]> git.djapps.eu Git - pkg/ggml/sources/ggml/commitdiff
cmake : add Vulkan build (#730)
authorAndrei <redacted>
Sat, 25 May 2024 12:42:35 +0000 (08:42 -0400)
committerGitHub <redacted>
Sat, 25 May 2024 12:42:35 +0000 (15:42 +0300)
* Add vulkan shaders from llama.cpp

* Add vulkan build to cmake

* remove autogenerated shaders file

* Update sync scripts

* Remove stale vulkan shaders file

* Add up-to-date shaders file

CMakeLists.txt
scripts/sync-llama-am.sh
scripts/sync-llama.sh
src/CMakeLists.txt
src/ggml_vk_generate_shaders.py [new file with mode: 0644]

index 14ceab165c9e64e61f4ad05ff1a5a5e7f9c40588..492e9468af9aa6ca652bf1735dc30a570ea97db2 100644 (file)
@@ -51,6 +51,7 @@ option(GGML_METAL_NDEBUG            "ggml: disable Metal debugging"           OF
 option(GGML_METAL_SHADER_DEBUG      "ggml: compile Metal with -fno-fast-math" OFF)
 option(GGML_METAL_EMBED_LIBRARY     "ggml: embed Metal library"               OFF)
 option(GGML_RPC                     "ggml: use RPC"                           OFF)
+option(GGML_VULKAN                  "ggml: use Vulkan"                        OFF)
 
 option(GGML_CUDA_FORCE_DMMV                 "ggml: use dmmv instead of mmvq CUDA kernels"     OFF)
 option(GGML_CUDA_FORCE_MMQ                  "ggml: use mmq kernels instead of cuBLAS"         OFF)
index 2685e9ece5bee2e22568844fbaad95a805908355..6cdce21a391d41a4f795e3ac83b93cbb4f127455 100755 (executable)
@@ -156,6 +156,7 @@ if [ -f $SRC_GGML/llama-src.patch ]; then
         -e 's/\/ggml-sycl\.h/\/src\/ggml-sycl.h/g' \
         -e 's/\/ggml-vulkan\.cpp/\/src\/ggml-vulkan.cpp/g' \
         -e 's/\/ggml-vulkan\.h/\/src\/ggml-vulkan.h/g' \
+        -e 's/\/ggml_vk_generate_shaders\.py/\/src\/ggml_vk_generate_shaders.py/g' \
         -e 's/\/ggml\.h/\/include\/ggml\/ggml.h/g' \
         -e 's/\/ggml-alloc\.h/\/include\/ggml\/ggml-alloc.h/g' \
         -e 's/\/ggml-backend\.h/\/include\/ggml\/ggml-backend.h/g' \
index da7e0212af343bdb96b140864ebcad4e50efdfd3..35acb3fe8d97b8ba391a6ad247ad2c00041fe558 100755 (executable)
@@ -26,6 +26,7 @@ cp -rpv ../llama.cpp/ggml-sycl.cpp       src/ggml-sycl.cpp
 cp -rpv ../llama.cpp/ggml-sycl.h         src/ggml-sycl.h
 cp -rpv ../llama.cpp/ggml-vulkan.cpp     src/ggml-vulkan.cpp
 cp -rpv ../llama.cpp/ggml-vulkan.h       src/ggml-vulkan.h
+cp -rpv ../llama.cpp/ggml_vk_generate_shaders.py       src/ggml_vk_generate_shaders.py
 cp -rpv ../llama.cpp/ggml.h              include/ggml/ggml.h
 cp -rpv ../llama.cpp/ggml-alloc.h        include/ggml/ggml-alloc.h
 cp -rpv ../llama.cpp/ggml-backend.h      include/ggml/ggml-backend.h
index 61fcf2479710f38593e48aa9d514f933b3ab65f0..58795176694bd5a510e5b95a79c9efb963246e3f 100644 (file)
@@ -412,6 +412,28 @@ if (GGML_RPC)
     set(GGML_RPC_SOURCES ggml-rpc.cpp)
 endif()
 
+if (GGML_VULKAN)
+    find_package(Vulkan)
+    if (Vulkan_FOUND)
+        message(STATUS "Vulkan found")
+
+        set(GGML_VULKAN_SOURCES ggml-vulkan.cpp ggml-vulkan.h)
+
+        add_library(ggml-vulkan OBJECT ggml-vulkan.cpp ggml-vulkan.h)
+        if (BUILD_SHARED_LIBS)
+            set_target_properties(ggml-vulkan PROPERTIES POSITION_INDEPENDENT_CODE ON)
+        endif()
+        target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
+        target_include_directories(ggml-vulkan PRIVATE . ../include ../include/ggml)
+
+        add_compile_definitions(GGML_USE_VULKAN)
+
+        set(GGML_EXTRA_LIBS ${GGMl_EXTRA_LIBS} ggml-vulkan)
+    else()
+        message(WARNING "Vulkan not found")
+    endif()
+endif()
+
 if (GGML_PERF)
     set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_PERF)
 endif()
diff --git a/src/ggml_vk_generate_shaders.py b/src/ggml_vk_generate_shaders.py
new file mode 100644 (file)
index 0000000..7ebf600
--- /dev/null
@@ -0,0 +1,3149 @@
+#!/usr/bin/env python
+
+import logging
+import argparse
+import asyncio
+import os
+import sys
+from tempfile import gettempdir, NamedTemporaryFile
+
+logger = logging.getLogger("ggml-vk-generate-shaders")
+
+shader_f32 = """
+#define FLOAT_TYPE float
+"""
+shader_f16 = """
+#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
+#define FLOAT_TYPE float16_t
+"""
+shader_int8_ext = """
+#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
+"""
+
+# Type-specific defines
+shader_f32_defines = """
+#define QUANT_K 1
+#define QUANT_R 1
+
+#define A_TYPE float
+"""
+shader_f16_defines = """
+#define QUANT_K 1
+#define QUANT_R 1
+
+#define A_TYPE float16_t
+"""
+shader_q4_0_defines = """
+#define QUANT_K 32
+#define QUANT_R 2
+
+struct block_q4_0
+{
+    float16_t d;
+    uint8_t qs[16];
+};
+
+#define A_TYPE block_q4_0
+"""
+shader_q4_1_defines = """
+#define QUANT_K 32
+#define QUANT_R 2
+
+struct block_q4_1
+{
+    float16_t d;
+    float16_t m;
+    uint8_t qs[16];
+};
+
+#define A_TYPE block_q4_1
+"""
+shader_q5_0_defines = """
+#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
+#define QUANT_K 32
+#define QUANT_R 2
+
+struct block_q5_0
+{
+    float16_t d;
+    uint16_t qh[2];
+    uint8_t qs[16];
+};
+
+#define A_TYPE block_q5_0
+"""
+shader_q5_1_defines = """
+#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
+#define QUANT_K 32
+#define QUANT_R 2
+
+struct block_q5_1
+{
+    float16_t d;
+    float16_t m;
+    uint qh;
+    uint8_t qs[16];
+};
+
+#define A_TYPE block_q5_1
+"""
+shader_q8_0_defines = """
+#define QUANT_K 32
+#define QUANT_R 1
+
+struct block_q8_0
+{
+    float16_t d;
+    int8_t qs[32];
+};
+
+#define A_TYPE block_q8_0
+"""
+
+# K-quants
+shader_q2_K_defines = """
+#define QUANT_K 256
+
+struct block_q2_K
+{
+    uint8_t scales[QUANT_K/16];
+    uint8_t qs[QUANT_K/4];
+    f16vec2 d;
+};
+
+#define A_TYPE block_q2_K
+"""
+shader_q3_K_defines = """
+#define QUANT_K 256
+
+struct block_q3_K
+{
+    uint8_t hmask[QUANT_K/8];
+    uint8_t qs[QUANT_K/4];
+    uint8_t scales[12];
+    float16_t d;
+};
+
+#define A_TYPE block_q3_K
+"""
+shader_q4_K_defines = """
+#define QUANT_K 256
+
+struct block_q4_K
+{
+    f16vec2 d;
+    uint8_t scales[3*QUANT_K/64];
+    uint8_t qs[QUANT_K/2];
+};
+
+#define A_TYPE block_q4_K
+"""
+shader_q5_K_defines = """
+#define QUANT_K 256
+
+struct block_q5_K
+{
+    f16vec2 d;
+    uint8_t scales[12];
+    uint8_t qh[QUANT_K/8];
+    uint8_t qs[QUANT_K/2];
+};
+
+#define A_TYPE block_q5_K
+"""
+shader_q6_K_defines = """
+#define QUANT_K 256
+
+struct block_q6_K
+{
+    uint8_t ql[QUANT_K/2];
+    uint8_t qh[QUANT_K/4];
+    int8_t scales[QUANT_K/16];
+    float16_t d;
+};
+
+#define A_TYPE block_q6_K
+"""
+
+# Dequant functions
+shader_float_dequant_func = """
+vec2 dequantize(uint ib, uint iqs, uint a_offset) {
+    return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]);
+}
+"""
+
+shader_q4_0_dequant_func = """
+vec2 dequantize(uint ib, uint iqs, uint a_offset) {
+    const float d = float(data_a[a_offset + ib].d);
+    const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
+    return (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
+}
+"""
+
+shader_q4_1_dequant_func = """
+vec2 dequantize(uint ib, uint iqs, uint a_offset) {
+    const float d = float(data_a[a_offset + ib].d);
+    const float m = float(data_a[a_offset + ib].m);
+    const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
+    return vec2(vui & 0xF, vui >> 4) * d + m;
+}
+"""
+
+shader_q5_0_dequant_func = """
+vec2 dequantize(uint ib, uint iqs, uint a_offset) {
+    const float d = float(data_a[a_offset + ib].d);
+    const uint uint_qh = uint(data_a[a_offset + ib].qh[1]) << 16 | data_a[a_offset + ib].qh[0];
+    const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
+    const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
+    return (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
+}
+"""
+
+shader_q5_1_dequant_func = """
+vec2 dequantize(uint ib, uint iqs, uint a_offset) {
+    const float d = float(data_a[a_offset + ib].d);
+    const float m = float(data_a[a_offset + ib].m);
+    const uint uint_qh = data_a[a_offset + ib].qh;
+    const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
+    const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
+    return vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
+}
+"""
+
+shader_q8_0_dequant_func = """
+vec2 dequantize(uint ib, uint iqs, uint a_offset) {
+    const float d = float(data_a[a_offset + ib].d);
+    return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1])) * d;
+}
+"""
+
+# MULMAT
+
+mulmat_head = """#version 450
+
+#extension GL_EXT_control_flow_attributes : enable
+#extension GL_EXT_shader_16bit_storage : require
+
+#ifdef MUL_MAT_ID
+#extension GL_EXT_buffer_reference2 : require
+#extension GL_EXT_nonuniform_qualifier : require
+#extension GL_EXT_scalar_block_layout : require
+#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
+
+#define EXPERT_COUNT 8
+#endif
+
+#ifndef LOAD_VEC_A
+#define LOAD_VEC_A 1
+#endif
+#ifndef LOAD_VEC_B
+#define LOAD_VEC_B 1
+#endif
+"""
+
+mulmat_body1 = """
+layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
+
+#ifdef MUL_MAT_ID
+layout (binding = 3) readonly buffer IDS {int data_ids[];};
+#endif
+
+layout (push_constant) uniform parameter
+{
+    uint M;
+    uint N;
+    uint K;
+    uint stride_a;
+    uint stride_b;
+    uint stride_d;
+    uint k_split;
+
+    uint ne02;
+    uint ne12;
+    uint broadcast2;
+    uint broadcast3;
+
+    uint batch_stride_a;
+    uint batch_stride_b;
+    uint batch_stride_d;
+
+#ifdef MUL_MAT_ID
+    uint expert_stride_a;
+    uint expert_stride_b0;
+    uint expert_stride_b1;
+    uint expert_stride_d;
+
+    uint ids_stride;
+
+    uint n_as;
+    uint nei0;
+    uint nei1;
+    uint nbi1;
+    uint ne11;
+#endif
+} p;
+
+layout (constant_id = 1) const uint BM = 64;
+layout (constant_id = 2) const uint BN = 64;
+layout (constant_id = 3) const uint BK = 16;  // Assumed to be 32 if working with a quant
+layout (constant_id = 4) const uint WM = 32;
+layout (constant_id = 5) const uint WN = 32;
+layout (constant_id = 6) const uint WMITER = 2;
+layout (constant_id = 7) const uint TM = 4;
+layout (constant_id = 8) const uint TN = 2;
+layout (constant_id = 9) const uint WARP = 32;
+
+shared FLOAT_TYPE buf_a[BM * (BK+1)];
+shared FLOAT_TYPE buf_b[BN * (BK+1)];
+
+#ifdef MUL_MAT_ID
+shared u8vec2 rowids[2048];
+#endif
+
+void main() {
+#ifdef MUL_MAT_ID
+    const uint batch_idx = gl_GlobalInvocationID.z / p.n_as;
+    const uint expert_idx = gl_GlobalInvocationID.z % p.n_as;
+#else
+    const uint batch_idx = gl_GlobalInvocationID.z;
+#endif
+
+    const uint i13 = batch_idx / p.ne12;
+    const uint i12 = batch_idx % p.ne12;
+
+    const uint i03 = i13 / p.broadcast3;
+    const uint i02 = i12 / p.broadcast2;
+
+    const uint batch_idx_a = i03 * p.ne02 + i02;
+
+    const uint blocks_m = (p.M + BM - 1) / BM;
+    const uint ir = gl_WorkGroupID.x % blocks_m;
+    const uint ik = gl_WorkGroupID.x / blocks_m;
+    const uint ic = gl_WorkGroupID.y;
+
+    const uint warp_i = gl_LocalInvocationID.x / WARP;
+    const uint warp_r = warp_i % (BM / WM);
+    const uint warp_c = warp_i / (BM / WM);
+
+    const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
+    const uint WSUBM = WM / WMITER;
+    const uint WSUBN = WN / WNITER;
+
+    const uint tiw = gl_LocalInvocationID.x % WARP;
+    const uint tiwr = tiw % (WSUBM / TM);
+    const uint tiwc = tiw / (WSUBM / TM);
+
+    const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
+    const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
+    const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
+    const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);
+
+    const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK;
+    const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;
+
+#ifdef MUL_MAT_ID
+    uint _ne1 = 0;
+    for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
+        for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
+            if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
+                rowids[_ne1] = u8vec2(ii0, ii1);
+                _ne1++;
+            }
+        }
+    }
+
+    const u8vec2 id = rowids[ir * BN + ic];
+#endif
+
+    const uint start_k = ik * p.k_split;
+    const uint end_k = min(p.K, (ik + 1) * p.k_split);
+
+    uint pos_a = (
+#ifdef MUL_MAT_ID
+        expert_idx * p.expert_stride_a +
+#endif
+        batch_idx_a * p.batch_stride_a + ir * BM * p.stride_a + start_k) / LOAD_VEC_A;
+    uint pos_b = (
+#ifdef MUL_MAT_ID
+        id.y * p.expert_stride_b1 +
+        (id.x % p.ne11) * p.expert_stride_b0 +
+#endif
+        batch_idx * p.batch_stride_b +
+        ic * BN * p.stride_b + start_k) / LOAD_VEC_B;
+
+    float sums[WMITER * TM * WNITER * TN];
+    FLOAT_TYPE cache_a[WMITER * TM];
+    FLOAT_TYPE cache_b[WNITER * TN];
+
+    [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
+        sums[i] = 0.0f;
+    }
+
+    [[unroll]] for (uint block = start_k; block < end_k; block += BK) {
+        [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {"""
+
+mulmat_load_scalar = """
+#if LOAD_VEC_A == 8
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx][0].x);
+            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y);
+            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z);
+            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w);
+            buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x);
