm(
+ const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+
+ if (i0 >= ne0) {
+ return;
+ }
+
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i0 >= n_dims) {
+ const int i = row*ne0 + i0;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
+ }
+
+ const int i = row*ne0 + i0;
+ const int i2 = row/p_delta_rows;
+
+ const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
+
+ const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+ float cos_theta;
+ float sin_theta;
+
+ rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + 1];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
+
+template<typename T, bool has_ff>
+static void rope_neox(
+ const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+
+ if (i0 >= ne0) {
+ return;
+ }
+
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i0 >= n_dims) {
+ const int i = row*ne0 + i0;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
+ }
+
+ const int i = row*ne0 + i0/2;
+ const int i2 = row/p_delta_rows;
+
+ const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
+
+ const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+ float cos_theta;
+ float sin_theta;
+
+ rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + n_dims/2];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+template <typename T>
+static void rope_norm_sycl(
+ const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+ GGML_ASSERT(ne0 % 2 == 0);
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ if (freq_factors == nullptr) {
+ /*
+ DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+ ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ } else {
+ /*
+ DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+ ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ }
+}
+
+template <typename T>
+static void rope_neox_sycl(
+ const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+ GGML_ASSERT(ne0 % 2 == 0);
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ if (freq_factors == nullptr) {
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
+ p_delta_rows, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ } else {
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
+ p_delta_rows, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ }
+}
+
+void ggml_sycl_op_rope(
+ ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
+ const ggml_tensor * src2 = dst->src[2];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
+ GGML_ASSERT(src0->type == dst->type);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t nr = ggml_nrows(src0);
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ //const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
+
+ // RoPE alteration for extended context
+ float freq_base;
+ float freq_scale;
+ float ext_factor;
+ float attn_factor;
+ float beta_fast;
+ float beta_slow;
+
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+
+ const bool is_neox = mode & 2;
+
+ const int32_t * pos = (const int32_t *) src1_dd;
+
+ const float * freq_factors = nullptr;
+ if (src2 != nullptr) {
+ freq_factors = (const float *) src2->data;
+ }
+
+ rope_corr_dims corr_dims;
+ ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
+
+ // compute
+ if (is_neox) {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_neox_sycl(
+ (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_neox_sycl(
+ (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ } else {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_norm_sycl(
+ (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_norm_sycl(
+ (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ }
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}