self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
-@ModelBase.register("Glm4ForCausalLM")
+@ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
class Glm4Model(TextModel):
model_arch = gguf.MODEL_ARCH.GLM4
def set_gguf_parameters(self):
super().set_gguf_parameters()
- rope_dim = self.hparams["head_dim"]
+ if (rope_dim := self.hparams.get("head_dim")) is None:
+ rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ if name.startswith("model.visual."): # ignore visual part of Glm4v
+ return []
+ elif name.startswith("model.language_model."):
+ name = name.replace("language_model.", "") # for Glm4v
+ return super().modify_tensors(data_torch, name, bid)
+
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(TextModel):