+            buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y);
+            buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z);
+            buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w);
+#elif LOAD_VEC_A == 4
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx].x);
+            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y);
+            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z);
+            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w);
+#else
+            if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
+                buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
+            } else {
+                buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f);
+            }
+#endif
+"""
+
+mulmat_load_q4_0 = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+            const uint ib = idx / 16;
+            const uint iqs = idx & 0xF;
+
+            const float d = float(data_a[ib].d);
+            const uint vui = uint(data_a[ib].qs[iqs]);
+            const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
+
+            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
+            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
+
+mulmat_load_q4_1 = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+            const uint ib = idx / 16;
+            const uint iqs = idx & 0xF;
+
+            const float d = float(data_a[ib].d);
+            const float m = float(data_a[ib].m);
+            const uint vui = uint(data_a[ib].qs[iqs]);
+            const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m;
+
+            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
+            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
+
+mulmat_load_q5_0 = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+            const uint ib = idx / 16;
+            const uint iqs = idx & 0xF;
+
+            const float d = float(data_a[ib].d);
+            const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
+            const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
+            const uint vui = uint(data_a[ib].qs[iqs]);
+            const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
+
+            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
+            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
+
+mulmat_load_q5_1 = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+            const uint ib = idx / 16;
+            const uint iqs = idx & 0xF;
+
+            const float d = float(data_a[ib].d);
+            const float m = float(data_a[ib].m);
+            const uint uint_qh = data_a[ib].qh;
+            const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
+            const uint vui = uint(data_a[ib].qs[iqs]);
+            const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
+
+            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
+            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
+
+mulmat_load_q8_0 = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+            const uint ib = idx / 16;
+            const uint iqs = (idx & 0xF) * 2;
+
+            const float d = float(data_a[ib].d);
+            const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d;
+
+            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
+            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);"""
+
+
+mulmat_load_q2_K = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+            const uint ib = idx / 128;                         // 2 values per idx
+            const uint iqs = idx % 128;                        // 0..127
+
+            const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
+            const uint scalesi = iqs / 8;                      // 0..15
+            const uint qsshift = ((iqs % 64) / 16) * 2;        // 0,2,4,6
+
+            const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
+            const uint scales = data_a[ib].scales[scalesi];
+            const vec2 d = vec2(data_a[ib].d);
+
+            const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);
+
+            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
+            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);"""
+
+mulmat_load_q3_K = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+            const uint ib = idx / 128;                   // 2 values per idx
+            const uint iqs = idx % 128;                  // 0..127
+
+            const uint n = iqs / 64;                     // 0,1
+            const uint qsi = n * 32 + (iqs % 16) * 2;    // 0,2,4..62
+            const uint hmi =          (iqs % 16) * 2;    // 0,2,4..30
+            const uint j = (iqs % 64) / 4;               // 0..3
+            const uint is = iqs / 8;                     // 0..15
+            const uint halfsplit = ((iqs % 64) / 16);    // 0,1,2,3
+            const uint qsshift = halfsplit * 2;          // 0,2,4,6
+            const uint m = 1 << (4 * n + halfsplit);     // 1,2,4,8,16,32,64,128
+
+            const int8_t us = int8_t(is <  4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) :
+                                    is <  8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) :
+                                    is < 12 ? (data_a[ib].scales[is-8] >>  4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) :
+                                            (data_a[ib].scales[is-8] >>  4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4));
+            const float dl = float(data_a[ib].d) * float(us - 32);
+
+            buf_a[buf_idx    ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi    ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi    ] & m) != 0) ? 0 : 4)));
+            buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));"""
+
+mulmat_load_q4_K = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+            const uint ib = idx / 128;                 // 2 values per idx
+            const uint iqs = idx % 128;                // 0..127
+
+            const uint n = iqs / 32;                   // 0,1,2,3
+            const uint b = (iqs % 32) / 16;            // 0,1
+            const uint is = 2 * n + b;                 // 0..7
+            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126
+
+            const vec2 loadd = vec2(data_a[ib].d);
+
+            uint8_t sc;
+            uint8_t mbyte;
+            if (is < 4) {
+                sc    = uint8_t(data_a[ib].scales[is    ] & 63);
+                mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
+            } else {
+                sc    = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
+                mbyte = uint8_t((data_a[ib].scales[is + 4] >>  4) | ((data_a[ib].scales[is    ] >> 6) << 4));
+            }
+            const float d = loadd.x * sc;
+            const float m = loadd.y * mbyte;
+
+            buf_a[buf_idx    ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF) - m);
+            buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m);"""
+
+mulmat_load_q5_K = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+            const uint ib = idx / 128;                 // 2 values per idx
+            const uint iqs = idx % 128;                // 0..127
+
+            const uint n = iqs / 32;                   // 0,1,2,3
+            const uint b = (iqs % 32) / 16;            // 0,1
+            const uint is = 2 * n + b;                 // 0..7
+            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126
+            const uint qhi = (iqs % 16) * 2;           // 0,2,4..30
+
+            const uint8_t hm = uint8_t(1 << (iqs / 16));
+
+            const vec2 loadd = vec2(data_a[ib].d);
+
+            uint8_t sc;
+            uint8_t mbyte;
+            if (is < 4) {
+                sc    = uint8_t(data_a[ib].scales[is    ] & 63);
+                mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
+            } else {
+                sc    = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
+                mbyte = uint8_t((data_a[ib].scales[is + 4] >>  4) | ((data_a[ib].scales[is    ] >> 6) << 4));
+            }
+            const float d = loadd.x * sc;
+            const float m = loadd.y * mbyte;
+
+            buf_a[buf_idx    ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi    ] & hm) != 0 ? 16 : 0)) - m);
+            buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m);"""
+
+mulmat_load_q6_K = """
+            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+            const uint ib = idx / 128;                  // 2 values per idx
+            const uint iqs = idx % 128;                 // 0..127
+
+            const uint n = iqs / 64;                    // 0,1
+            const uint b = (iqs % 64) / 32;             // 0,1
+            const uint is_b = (iqs % 16) / 8;           // 0,1
+            const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
+            const uint is = 8 * n + qhshift + is_b;     // 0..15
+            const uint qsi = n * 64 + (iqs % 32) * 2;   // 0,2,4..126
+            const uint qhi = n * 32 + (iqs % 16) * 2;   // 0,2,4..62
+
+            const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
+
+            buf_a[buf_idx    ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi    ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi    ] >> qhshift) & 3) << 4)) - 32));
+            buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));"""
+
+mulmat_body2 = """
+        }
+        [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
+#if LOAD_VEC_B == 8
+            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
+            const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
+            buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x);
+            buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y);
+            buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z);
+            buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w);
+            buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x);
+            buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y);
+            buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z);
+            buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w);
+#elif LOAD_VEC_B == 4
+            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
+            const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
+            buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
+            buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
+            buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
+            buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
+#else
+            if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
+                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
+            } else {
+                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
+            }
+#endif
+        }
+
+        barrier();
+
+        pos_a += BK / LOAD_VEC_A;
+        pos_b += BK / LOAD_VEC_B;
+
+        for (uint i = 0; i < BK; i++) {
+            // Load from shared into cache
+            [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
+                [[unroll]] for (uint j = 0; j < TM; j++) {
+                    cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i];
+                }
+            }
+            [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
+                [[unroll]] for (uint j = 0; j < TN; j++) {
+                    cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i];
+                }
+            }
+
+            [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
+                [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
+                    [[unroll]] for (uint cc = 0; cc < TN; cc++) {
+                        [[unroll]] for (uint cr = 0; cr < TM; cr++) {
+                            sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]);
+                        }
+                    }
+                }
+            }
+        }
+
+        barrier();
+    }
+
+    const uint dr = ir * BM + warp_r * WM;
+    const uint dc = ic * BN + warp_c * WN;
+
+    const uint offsets =
+#ifdef MUL_MAT_ID
+            expert_idx * p.expert_stride_d +
+#endif
+            batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
+
+    [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
+        [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
+
+            const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
+            const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
+            [[unroll]] for (uint cc = 0; cc < TN; cc++) {
+                [[unroll]] for (uint cr = 0; cr < TM; cr++) {
+                    if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
+                        data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
+                    }
+                }
+            }
+        }
+    }
+}
+"""
+
+mulmat_split_k_reduce_src = """#version 450
+
+#extension GL_EXT_control_flow_attributes : enable
+
+layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {float data_a[];};
+layout (binding = 1) writeonly buffer D {float data_d[];};
+
+layout (push_constant) uniform parameter {
+    uint ne;
+    uint k_num;
+} p;
+
+void main() {
+    const uint idx = gl_GlobalInvocationID.x;
+
+    if (idx >= p.ne) {
+        return;
+    }
+
+    float result = 0.0f;
+
+    [[unroll]] for (uint i = 0; i < p.k_num; i++) {
+        result += data_a[i * p.ne + idx];
+    }
+
+    data_d[idx] = result;
+}
+"""
+
+# DEQUANT SHADER
+dequant_head = """#version 450
+
+#extension GL_EXT_control_flow_attributes : require
+#extension GL_EXT_shader_16bit_storage : require
+
+layout (push_constant) uniform parameter
+{
+    uint M;
+    uint K;
+    uint stride_a;
+    uint stride_b;
+    uint nel;
+} p;
+"""
+
+dequant_f32_body = """
+layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {float data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    const uint i = gl_GlobalInvocationID.x * 16;
+
+    if (i >= p.nel) {
+        return;
+    }
+
+    [[unroll]] for (uint l = 0; l < 16; l++) {
+        data_b[i + l] = D_TYPE(data_a[i + l]);
+    }
+}
+"""
+
+dequant_q4_0_body = """
+layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {block_q4_0 data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
+
+    const uint tid = gl_LocalInvocationID.x % 64;
+    const uint il  = tid/32;
+    const uint ir  = tid%32;
+    const uint ib = 32*i + ir;
+    if (ib >= p.nel / 32) {
+        return;
+    }
+
+    const uint b_idx = 1024*i + 32*ir + 8*il;
+
+    const float d = float(data_a[ib].d);
+    const float dm = -8.0f * d;
+
+    const uint q_idx = 8*il;
+
+    [[unroll]] for (uint l = 0; l < 8; ++l) {
+        data_b[b_idx + l +  0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + dm);
+        data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >>  4) + dm);
+    }
+}
+"""
+
+dequant_q4_1_body = """
+layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {block_q4_1 data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
+
+    const uint tid = gl_LocalInvocationID.x % 64;
+    const uint il  = tid/32;
+    const uint ir  = tid%32;
+    const uint ib = 32*i + ir;
+    if (ib >= p.nel / 32) {
+        return;
+    }
+
+    const uint b_idx = 1024*i + 32*ir + 8*il;
+
+    const float d = float(data_a[ib].d);
+    const float m = float(data_a[ib].m);
+
+    const uint q_idx = 8*il;
+
+    [[unroll]] for (uint l = 0; l < 8; ++l) {
+        data_b[b_idx + l +  0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + m);
+        data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >>  4) + m);
+    }
+}
+"""
+
+dequant_q5_0_body = """
+layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {block_q5_0 data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
+
+    const uint tid = gl_LocalInvocationID.x % 64;
+    const uint il  = tid/32;
+    const uint ir  = tid%32;
+    const uint ib = 32*i + ir;
+    if (ib >= p.nel / 32) {
+        return;
+    }
+
+    const uint b_idx = 1024*i + 32*ir + 8*il;
+
+    const float d = float(data_a[ib].d);
+    const uint qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
+
+    const uint q_idx = 8*il;
+
+    [[unroll]] for (uint l = 0; l < 8; ++l) {
+        const uint iqs = q_idx + l;
+        const uint vui = uint(data_a[ib].qs[iqs]);
+        data_b[b_idx + l +  0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10)) - 16.0f));
+        data_b[b_idx + l + 16] = D_TYPE(d * (((vui >>  4) | ((qh >> (iqs + 12)) & 0x10)) - 16.0f));
+    }
+}
+"""
+
+dequant_q5_1_body = """
+layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {block_q5_1 data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
+
+    const uint tid = gl_LocalInvocationID.x % 64;
+    const uint il  = tid/32;
+    const uint ir  = tid%32;
+    const uint ib = 32*i + ir;
+    if (ib >= p.nel / 32) {
+        return;
+    }
+
+    const uint b_idx = 1024*i + 32*ir + 8*il;
+
+    const float d = float(data_a[ib].d);
+    const float m = float(data_a[ib].m);
+    const uint qh = data_a[ib].qh;
+
+    const uint q_idx = 8*il;
+
+    [[unroll]] for (uint l = 0; l < 8; ++l) {
+        const uint iqs = q_idx + l;
+        const uint vui = uint(data_a[ib].qs[iqs]);
+        data_b[b_idx + l +  0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10))) + m);
+        data_b[b_idx + l + 16] = D_TYPE(d * (((vui >>  4) | ((qh >> (iqs + 12)) & 0x10))) + m);
+    }
+}
+"""
+
+dequant_q8_0_body = """
+layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {block_q8_0 data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
+
+    const uint tid = gl_LocalInvocationID.x % 64;
+    const uint il  = tid/32;
+    const uint ir  = tid%32;
+    const uint ib = 32*i + ir;
+    if (ib >= p.nel / 32) {
+        return;
+    }
+
+    const uint b_idx = 1024*i + 32*ir + 16*il;
+
+    const float d = float(data_a[ib].d);
+
+    const uint q_idx = 16*il;
+
+    [[unroll]] for (uint l = 0; l < 16; l += 2) {
+        data_b[b_idx + l    ] = D_TYPE(d * data_a[ib].qs[q_idx + l    ]);
+        data_b[b_idx + l + 1] = D_TYPE(d * data_a[ib].qs[q_idx + l + 1]);
+    }
+}
+"""
+
+# K-quants
+dequant_q2_K_body = """
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
+        const uint i = gl_WorkGroupID.x * 256 + wgy;
+        if (i >= p.M * p.K / QUANT_K) {
+            return;
+        }
+
+        const uint tid = gl_LocalInvocationID.x;
+        const uint ip = tid / 32;
+        const uint il = tid - 32 * ip;
+        const uint is = 8 * ip + il / 16;
+
+        const uint y_idx = i * QUANT_K + 128 * ip + il;
+
+        const uint ql_idx = 32 * ip + il;
+        const uint8_t qs = data_a[i].qs[32 * ip + il];
+
+        FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
+        FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
+        data_b[y_idx +  0] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+0] & 0xF) * ((qs >> 0) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+0] >> 4));
+        data_b[y_idx + 32] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+2] & 0xF) * ((qs >> 2) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+2] >> 4));
+        data_b[y_idx + 64] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+4] & 0xF) * ((qs >> 4) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+4] >> 4));
+        data_b[y_idx + 96] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+6] & 0xF) * ((qs >> 6) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+6] >> 4));
+    }
+}
+"""
+dequant_q3_K_body = """
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
+        const uint i = uint(gl_WorkGroupID.x * 256 + wgy);
+        if (i >= p.M * p.K / QUANT_K) {
+            return;
+        }
+
+        const uint r = gl_LocalInvocationID.x / 4;
+        const uint tid = r / 2;
+        const uint is0 = r % 2;
+        const uint l0 = 16 * is0 + 4 * (gl_LocalInvocationID.x % 4);
+        const uint n = tid / 4;
+        const uint j = tid - 4*n;
+
+        const uint8_t m = uint8_t(1 << (4*n + j));
+        const uint is = 8*n + 2*j + is0;
+        const uint shift = 2*j;
+
+        const int8_t us = int8_t(is <  4 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+8] >> 0) & 3) << 4) :
+                                 is <  8 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+4] >> 2) & 3) << 4) :
+                                 is < 12 ? (data_a[i].scales[is-8] >>  4) | (((data_a[i].scales[is+0] >> 4) & 3) << 4) :
+                                           (data_a[i].scales[is-8] >>  4) | (((data_a[i].scales[is-4] >> 6) & 3) << 4));
+        const FLOAT_TYPE d_all = FLOAT_TYPE(data_a[i].d);
+        const FLOAT_TYPE dl    = d_all * FLOAT_TYPE(us - 32);
+
+        const uint y_idx = i * QUANT_K + 128 * n + 32 * j;
+        const uint qs_idx = 32*n;
+
+        for (uint l = l0; l < l0 + 4; ++l) {
+            data_b[y_idx + l] = D_TYPE(dl * FLOAT_TYPE(int8_t((data_a[i].qs[qs_idx + l] >> shift) & 3) - (((data_a[i].hmask[l] & m) != 0) ? 0 : 4)));
+        }
+    }
+}
+"""
+dequant_q4_K_body = """
+layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
+        const uint i = gl_WorkGroupID.x * 256 + wgy;
+        if (i >= p.M * p.K / QUANT_K) {
+            return;
+        }
+
+        const uint tid = gl_LocalInvocationID.x;
+        const uint il = tid / 8;
+        const uint ir = tid % 8;
+        const uint is = 2 * il;
+        const uint n = 4;
+
+        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
+        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
+
+        const uint y_idx = i * QUANT_K + 64 * il + n * ir;
+        const uint qs_idx = 32*il + n * ir;
+
+        uint8_t sc;
+        uint8_t m;
+        if (is < 4) {
+            sc = uint8_t(data_a[i].scales[is] & 63);
+            m  = uint8_t(data_a[i].scales[is + 4] & 63);
+        } else {
+            sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
+            m  = uint8_t((data_a[i].scales[is + 4] >>  4) | ((data_a[i].scales[is    ] >> 6) << 4));
+        }
+        const FLOAT_TYPE d1 = dall * sc;
+        const FLOAT_TYPE m1 = dmin * m;
+
+        if (is < 4) {
+            sc = uint8_t(data_a[i].scales[is + 1] & 63);
+            m  = uint8_t(data_a[i].scales[is + 5] & 63);
+        } else {
+            sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
+            m  = uint8_t((data_a[i].scales[is + 5] >>  4) | ((data_a[i].scales[is + 1] >> 6) << 4));
+        }
+        const FLOAT_TYPE d2 = dall * sc;
+        const FLOAT_TYPE m2 = dmin * m;
+
+        [[unroll]] for (uint l = 0; l < n; ++l) {
+            data_b[y_idx + l     ] = D_TYPE(d1 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] & 0xF) - m1);
+            data_b[y_idx + l + 32] = D_TYPE(d2 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] >>  4) - m2);
+        }
+    }
+}
+"""
+dequant_q5_K_body = """
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
+        const uint i = gl_WorkGroupID.x * 256 + wgy;
+        if (i >= p.M * p.K / QUANT_K) {
+            return;
+        }
+
+        const uint tid = gl_LocalInvocationID.x;
+        const uint il = tid / 16;
+        const uint ir = tid % 16;
+        const uint is = 2 * il;
+
+        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
+        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
+
+        const uint y_idx = i * QUANT_K + 64 * il + 2 * ir;
+        const uint qs_idx = 32*il + 2 * ir;
+        const uint qh_idx = 2 * ir;
+
+        uint8_t sc;
+        uint8_t m;
+        if (is < 4) {
+            sc = uint8_t(data_a[i].scales[is] & 63);
+            m  = uint8_t(data_a[i].scales[is + 4] & 63);
+        } else {
+            sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
+            m  = uint8_t((data_a[i].scales[is + 4] >>  4) | ((data_a[i].scales[is    ] >> 6) << 4));
+        }
+        const FLOAT_TYPE d1 = dall * sc;
+        const FLOAT_TYPE m1 = dmin * m;
+
+        if (is < 4) {
+            sc = uint8_t(data_a[i].scales[is + 1] & 63);
+            m  = uint8_t(data_a[i].scales[is + 5] & 63);
+        } else {
+            sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
+            m  = uint8_t((data_a[i].scales[is + 5] >>  4) | ((data_a[i].scales[is + 1] >> 6) << 4));
+        }
+        const FLOAT_TYPE d2 = dall * sc;
+        const FLOAT_TYPE m2 = dmin * m;
+
+        const uint8_t hm1 = uint8_t(1 << (2 * il    ));
+        const uint8_t hm2 = uint8_t(1 << (2 * il + 1));
+        data_b[y_idx     ] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx    ] & 0xF) + (((data_a[i].qh[qh_idx    ] & hm1) != 0) ? 16 : 0)) - m1);
+        data_b[y_idx +  1] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] & 0xF) + (((data_a[i].qh[qh_idx + 1] & hm1) != 0) ? 16 : 0)) - m1);
+        data_b[y_idx + 32] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx    ]  >> 4) + (((data_a[i].qh[qh_idx    ] & hm2) != 0) ? 16 : 0)) - m2);
+        data_b[y_idx + 33] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1]  >> 4) + (((data_a[i].qh[qh_idx + 1] & hm2) != 0) ? 16 : 0)) - m2);
+    }
+}
+"""
+dequant_q6_K_body = """
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
+
+void main() {
+    [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
+        const uint i = gl_WorkGroupID.x * 256 + wgy;
+        if (i >= p.M * p.K / QUANT_K) {
+            return;
+        }
+        const uint tid = gl_LocalInvocationID.x;
+        const uint ip = tid / 32;
+        const uint il = tid - 32 * ip;
+        const uint is = 8 * ip + il / 16;
+
+        const uint y_idx = i * QUANT_K + 128 * ip + il;
+
+        const uint ql_idx = 64 * ip + il;
+        const uint8_t qh = data_a[i].qh[32 * ip + il];
+
+        const FLOAT_TYPE d = FLOAT_TYPE(data_a[i].d);
+
+        data_b[y_idx +  0] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 0] * (int8_t((data_a[i].ql[ql_idx +  0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32)));
+        data_b[y_idx + 32] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 2] * (int8_t((data_a[i].ql[ql_idx + 32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32)));
+        data_b[y_idx + 64] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 4] * (int8_t((data_a[i].ql[ql_idx +  0] >>  4) | (((qh >> 4) & 3) << 4)) - 32)));
+        data_b[y_idx + 96] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 6] * (int8_t((data_a[i].ql[ql_idx + 32] >>  4) | (((qh >> 6) & 3) << 4)) - 32)));
+    }
+}
+"""
+
+# Mul Mat Vec
+mul_mat_vec_head = """#version 450
+
+#extension GL_EXT_control_flow_attributes : enable
+#extension GL_EXT_shader_16bit_storage : require
+#extension GL_EXT_shader_8bit_storage : require
+
+#ifdef MUL_MAT_ID
+#define EXPERT_COUNT 8
+#endif
+"""
+
+
+mul_mat_vec_layout = """
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
+#ifdef MUL_MAT_ID
+layout (binding = 3) readonly buffer IDS {int data_ids[];};
+#endif
+
+layout (push_constant) uniform parameter
+{
+    uint ncols;
+    uint stride_a;
+    uint stride_b;
+    uint stride_d;
+
+    uint ne02;
+    uint ne12;
+    uint broadcast2;
+    uint broadcast3;
+
+    uint batch_stride_a;
+    uint batch_stride_b;
+    uint batch_stride_d;
+
+#ifdef MUL_MAT_ID
+    uint expert_stride_a;
+    uint expert_stride_b0;
+    uint expert_stride_b1;
+    uint expert_stride_d0;
+    uint expert_stride_d1;
+
+    uint ne11;
+    uint nei0;
+    uint nbi1;
+    uint n_as;
+#endif
+} p;
+"""
+
+mul_mat_vec_body = """
+layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
+
+layout (constant_id = 0) const uint BLOCK_SIZE = 32;
+
+shared FLOAT_TYPE tmp[BLOCK_SIZE];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint tid = gl_LocalInvocationID.x;
+    const uint batch_idx = gl_GlobalInvocationID.y;
+#ifdef MUL_MAT_ID
+    const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
+    const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
+#endif
+
+    const uint i13 = batch_idx / p.ne12;
+    const uint i12 = batch_idx % p.ne12;
+
+    const uint i03 = i13 / p.broadcast3;
+    const uint i02 = i12 / p.broadcast2;
+
+    const uint batch_idx_a = i03 * p.ne02 + i02;
+
+#ifdef MUL_MAT_ID
+    const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
+#endif
+
+    const uint a_offset =
+#ifdef MUL_MAT_ID
+            expert_id * p.expert_stride_a +
+#endif
+            batch_idx_a * p.batch_stride_a;
+    const uint b_offset =
+#ifdef MUL_MAT_ID
+            (expert_idx0 % p.ne11) * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_b;
+    const uint d_offset =
+#ifdef MUL_MAT_ID
+            expert_idx0 * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_d;
+
+    const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
+
+    tmp[tid] = FLOAT_TYPE(0.0f);
+
+    [[unroll]] for (uint i = 0; i < p.ncols/BLOCK_SIZE; i += 2) {
+        const uint col = i*BLOCK_SIZE + 2*tid;
+        const uint ib = (row*p.ncols + col)/QUANT_K; // block index
+        const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
+        const uint iybs = col - col%QUANT_K; // y block start index
+
+        vec2 v = dequantize(ib, iqs, a_offset / QUANT_K);
+
+        // matrix multiplication
+        tmp[tid] += FLOAT_TYPE(v.x) * FLOAT_TYPE(data_b[b_offset + iybs + iqs]) +
+                    FLOAT_TYPE(v.y) * FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+        }
+        barrier();
+    }
+    if (tid == 0) {
+        data_d[d_offset + row] = D_TYPE(tmp[0]);
+    }
+}
+"""
+
+# K-quants
+mul_mat_vec_q2_K_body = """
+layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
+
+shared FLOAT_TYPE tmp[32];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint batch_idx = gl_GlobalInvocationID.y;
+#ifdef MUL_MAT_ID
+    const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
+    const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
+#endif
+
+    const uint i13 = batch_idx / p.ne12;
+    const uint i12 = batch_idx % p.ne12;
+
+    const uint i03 = i13 / p.broadcast3;
+    const uint i02 = i12 / p.broadcast2;
+
+    const uint batch_idx_a = i03 * p.ne02 + i02;
+
+#ifdef MUL_MAT_ID
+    const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
+#endif
+
+    const uint a_offset =
+#ifdef MUL_MAT_ID
+            expert_id * p.expert_stride_a +
+#endif
+            batch_idx_a * p.batch_stride_a;
+    const uint b_offset =
+#ifdef MUL_MAT_ID
+            (expert_idx0 % p.ne11) * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_b;
+    const uint d_offset =
+#ifdef MUL_MAT_ID
+            expert_idx0 * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_d;
+
+    const uint num_blocks_per_row = p.ncols / QUANT_K;
+    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
+
+    const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
+    const uint ix  = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
+
+    const uint step = 16/K_QUANTS_PER_ITERATION;            // 16 or 8
+
+    const uint v_im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const uint v_in = tid - step*v_im;                      // 0...15 or 0...7
+
+    const uint l0 = K_QUANTS_PER_ITERATION*v_in;            // 0...15
+    const uint q_offset = 32*v_im + l0;
+    const uint s_offset = 8*v_im;
+    const uint y_offset = 128*v_im + l0;
+
+    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
+
+    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+        const uint y_idx = i * QUANT_K + y_offset;
+
+        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
+        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
+
+        FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
+        FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            sum1 += FLOAT_TYPE(data_b[b_offset + y_idx + l +  0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3);
+            sum2 += FLOAT_TYPE(data_b[b_offset + y_idx + l +  0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF)
+                  + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF);
+        }
+        tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+        }
+        barrier();
+    }
+    if (tid == 0) {
+        data_d[d_offset + row] = D_TYPE(tmp[0]);
+    }
+}
+"""
+mul_mat_vec_q3_K_body = """
+layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
+
+shared FLOAT_TYPE tmp[32];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint batch_idx = gl_GlobalInvocationID.y;
+#ifdef MUL_MAT_ID
+    const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
+    const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
+#endif
+
+    const uint i13 = batch_idx / p.ne12;
+    const uint i12 = batch_idx % p.ne12;
+
+    const uint i03 = i13 / p.broadcast3;
+    const uint i02 = i12 / p.broadcast2;
+
+    const uint batch_idx_a = i03 * p.ne02 + i02;
+
+#ifdef MUL_MAT_ID
+    const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
+#endif
+
+    const uint a_offset =
+#ifdef MUL_MAT_ID
+            expert_id * p.expert_stride_a +
+#endif
+            batch_idx_a * p.batch_stride_a;
+    const uint b_offset =
+#ifdef MUL_MAT_ID
+            (expert_idx0 % p.ne11) * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_b;
+    const uint d_offset =
+#ifdef MUL_MAT_ID
+            expert_idx0 * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_d;
+
+    const uint num_blocks_per_row = p.ncols / QUANT_K;
+    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
+
+    const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
+    const uint ix  = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
+
+    const uint step = 16/K_QUANTS_PER_ITERATION;            // 16 or 8
+
+    const uint v_im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const uint v_in = tid - step*v_im;                      // 0...15 or 0...7
+
+    const uint8_t m = uint8_t(1 << (4 * v_im));
+
+    const uint l0 = K_QUANTS_PER_ITERATION*v_in;            // 0...15
+    const uint q_offset = 32*v_im + l0;
+    const uint y_offset = 128*v_im + l0;
+
+    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
+
+    const uint s_shift = 4 * v_im;
+
+    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+        const uint y_idx = i * QUANT_K + y_offset;
+
+        const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
+
+        FLOAT_TYPE sum = FLOAT_TYPE(0.0);
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            sum += FLOAT_TYPE(data_b[b_offset + y_idx + l +  0]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[0] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l   ]     ) & 3) - (((data_a[ib0 + i].hmask[l0 + l   ] & (m << 0)) != 0) ? 0 : 4))
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[2] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l   ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l   ] & (m << 1)) != 0) ? 0 : 4))
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[4] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l   ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l   ] & (m << 2)) != 0) ? 0 : 4))
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[6] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l   ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l   ] & (m << 3)) != 0) ? 0 : 4))
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[1] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16]     ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4))
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[3] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4))
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[5] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4))
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[7] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4));
+        }
+        tmp[16 * ix + tid] += d * sum;
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+        }
+        barrier();
+    }
+    if (tid == 0) {
+        data_d[d_offset + row] = D_TYPE(tmp[0]);
+    }
+}
+"""
+mul_mat_vec_q4_K_body = """
+layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
+
+shared FLOAT_TYPE tmp[32];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint batch_idx = gl_GlobalInvocationID.y;
+#ifdef MUL_MAT_ID
+    const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
+    const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
+#endif
+
+    const uint i13 = batch_idx / p.ne12;
+    const uint i12 = batch_idx % p.ne12;
+
+    const uint i03 = i13 / p.broadcast3;
+    const uint i02 = i12 / p.broadcast2;
+
+    const uint batch_idx_a = i03 * p.ne02 + i02;
+
+#ifdef MUL_MAT_ID
+    const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
+#endif
+
+    const uint a_offset =
+#ifdef MUL_MAT_ID
+            expert_id * p.expert_stride_a +
+#endif
+            batch_idx_a * p.batch_stride_a;
+    const uint b_offset =
+#ifdef MUL_MAT_ID
+            (expert_idx0 % p.ne11) * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_b;
+    const uint d_offset =
+#ifdef MUL_MAT_ID
+            expert_idx0 * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_d;
+
+    const uint num_blocks_per_row = p.ncols / QUANT_K;
+    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
+
+    const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
+    const uint ix  = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
+
+    const uint step = 8/K_QUANTS_PER_ITERATION;             // 8 or 4
+
+    const uint il = tid/step;                               // 0...3
+    const uint ir = tid - step*il;                          // 0...7 or 0...3
+    const uint n =  2 * K_QUANTS_PER_ITERATION;             // 2 or 4
+
+    const uint v_im = il / 2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+    const uint v_in = il % 2;
+
+    const uint l0 = n * (2 * ir + v_in);            // 0...15
+    const uint q_offset = 32*v_im + l0;
+    const uint y_offset = 64*v_im + l0;
+
+    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
+
+    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+        const uint y1_idx = i * QUANT_K + y_offset;
+        const uint y2_idx = y1_idx + 128;
+
+        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
+        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
+
+        const uint8_t sc0 = uint8_t(  data_a[ib0 + i].scales[v_im * 2    ]       & 0x3f);
+        const uint8_t sc1 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 1]       & 0x3f);
+        const uint8_t sc2 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 4]       & 0x3f);
+        const uint8_t sc3 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 5]       & 0x3f);
+        const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8]       & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2    ] & 0xc0) >> 2));
+        const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9]       & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
+        const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
+        const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
+
+#if K_QUANTS_PER_ITERATION == 2
+        const uint8_t q4_0  = uint8_t(data_a[ib0 + i].qs[q_offset     ] & 0xf);
+        const uint8_t q4_1  = uint8_t(data_a[ib0 + i].qs[q_offset +  1] & 0xf);
+        const uint8_t q4_2  = uint8_t(data_a[ib0 + i].qs[q_offset +  2] & 0xf);
+        const uint8_t q4_3  = uint8_t(data_a[ib0 + i].qs[q_offset +  3] & 0xf);
+        const uint8_t q4_4  = uint8_t(data_a[ib0 + i].qs[q_offset     ]  >> 4);
+        const uint8_t q4_5  = uint8_t(data_a[ib0 + i].qs[q_offset +  1]  >> 4);
+        const uint8_t q4_6  = uint8_t(data_a[ib0 + i].qs[q_offset +  2]  >> 4);
+        const uint8_t q4_7  = uint8_t(data_a[ib0 + i].qs[q_offset +  3]  >> 4);
+        const uint8_t q4_8  = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
+        const uint8_t q4_9  = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
+        const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] & 0xf);
+        const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] & 0xf);
+        const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64]  >> 4);
+        const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65]  >> 4);
+        const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 66]  >> 4);
+        const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 67]  >> 4);
+
+        const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx]) * q4_0 + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * q4_1 + FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * q4_2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * q4_3);
+        const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_4 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_5 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * q4_7);
+        const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx]) * q4_8 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * q4_9 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * q4_10 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * q4_11);
+        const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_12 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_13 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * q4_14 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * q4_15);
+        const FLOAT_TYPE smin = FLOAT_TYPE(
+            FLOAT_TYPE(data_b[b_offset + y1_idx    ]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx    ]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * sc7
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * sc7
+        );
+        tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin);
+#else
+        const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset     ] & 0xf);
+        const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset +  1] & 0xf);
+        const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset     ]  >> 4);
+        const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset +  1]  >> 4);
+        const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
+        const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
+        const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 64]  >> 4);
+        const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 65]  >> 4);
+
+        const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx     ]) * q4_0  + FLOAT_TYPE(data_b[b_offset + y1_idx +  1]) * q4_1);
+        const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_2  + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_3);
+        const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx     ]) * q4_4  + FLOAT_TYPE(data_b[b_offset + y2_idx +  1]) * q4_5);
+        const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_7);
+        const FLOAT_TYPE smin = FLOAT_TYPE(
+            FLOAT_TYPE(data_b[b_offset + y1_idx]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7
+        );
+
+        tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f) + sy * FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f) + sz * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)) + sw * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))) - dmin * smin);
+#endif
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+        }
+        barrier();
+    }
+    if (tid == 0) {
+        data_d[d_offset + row] = D_TYPE(tmp[0]);
+    }
+}
+"""
+mul_mat_vec_q5_K_body = """
+layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
+
+shared FLOAT_TYPE tmp[32];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint batch_idx = gl_GlobalInvocationID.y;
+#ifdef MUL_MAT_ID
+    const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
+    const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
+#endif
+
+    const uint i13 = batch_idx / p.ne12;
+    const uint i12 = batch_idx % p.ne12;
+
+    const uint i03 = i13 / p.broadcast3;
+    const uint i02 = i12 / p.broadcast2;
+
+    const uint batch_idx_a = i03 * p.ne02 + i02;
+
+#ifdef MUL_MAT_ID
+    const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
+#endif
+
+    const uint a_offset =
+#ifdef MUL_MAT_ID
+            expert_id * p.expert_stride_a +
+#endif
+            batch_idx_a * p.batch_stride_a;
+    const uint b_offset =
+#ifdef MUL_MAT_ID
+            (expert_idx0 % p.ne11) * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_b;
+    const uint d_offset =
+#ifdef MUL_MAT_ID
+            expert_idx0 * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_d;
+
+    const uint num_blocks_per_row = p.ncols / QUANT_K;
+    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
+
+    const uint tid = gl_LocalInvocationID.x/2;  // 0...31 or 0...16
+    const uint ix  = gl_LocalInvocationID.x%2;  // 0 or 0, 1
+
+    const uint il = tid/4;                           // 0...3
+    const uint ir = tid - 4*il;                      // 0...7 or 0...3
+
+    const uint v_im = il / 2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+    const uint v_in = il % 2;
+
+    const uint l0 = 4*ir + 2*v_in;                   // 0...15
+    const uint q_offset = 32*v_im + l0;
+    const uint y_offset = 64*v_im + l0;
+
+    const uint8_t hm1 = uint8_t(1 << (2*v_im));
+    const uint8_t hm2 = uint8_t(hm1 << 4);
+
+    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
+
+    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) {
+        const uint y1_idx = i * QUANT_K + y_offset;
+        const uint y2_idx = y1_idx + 128;
+
+        const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
+        const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
+
+        const uint8_t sc0 = uint8_t(  data_a[ib0 + i].scales[v_im * 2    ]       & 0x3f);
+        const uint8_t sc1 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 1]       & 0x3f);
+        const uint8_t sc2 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 4]       & 0x3f);
+        const uint8_t sc3 = uint8_t(  data_a[ib0 + i].scales[v_im * 2 + 5]       & 0x3f);
+        const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8]       & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2    ] & 0xc0) >> 2));
+        const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9]       & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
+        const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
+        const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
+
+        const uint8_t q4_0  = uint8_t(data_a[ib0 + i].qs[q_offset     ] & 0xf);
+        const uint8_t q4_1  = uint8_t(data_a[ib0 + i].qs[q_offset +  1] & 0xf);
+        const uint8_t q4_2  = uint8_t(data_a[ib0 + i].qs[q_offset + 16] & 0xf);
+        const uint8_t q4_3  = uint8_t(data_a[ib0 + i].qs[q_offset + 17] & 0xf);
+        const uint8_t q4_4  = uint8_t(data_a[ib0 + i].qs[q_offset     ]  >> 4);
+        const uint8_t q4_5  = uint8_t(data_a[ib0 + i].qs[q_offset +  1]  >> 4);
+        const uint8_t q4_6  = uint8_t(data_a[ib0 + i].qs[q_offset + 16]  >> 4);
+        const uint8_t q4_7  = uint8_t(data_a[ib0 + i].qs[q_offset + 17]  >> 4);
+        const uint8_t q4_8  = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
+        const uint8_t q4_9  = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
+        const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] & 0xf);
+        const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] & 0xf);
+        const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64]  >> 4);
+        const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65]  >> 4);
+        const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80]  >> 4);
+        const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81]  >> 4);
+
+        const FLOAT_TYPE sx = FLOAT_TYPE(
+            FLOAT_TYPE(data_b[b_offset + y1_idx     ]) * (q4_0 + (((data_a[ib0 + i].qh[l0     ] & hm1) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y1_idx +  1]) * (q4_1 + (((data_a[ib0 + i].qh[l0 +  1] & hm1) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) * (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 17]) * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0))
+        );
+        const FLOAT_TYPE sy = FLOAT_TYPE(
+            FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * (q4_4 + (((data_a[ib0 + i].qh[l0     ] & (hm1 << 1)) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * (q4_5 + (((data_a[ib0 + i].qh[l0 +  1] & (hm1 << 1)) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) * (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y1_idx + 49]) * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0))
+        );
+        const FLOAT_TYPE sz = FLOAT_TYPE(
+            FLOAT_TYPE(data_b[b_offset + y2_idx     ]) * (q4_8  + (((data_a[ib0 + i].qh[l0     ] & hm2) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y2_idx +  1]) * (q4_9  + (((data_a[ib0 + i].qh[l0 +  1] & hm2) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) * (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y2_idx + 17]) * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0))
+        );
+        const FLOAT_TYPE sw = FLOAT_TYPE(
+            FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * (q4_12 + (((data_a[ib0 + i].qh[l0     ] & (hm2 << 1)) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * (q4_13 + (((data_a[ib0 + i].qh[l0 +  1] & (hm2 << 1)) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) * (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0))
+          + FLOAT_TYPE(data_b[b_offset + y2_idx + 49]) * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0))
+        );
+        const FLOAT_TYPE smin = FLOAT_TYPE(
+            (FLOAT_TYPE(data_b[b_offset + y1_idx]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 17])) * sc2 + (FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 49])) * sc3
+          + (FLOAT_TYPE(data_b[b_offset + y2_idx]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 17])) * sc6 + (FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 49])) * sc7
+        );
+        tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin);
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+        }
+        barrier();
+    }
+    if (tid == 0) {
+        data_d[d_offset + row] = D_TYPE(tmp[0]);
+    }
+}
+"""
+mul_mat_vec_q6_K_body = """
+layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
+
+shared FLOAT_TYPE tmp[32];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint batch_idx = gl_GlobalInvocationID.y;
+#ifdef MUL_MAT_ID
+    const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
+    const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
+#endif
+
+    const uint i13 = batch_idx / p.ne12;
+    const uint i12 = batch_idx % p.ne12;
+
+    const uint i03 = i13 / p.broadcast3;
+    const uint i02 = i12 / p.broadcast2;
+
+    const uint batch_idx_a = i03 * p.ne02 + i02;
+
+#ifdef MUL_MAT_ID
+    const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
+#endif
+
+    const uint a_offset =
+#ifdef MUL_MAT_ID
+            expert_id * p.expert_stride_a +
+#endif
+            batch_idx_a * p.batch_stride_a;
+    const uint b_offset =
+#ifdef MUL_MAT_ID
+            (expert_idx0 % p.ne11) * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_b;
+    const uint d_offset =
+#ifdef MUL_MAT_ID
+            expert_idx0 * p.expert_stride_b0 +
+            expert_idx1 * p.expert_stride_b1 +
+#endif
+            batch_idx * p.batch_stride_d;
+
+    const uint num_blocks_per_row = p.ncols / QUANT_K;
+    const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
+
+    const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
+    const uint ix  = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
+
+    const uint step = 16/K_QUANTS_PER_ITERATION;            // 16 or 8
+
+    const uint v_im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const uint v_in = tid - step*v_im;                      // 0...15 or 0...7
+
+#if K_QUANTS_PER_ITERATION == 1
+    const uint l0 = v_in;                                   // 0...15
+    const uint is = 0;
+#else
+    const uint l0 = 4 * v_in;                               // 0, 4, 8, ..., 28
+    const uint is = v_in / 4;
+#endif
+
+    const uint ql_offset = 64*v_im + l0;
+    const uint qh_offset = 32*v_im + l0;
+    const uint s_offset  =  8*v_im + is;
+    const uint y_offset = 128*v_im + l0;
+
+    tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
+
+    [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+        const uint y_idx   = i * QUANT_K + y_offset;
+
+        const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
+
+#if K_QUANTS_PER_ITERATION == 1
+        FLOAT_TYPE sum = FLOAT_TYPE(data_b[b_offset + y_idx +  0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset +  0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset +  0] & 0x03) << 4)) - 32)
+                       + FLOAT_TYPE(data_b[b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32)
+                       + FLOAT_TYPE(data_b[b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset +  0] & 0x0c) << 2)) - 32)
+                       + FLOAT_TYPE(data_b[b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32)
+                       + FLOAT_TYPE(data_b[b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset +  0]  >> 4) | ((data_a[ib0 + i].qh[qh_offset +  0] & 0x30) >> 0)) - 32)
+                       + FLOAT_TYPE(data_b[b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16]  >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32)
+                       + FLOAT_TYPE(data_b[b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32]  >> 4) | ((data_a[ib0 + i].qh[qh_offset +  0] & 0xc0) >> 2)) - 32)
+                       + FLOAT_TYPE(data_b[b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48]  >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32);
+        tmp[16 * ix + tid] += sum;
+#else
+        FLOAT_TYPE sum = FLOAT_TYPE(0.0);
+        [[unroll]] for (int l = 0; l < 4; ++l) {
+            sum += FLOAT_TYPE(data_b[b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32)
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32)
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0]  >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32)
+                 + FLOAT_TYPE(data_b[b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32]  >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32);
+        }
+        tmp[16 * ix + tid] += sum;
+#endif
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+       }
+        barrier();
+    }
+    if (tid == 0) {
+        data_d[d_offset + row] = D_TYPE(tmp[0]);
+    }
+}
+"""
+
+mul_mat_p021_src = """#version 450
+
+#extension GL_EXT_control_flow_attributes : enable
+#extension GL_EXT_shader_16bit_storage : require
+
+#define BLOCK_SIZE 32
+#define FLOAT_TYPE float
+
+layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
+
+layout (push_constant) uniform parameter
+{
+    uint ncols_x;
+    uint nrows_x;
+    uint nchannels_x;
+    uint nchannels_y;
+    uint b_offset;
+    uint d_offset;
+} p;
+
+shared FLOAT_TYPE tmp[BLOCK_SIZE];
+
+void main() {
+    const uint tid = gl_LocalInvocationID.x;
+    const uint row_x = gl_GlobalInvocationID.y;
+    const uint channel = gl_GlobalInvocationID.z;
+    const uint channel_x = channel / (p.nchannels_y / p.nchannels_x);
+
+    const uint nrows_y = p.ncols_x;
+    const uint nrows_dst = p.nrows_x;
+    const uint row_dst = row_x;
+
+    tmp[tid] = FLOAT_TYPE(0.0f);
+
+    for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
+        const uint col_x = col_x0 + tid;
+
+        if (col_x >= p.ncols_x) {
+            break;
+        }
+
+        // x is transposed and permuted
+        const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
+        const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
+
+        const uint row_y = col_x;
+
+        // y is not transposed but permuted
+        const uint iy = channel*nrows_y + row_y;
+
+        tmp[tid] += xi * FLOAT_TYPE(data_b[iy]);
+    }
+
+    // dst is not transposed and not permuted
+    const uint idst = channel*nrows_dst + row_dst;
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+        }
+        barrier();
+    }
+
+    if (tid == 0) {
+        dst[idst] = tmp[0];
+    }
+}
+"""
+
+
+mul_mat_nc_src = """#version 450
+
+#extension GL_EXT_control_flow_attributes : enable
+#extension GL_EXT_shader_16bit_storage : require
+
+#define BLOCK_SIZE 32
+#define FLOAT_TYPE float
+
+layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
+
+layout (push_constant) uniform parameter
+{
+    uint ncols_x;
+    uint nrows_x;
+    uint row_stride_x;
+    uint channel_stride_x;
+    uint channel_x_divisor;
+    uint b_offset;
+    uint d_offset;
+} p;
+
+shared FLOAT_TYPE tmp[BLOCK_SIZE];
+
+void main() {
+    const uint tid       = gl_LocalInvocationID.x;
+    const uint row_x     = gl_GlobalInvocationID.y;
+    const uint channel   = gl_GlobalInvocationID.z;
+    const uint channel_x = channel / p.channel_x_divisor;
+
+    const uint nrows_y   = p.ncols_x;
+    const uint nrows_dst = p.nrows_x;
+    const uint row_dst   = row_x;
+
+    const uint idst = channel*nrows_dst + row_dst;
+
+    tmp[tid] = 0.0f;
+
+    for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
+        const uint col_x = col_x0 + tid;
+
+        if (col_x >= p.ncols_x) {
+            break;
+        }
+
+        const uint row_y = col_x;
+
+        const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
+        const uint iy = channel*nrows_y + row_y;
+
+        const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
+
+        tmp[tid] += xi * FLOAT_TYPE(data_b[iy]);
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
+        if (tid < s) {
+            tmp[tid] += tmp[tid + s];
+        }
+        barrier();
+    }
+
+    if (tid == 0) {
+        dst[idst] = tmp[0];
+    }
+}
+"""
+
+generic_head = """
+#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout (push_constant) uniform parameter
+{
+    uint KX;
+    uint KY;
+    float param1;
+    float param2;
+} p;
+"""
+
+generic_unary_op_head = """#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout (push_constant) uniform parameter
+{
+    uint ne;
+    uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
+    uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
+    uint d_offset;
+    float param1; float param2;
+} p;"""
+
+generic_unary_op_layout = """
+layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};"""
+
+generic_unary_op_funcs = """
+uint src0_idx(uint idx) {
+    const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
+    const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
+    const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
+    const uint i02_offset = i02*p.ne01*p.ne00;
+    const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
+    const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
+    return i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i00*p.nb00;
+}
+
+uint dst_idx(uint idx) {
+    const uint i13 = idx / (p.ne12*p.ne11*p.ne10);
+    const uint i13_offset = i13 * p.ne12*p.ne11*p.ne10;
+    const uint i12 = (idx - i13_offset) / (p.ne11*p.ne10);
+    const uint i12_offset = i12*p.ne11*p.ne10;
+    const uint i11 = (idx - i13_offset - i12_offset) / p.ne10;
+    const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10;
+    return i13*p.nb13 + i12*p.nb12 + i11*p.nb11 + i10*p.nb10;
+}"""
+
+generic_unary_op_main = """
+void main() {
+    if (gl_GlobalInvocationID.x >= p.ne) {
+        return;
+    }
+"""
+
+generic_unary_op_combined = f"{generic_unary_op_head}\n{generic_unary_op_layout}\n{generic_unary_op_funcs}\n{generic_unary_op_main}"
+
+generic_binary_op_head = """#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout (push_constant) uniform parameter
+{
+    uint ne;
+    uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
+    uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
+    uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23;
+    uint d_offset;
+    float param1; float param2;
+} p;"""
+
+generic_binary_op_layout = """
+layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};"""
+
+generic_binary_op_funcs = """
+uint src0_idx(uint idx) {
+    const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
+    const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
+    const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
+    const uint i02_offset = i02*p.ne01*p.ne00;
+    const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
+    const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
+    return i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i00*p.nb00;
+}
+
+uint src1_idx(uint idx) {
+    const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
+    const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
+    const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
+    const uint i02_offset = i02*p.ne01*p.ne00;
+    const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
+    const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
+
+    return (i03 % p.ne13)*p.nb13 + (i02 % p.ne12)*p.nb12 + (i01 % p.ne11)*p.nb11 + (i00 % p.ne10)*p.nb10;
+}
+
+uint dst_idx(uint idx) {
+    const uint i23 = idx / (p.ne22*p.ne21*p.ne20);
+    const uint i23_offset = i23 * p.ne22*p.ne21*p.ne20;
+    const uint i22 = (idx - i23_offset) / (p.ne21*p.ne20);
+    const uint i22_offset = i22*p.ne21*p.ne20;
+    const uint i21 = (idx - i23_offset - i22_offset) / p.ne20;
+    const uint i20 = idx - i23_offset - i22_offset - i21*p.ne20;
+    return i23*p.nb23 + i22*p.nb22 + i21*p.nb21 + i20*p.nb20;
+}"""
+
+generic_binary_op_main = """
+void main() {
+    if (gl_GlobalInvocationID.x >= p.ne) {
+        return;
+    }
+"""
+
+generic_binary_op_combined = f"{generic_binary_op_head}\n{generic_binary_op_layout}\n{generic_binary_op_funcs}\n{generic_binary_op_main}"
+
+# MUL F32
+mul_body = """
+    data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
+}
+"""
+
+# ADD
+add_body = """
+    data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
+}
+"""
+
+# SCALE
+scale_body = """
+    data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(p.param1));
+}
+"""
+
+# SQR
+sqr_body = """
+    const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
+    data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val * val);
+}
+"""
+
+# CLAMP
+clamp_body = """
+    const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
+    data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
+}
+"""
+
+# CPY
+cpy_end = """
+    data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
+}
+"""
+# Causes an optimization error otherwise
+cpy_f16_f16_end = """
+    data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = data_a[src0_idx(gl_GlobalInvocationID.x)];
+}
+"""
+
+# GET_ROWS
+get_rows_float_body = """
+void main() {
+    const uint i00 = gl_GlobalInvocationID.x;
+    const uint i10 = gl_GlobalInvocationID.y;
+    const uint i11 = (gl_GlobalInvocationID.z)/p.ne12;
+    const uint i12 = (gl_GlobalInvocationID.z)%p.ne12;
+
+    if (i00 >= p.ne00) {
+        return;
+    }
+
+    const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
+
+    const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
+    const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
+
+#ifndef OPTIMIZATION_ERROR_WORKAROUND
+    data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
+#else
+    data_d[d_offset + i00] = data_a[a_offset + i00];
+#endif
+}
+"""
+
+get_rows_body = """
+void main() {
+    const uint i00 = (gl_GlobalInvocationID.x)*2;
+    const uint i10 = gl_GlobalInvocationID.y;
+    const uint i11 = (gl_GlobalInvocationID.z)/p.ne12;
+    const uint i12 = (gl_GlobalInvocationID.z)%p.ne12;
+
+    if (i00 >= p.ne00) {
+        return;
+    }
+
+    const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
+
+    const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
+    const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
+
+    const uint ib = a_offset + i00/QUANT_K; // block index
+    const uint iqs = (i00%QUANT_K)/QUANT_R; // quant index
+    const uint iybs = i00 - i00%QUANT_K; // dst block start index
+    const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
+
+    vec2 v = dequantize(ib, iqs, 0);
+
+    data_d[d_offset + iybs + iqs           ] = D_TYPE(v.x);
+    data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y);
+}
+"""
+
+# UNARY
+gelu_body = """
+#extension GL_EXT_control_flow_attributes : enable
+
+layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
+
+void main() {
+    const float GELU_COEF_A    = 0.044715f;
+    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+    const uint i = gl_GlobalInvocationID.x;
+
+    if (i >= p.KX) {
+        return;
+    }
+
+    const float xi = float(data_a[i]);
+    const float val = SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi);
+    data_d[i] = D_TYPE(0.5f*xi*(2.0f - 2.0f / (exp(2 * val) + 1)));
+}
+"""
+
+silu_body = """
+#extension GL_EXT_control_flow_attributes : enable
+
+layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
+
+void main() {
+    const uint i = gl_GlobalInvocationID.x;
+
+    if (i >= p.KX) {
+        return;
+    }
+
+    const float xi = float(data_a[i]);
+    data_d[i] = D_TYPE(xi / (1.0f + exp(-xi)));
+}
+"""
+
+relu_body = """
+#extension GL_EXT_control_flow_attributes : enable
+
+layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
+
+void main() {
+    const uint i = gl_GlobalInvocationID.x;
+
+    if (i >= p.KX) {
+        return;
+    }
+
+    data_d[i] = max(float(data_a[i]), 0);
+}
+"""
+
+# DIAG_MASK_INF
+diag_mask_inf_head = """#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout (push_constant) uniform parameter
+{
+    uint ncols;
+    uint rows_per_channel;
+    uint n_past;
+} p;
+"""
+diag_mask_inf_body = """
+#extension GL_EXT_control_flow_attributes : enable
+
+layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
+
+void main() {
+    const uint col = gl_GlobalInvocationID.y;
+    const uint row = gl_GlobalInvocationID.x;
+
+    if (col >= p.ncols) {
+        return;
+    }
+
+    const uint i = row*p.ncols + col;
+    if (col > p.n_past + row % p.rows_per_channel) {
+        data_d[i] = D_TYPE(uintBitsToFloat(0xFF800000));
+    } else {
+        data_d[i] = D_TYPE(data_a[i]);
+    }
+}
+"""
+
+# NORMS
+norm_body = """
+#extension GL_EXT_control_flow_attributes : enable
+#define BLOCK_SIZE 512
+
+layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
+
+shared vec2 sum[BLOCK_SIZE];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint tid = gl_LocalInvocationID.x;
+
+    sum[tid] = vec2(0.0f, 0.0f);
+
+    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
+        const float xi = float(data_a[row*p.KX + col]);
+        sum[tid].x += xi;
+        sum[tid].y += xi * xi;
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
+        if (tid < s) {
+            sum[tid] += sum[tid + s];
+        }
+        barrier();
+    }
+
+    const float mean = sum[0].x / p.KX;
+    const float var = sum[0].y / p.KX - mean * mean;
+    const float inv_std = inversesqrt(var + p.param1);
+
+    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
+        data_d[row*p.KX + col] = D_TYPE((float(data_a[row*p.KX + col]) - mean) * inv_std);
+    }
+}
+"""
+
+rms_norm_body = """
+#extension GL_EXT_control_flow_attributes : enable
+#define BLOCK_SIZE 512
+
+layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
+
+shared FLOAT_TYPE sum[BLOCK_SIZE];
+
+void main() {
+    const uint row = gl_WorkGroupID.x;
+    const uint tid = gl_LocalInvocationID.x;
+
+    sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp
+
+    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
+        const FLOAT_TYPE xi = FLOAT_TYPE(data_a[row*p.KX + col]);
+        sum[tid] += xi * xi;
+    }
+
+    // sum up partial sums and write back result
+    barrier();
+    [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
+        if (tid < s) {
+            sum[tid] += sum[tid + s];
+        }
+        barrier();
+    }
+
+    const FLOAT_TYPE mean = sum[0] / FLOAT_TYPE(p.KX);
+    const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1));
+
+    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
+        data_d[row*p.KX + col] = D_TYPE(scale * FLOAT_TYPE(data_a[row*p.KX + col]));
+    }
+}
+"""
+
+# SOFT_MAX
+soft_max_head = """
+#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout (push_constant) uniform parameter
+{
+    uint KX;
+    uint KY;
+    uint KZ;
+    float scale;
+    float max_bias;
+    float m0;
+    float m1;
+    uint n_head_log2;
+} p;
+"""
+
+soft_max_body = """
+#extension GL_EXT_control_flow_attributes : enable
+#define BLOCK_SIZE 512
+
+layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
+layout (binding = 2) readonly buffer Z {C_TYPE data_c[];};
+layout (binding = 3) buffer D {D_TYPE data_d[];};
+
+shared FLOAT_TYPE vals[BLOCK_SIZE];
+
+void main() {
+    const uint tid = gl_LocalInvocationID.x;
+    const uint rowx = gl_WorkGroupID.x;
+    const uint rowy = rowx % p.KY;
+
+    float slope = 0.0f;
+
+    // ALiBi
+    if (p.max_bias > 0.0f) {
+        const uint h = rowx/p.KY; // head index
+
+        const float base = h < p.n_head_log2 ? p.m0 : p.m1;
+        const uint   exp  = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1;
+
+        slope = pow(base, exp);
+    }
+
+    // Find max
+    vals[tid] = uintBitsToFloat(0xFF800000);
+
+    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
+        vals[tid] = max(vals[tid], FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) + (p.KZ > 0 ? slope * FLOAT_TYPE(data_c[col]) : 0.0f));
+    }
+
+    barrier();
+    [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
+        if (tid < s) {
+            vals[tid] = max(vals[tid], vals[tid + s]);
+        }
+        barrier();
+    }
+
+    const FLOAT_TYPE max_val = vals[0];
+    barrier();
+
+    // Sum up values
+    vals[tid] = FLOAT_TYPE(0.0f);
+
+    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
+        const uint i = rowx * p.KX + col;
+        const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
+        vals[tid] += val;
+        data_d[i] = D_TYPE(val);
+    }
+
+    barrier();
+    [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
+        if (tid < s) {
+            vals[tid] += vals[tid + s];
+        }
+        barrier();
+    }
+
+    const D_TYPE divisor = D_TYPE(vals[0]);
+
+    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
+        data_d[rowx*p.KX + col] /= divisor;
+    }
+}
+"""
+
+# ROPE
+rope_src = """
+#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer Y {int data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
+
+layout (push_constant) uniform parameter {
+    uint ncols;
+    float freq_scale;
+    uint p_delta_rows;
+    float freq_base;
+    float ext_factor;
+    float attn_factor;
+    float corr_dims[4];
+} p;
+
+float rope_yarn_ramp(const float low, const float high, const uint i0) {
+    const float y = (i0 / 2 - low) / max(0.001f, high - low);
+    return 1.0f - min(1.0f, max(0.0f, y));
+}
+
+void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) {
+    float mscale = p.attn_factor;
+    // Get n-d rotational scaling corrected for extrapolation
+    float theta_interp = p.freq_scale * theta_extrap;
+    float theta = theta_interp;
+    if (p.ext_factor != 0.0f) {
+        float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor;
+        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+        // Get n-d magnitude scaling corrected for interpolation
+        mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale);
+    }
+    cos_theta = cos(theta) * mscale;
+    sin_theta = sin(theta) * mscale;
+}
+
+void main() {
+    const uint col = gl_GlobalInvocationID.y * 2;
+    const uint row = gl_GlobalInvocationID.x;
+
+    if (col >= p.ncols) {
+        return;
+    }
+
+    const uint i = row*p.ncols + col;
+    const uint i2 = row/p.p_delta_rows;
+
+    const int pos = data_b[i2];
+    const float theta_base = pos * pow(p.freq_base, -float(col)/p.ncols);
+
+    float cos_theta, sin_theta;
+    rope_yarn(theta_base, col, cos_theta, sin_theta);
+
+    const float x0 = float(data_a[i + 0]);
+    const float x1 = float(data_a[i + 1]);
+
+    data_d[i + 0] = D_TYPE(x0*cos_theta - x1*sin_theta);
+    data_d[i + 1] = D_TYPE(x0*sin_theta + x1*cos_theta);
+}
+"""
+
+rope_neox_src = """
+#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer Y {int data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
+
+layout (push_constant) uniform parameter {
+    uint ncols;
+    uint ndims;
+    float freq_scale;
+    uint p_delta_rows;
+    float freq_base;
+    float ext_factor;
+    float attn_factor;
+    float corr_dims[4];
+    float theta_scale;
+    float inv_ndims;
+} p;
+
+float rope_yarn_ramp(const float low, const float high, const uint i0) {
+    const float y = (i0 / 2 - low) / max(0.001f, high - low);
+    return 1.0f - min(1.0f, max(0.0f, y));
+}
+
+void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) {
+    float mscale = p.attn_factor;
+    // Get n-d rotational scaling corrected for extrapolation
+    float theta_interp = p.freq_scale * theta_extrap;
+    float theta = theta_interp;
+    if (p.ext_factor != 0.0f) {
+        float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor;
+        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+        // Get n-d magnitude scaling corrected for interpolation
+        mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale);
+    }
+    cos_theta = cos(theta) * mscale;
+    sin_theta = sin(theta) * mscale;
+}
+
+void main() {
+    const uint col = gl_GlobalInvocationID.y * 2;
+    const uint row = gl_GlobalInvocationID.x;
+
+    if (col >= p.ncols) {
+        return;
+    }
+
+    const uint ib = col / p.ndims;
+    const uint ic = col % p.ndims;
+
+    if (ib > 0) {
+        const uint i = row*p.ncols + ib*p.ndims + ic;
+
+        data_d[i + 0] = data_a[i + 0];
+        data_d[i + 1] = data_a[i + 1];
+
+        return;
+    }
+
+    const uint i  = row*p.ncols + ib*p.ndims + ic/2;
+    const uint i2 = row/p.p_delta_rows;
+
+    const float cur_rot = p.inv_ndims * ic - ib;
+
+    const int pos = data_b[i2];
+    const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f);
+
+    float cos_theta, sin_theta;
+    rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta);
+
+    const float x0 = float(data_a[i + 0]);
+    const float x1 = float(data_a[i + p.ndims/2]);
+
+    data_d[i + 0]        = D_TYPE(x0*cos_theta - x1*sin_theta);
+    data_d[i + p.ndims/2] = D_TYPE(x0*sin_theta + x1*cos_theta);
+}
+"""
+
+argsort_src = """
+#version 450
+
+#extension GL_EXT_shader_16bit_storage : require
+
+layout(local_size_x = 1024, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1)          buffer D {int data_d[];};
+
+layout (push_constant) uniform parameter {
+    uint ncols;
+    bool ascending;
+} p;
+
+void swap(uint idx0, uint idx1) {
+    int tmp = data_d[idx0];
+    data_d[idx0] = data_d[idx1];
+    data_d[idx1] = tmp;
+}
+
+void main() {
+    // bitonic sort
+    const int col = int(gl_LocalInvocationID.x);
+    const uint row = gl_WorkGroupID.y;
+
+    if (col >= p.ncols) {
+        return;
+    }
+
+    const uint a_idx = row * p.ncols;
+    const uint d_idx = row * p.ncols;
+
+    // initialize indices
+    if (col < p.ncols) {
+        data_d[col] = col;
+    }
+    barrier();
+
+    for (uint k = 2; k <= p.ncols; k *= 2) {
+        for (uint j = k / 2; j > 0; j /= 2) {
+            const uint ixj = col ^ j;
+            if (ixj > col) {
+                if ((col & k) == 0) {
+                    if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]]) {
+                        swap(d_idx + col, d_idx + ixj);
+                    }
+                } else {
+                    if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]]) {
+                        swap(d_idx + col, d_idx + ixj);
+                    }
+                }
+            }
+            barrier();
+        }
+    }
+}
+"""
+
+GLSLC = "glslc"
+
+VK_NUM_TYPES = 16
+
+GGML_TYPE_F32  = 0
+GGML_TYPE_F16  = 1
+GGML_TYPE_Q4_0 = 2
+GGML_TYPE_Q4_1 = 3
+GGML_TYPE_Q5_0 = 6
+GGML_TYPE_Q5_1 = 7
+GGML_TYPE_Q8_0 = 8
+GGML_TYPE_Q8_1 = 9
+GGML_TYPE_Q2_K = 10
+GGML_TYPE_Q3_K = 11
+GGML_TYPE_Q4_K = 12
+GGML_TYPE_Q5_K = 13
+GGML_TYPE_Q6_K = 14
+GGML_TYPE_Q8_K = 15
+
+
+type_names = {
+    GGML_TYPE_F32: "f32",
+    GGML_TYPE_F16: "f16",
+    GGML_TYPE_Q4_0: "q4_0",
+    GGML_TYPE_Q4_1: "q4_1",
+    GGML_TYPE_Q5_0: "q5_0",
+    GGML_TYPE_Q5_1: "q5_1",
+    GGML_TYPE_Q8_0: "q8_0",
+    GGML_TYPE_Q8_1: "q8_1",
+    GGML_TYPE_Q2_K: "q2_K",
+    GGML_TYPE_Q3_K: "q3_K",
+    GGML_TYPE_Q4_K: "q4_K",
+    GGML_TYPE_Q5_K: "q5_K",
+    GGML_TYPE_Q6_K: "q6_K",
+    GGML_TYPE_Q8_K: "q8_K",
+}
+
+K_QUANTS_PER_ITERATION = 2
+
+ASYNCIO_CONCURRENCY = 64
+
+output_dir = gettempdir()
+
+lock = asyncio.Lock()
+shader_fnames = []
+
+
+async def string_to_spv(name, code, defines, fp16=True):
+    f = NamedTemporaryFile(mode="w", delete=False)
+    f.write(code)
+    f.flush()
+
+    name = f"{name}{'_fp32' if not fp16 else ''}"
+    fname = os.path.join(output_dir, f"{name}.comp")
+
+    cmd = [GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", f.name, "-o", fname]
+
+    cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
+
+    proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
+
+    stdout, stderr = await proc.communicate()
+
+    stdout = stdout.decode()
+    error = stderr.decode()
+
+    if proc.returncode:
+        # Generate preprocessed code
+        cmd = [GLSLC, "-E", f.name]
+        cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
+
+        proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
+
+        stdout, stderr = await proc.communicate()
+
+        logger.info(" ".join(cmd))
+
+        if proc.returncode:
+            raise RuntimeError(f"{name=} {f.name=} {stdout=} {stderr=}")
+
+        preprocessed_code = stdout.decode()
+
+        cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
+        code_with_lines = "\n".join([f"{i + 1}: {line}" for i, line in enumerate(preprocessed_code.splitlines())])
+        logger.error(f"cannot compile {name}\n\n{code_with_lines}\n\n{error}")
+        f.close()
+        os.remove(f.name)
+        sys.exit(proc.returncode)
+
+    f.close()
+    os.remove(f.name)
+
+    async with lock:
+        shader_fnames.append((name, fname))
+
+
+async def main():
+    logger.info("ggml_vulkan: Generating and compiling shaders to SPIR-V")
+
+    tasks = []
+
+    stream = []
+
+    for fp16 in (False, True):
+        # mulmat
+        if fp16:
+            shader_float_type = shader_f16
+            load_vec = "8"
+            vec_type_f16 = "f16mat2x4"
+            vec_type = "mat2x4"
+        else:
+            shader_float_type = shader_f32
+            load_vec = "4"
+            vec_type_f16 = "f16vec4"
+            vec_type = "vec4"
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_float_type, mulmat_body1, mulmat_load_scalar, mulmat_body2))
+        tasks.append(string_to_spv("matmul_f32", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_f32_aligned", "".join(stream), {"LOAD_VEC_A": 1, "LOAD_VEC_B": load_vec, "A_TYPE": "float", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        tasks.append(string_to_spv("matmul_f16", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_f16_aligned", "".join(stream), {"LOAD_VEC_A": 1, "LOAD_VEC_B": load_vec, "A_TYPE": "float16_t", "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
+
+        tasks.append(string_to_spv("matmul_f16_f32", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_f16_f32_aligned", "".join(stream), {"LOAD_VEC_A": 1, "LOAD_VEC_B": load_vec, "A_TYPE": "float16_t", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_0_defines, mulmat_body1, mulmat_load_q4_0, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q4_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q4_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_1_defines, mulmat_body1, mulmat_load_q4_1, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q4_1_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q4_1_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_0_defines, mulmat_body1, mulmat_load_q5_0, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q5_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q5_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_1_defines, mulmat_body1, mulmat_load_q5_1, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q5_1_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q5_1_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q8_0_defines, mulmat_body1, mulmat_load_q8_0, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q8_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q8_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q8_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q8_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q2_K_defines, mulmat_body1, mulmat_load_q2_K, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q2_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q2_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q2_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q2_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q3_K_defines, mulmat_body1, mulmat_load_q3_K, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q3_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q3_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q3_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q3_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_K_defines, mulmat_body1, mulmat_load_q4_K, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q4_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q4_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_K_defines, mulmat_body1, mulmat_load_q5_K, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q5_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q5_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        stream.clear()
+        stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q6_K_defines, mulmat_body1, mulmat_load_q6_K, mulmat_body2))
+        tasks.append(string_to_spv("matmul_q6_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q6_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        tasks.append(string_to_spv("matmul_q6_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q6_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # MUL_MAT_ID
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_float_type, mulmat_body1, mulmat_load_scalar, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_f32", "".join(stream), {"MUL_MAT_ID": "1", "A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # tasks.append(string_to_spv("matmul_id_f16", "".join(stream), {"MUL_MAT_ID": "1", "A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_f16_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
+
+        # tasks.append(string_to_spv("matmul_id_f16_f32", "".join(stream), {"MUL_MAT_ID": "1", "A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_f16_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_0_defines, mulmat_body1, mulmat_load_q4_0, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q4_0_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q4_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q4_0_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_1_defines, mulmat_body1, mulmat_load_q4_1, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q4_1_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q4_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q4_1_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_0_defines, mulmat_body1, mulmat_load_q5_0, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q5_0_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q5_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q5_0_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_1_defines, mulmat_body1, mulmat_load_q5_1, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q5_1_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q5_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q5_1_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q8_0_defines, mulmat_body1, mulmat_load_q8_0, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q8_0_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q8_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q8_0_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q8_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q2_K_defines, mulmat_body1, mulmat_load_q2_K, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q2_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q2_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q2_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q2_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q3_K_defines, mulmat_body1, mulmat_load_q3_K, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q3_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q3_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q3_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q3_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_K_defines, mulmat_body1, mulmat_load_q4_K, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q4_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q4_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q4_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_K_defines, mulmat_body1, mulmat_load_q5_K, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q5_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q5_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q5_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+        # stream.clear()
+        # stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q6_K_defines, mulmat_body1, mulmat_load_q6_K, mulmat_body2))
+        # tasks.append(string_to_spv("matmul_id_q6_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q6_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
+        # tasks.append(string_to_spv("matmul_id_q6_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q6_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
+
+    # Shaders where precision is needed, so no fp16 version
+
+    # mul mat vec
+    for i in range(0, VK_NUM_TYPES):
+        stream.clear()
+        stream.extend((mul_mat_vec_head, shader_int8_ext, shader_f32))
+
+        if i == GGML_TYPE_F16:
+            stream.extend((shader_f16_defines, mul_mat_vec_layout, shader_float_dequant_func, mul_mat_vec_body))
+        elif i == GGML_TYPE_Q4_0:
+            stream.extend((shader_q4_0_defines, mul_mat_vec_layout, shader_q4_0_dequant_func, mul_mat_vec_body))
+        elif i == GGML_TYPE_Q4_1:
+            stream.extend((shader_q4_1_defines, mul_mat_vec_layout, shader_q4_1_dequant_func, mul_mat_vec_body))
+        elif i == GGML_TYPE_Q5_0:
+            stream.extend((shader_q5_0_defines, mul_mat_vec_layout, shader_q5_0_dequant_func, mul_mat_vec_body))
+        elif i == GGML_TYPE_Q5_1:
+            stream.extend((shader_q5_1_defines, mul_mat_vec_layout, shader_q5_1_dequant_func, mul_mat_vec_body))
+        elif i == GGML_TYPE_Q8_0:
+            stream.extend((shader_q8_0_defines, mul_mat_vec_layout, shader_q8_0_dequant_func, mul_mat_vec_body))
+        elif i == GGML_TYPE_Q2_K:
+            stream.extend((shader_q2_K_defines, mul_mat_vec_layout, mul_mat_vec_q2_K_body))
+        elif i == GGML_TYPE_Q3_K:
+            stream.extend((shader_q3_K_defines, mul_mat_vec_layout, mul_mat_vec_q3_K_body))
+        elif i == GGML_TYPE_Q4_K:
+            stream.extend((shader_q4_K_defines, mul_mat_vec_layout, mul_mat_vec_q4_K_body))
+        elif i == GGML_TYPE_Q5_K:
+            stream.extend((shader_q5_K_defines, mul_mat_vec_layout, mul_mat_vec_q5_K_body))
+        elif i == GGML_TYPE_Q6_K:
+            stream.extend((shader_q6_K_defines, mul_mat_vec_layout, mul_mat_vec_q6_K_body))
+        else:
+            continue
+
+        tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f32_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
+        tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f16_f32", "".join(stream), {"B_TYPE": "float16_t", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
+
+        # tasks.append(string_to_spv(f"mul_mat_vec_id_{type_names[i]}_f32", "".join(stream), {"MUL_MAT_ID": "1", "B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
+
+    # Dequant shaders
+    for i in range(0, VK_NUM_TYPES):
+        stream.clear()
+
+        stream.extend((dequant_head, shader_int8_ext, shader_f32))
+
+        if i == GGML_TYPE_F32:
+            stream.append(dequant_f32_body)
+        elif i == GGML_TYPE_Q4_0:
+            stream.extend((shader_q4_0_defines, dequant_q4_0_body))
+        elif i == GGML_TYPE_Q4_1:
+            stream.extend((shader_q4_1_defines, dequant_q4_1_body))
+        elif i == GGML_TYPE_Q5_0:
+            stream.extend((shader_q5_0_defines, dequant_q5_0_body))
+        elif i == GGML_TYPE_Q5_1:
+            stream.extend((shader_q5_1_defines, dequant_q5_1_body))
+        elif i == GGML_TYPE_Q8_0:
+            stream.extend((shader_q8_0_defines, dequant_q8_0_body))
+        elif i == GGML_TYPE_Q2_K:
+            stream.extend((shader_q2_K_defines, dequant_q2_K_body))
+        elif i == GGML_TYPE_Q3_K:
+            stream.extend((shader_q3_K_defines, dequant_q3_K_body))
+        elif i == GGML_TYPE_Q4_K:
+            stream.extend((shader_q4_K_defines, dequant_q4_K_body))
+        elif i == GGML_TYPE_Q5_K:
+            stream.extend((shader_q5_K_defines, dequant_q5_K_body))
+        elif i == GGML_TYPE_Q6_K:
+            stream.extend((shader_q6_K_defines, dequant_q6_K_body))
+        else:
+            continue
+
+        tasks.append(string_to_spv(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"}))
+
+    # get_rows
+    for i in range(0, VK_NUM_TYPES):
+        stream.clear()
+        stream.extend((generic_binary_op_head, shader_int8_ext, shader_f32))
+        optimization_workaround = False
+
+        if i == GGML_TYPE_F32:
+            stream.extend((shader_f32_defines, generic_binary_op_layout, generic_binary_op_funcs, get_rows_float_body))
+        elif i == GGML_TYPE_F16:
+            stream.extend((shader_f16_defines, generic_binary_op_layout, generic_binary_op_funcs, get_rows_float_body))
+            optimization_workaround = True
+        elif i == GGML_TYPE_Q4_0:
+            stream.extend((shader_q4_0_defines, generic_binary_op_layout, shader_q4_0_dequant_func, generic_binary_op_funcs, get_rows_body))
+        elif i == GGML_TYPE_Q4_1:
+            stream.extend((shader_q4_1_defines, generic_binary_op_layout, shader_q4_1_dequant_func, generic_binary_op_funcs, get_rows_body))
+        elif i == GGML_TYPE_Q5_0:
+            stream.extend((shader_q5_0_defines, generic_binary_op_layout, shader_q5_0_dequant_func, generic_binary_op_funcs, get_rows_body))
+        elif i == GGML_TYPE_Q5_1:
+            stream.extend((shader_q5_1_defines, generic_binary_op_layout, shader_q5_1_dequant_func, generic_binary_op_funcs, get_rows_body))
+        elif i == GGML_TYPE_Q8_0:
+            stream.extend((shader_q8_0_defines, generic_binary_op_layout, shader_q8_0_dequant_func, generic_binary_op_funcs, get_rows_body))
+        else:
+            continue
+
+        if optimization_workaround:
+            tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
+        else:
+            tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float16_t"}))
+        tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float"}))
+
+    tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", mul_mat_p021_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", mul_mat_nc_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
+
+    # Norms
+    tasks.append(string_to_spv("norm_f32", f"{generic_head}\n{shader_f32}\n{norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("rms_norm_f32", f"{generic_head}\n{shader_f32}\n{rms_norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
+
+    tasks.append(string_to_spv("cpy_f32_f32", f"{generic_unary_op_combined}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("cpy_f32_f16", f"{generic_unary_op_combined}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
+    tasks.append(string_to_spv("cpy_f16_f16", f"{generic_unary_op_combined}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
+
+    tasks.append(string_to_spv("add_f32", f"{generic_binary_op_combined}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
+
+    tasks.append(string_to_spv("split_k_reduce", mulmat_split_k_reduce_src, {}))
+    tasks.append(string_to_spv("mul_f32", f"{generic_binary_op_combined}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
+
+    tasks.append(string_to_spv("scale_f32", f"{generic_unary_op_combined}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
+
+    tasks.append(string_to_spv("sqr_f32", f"{generic_unary_op_combined}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
+
+    tasks.append(string_to_spv("clamp_f32", f"{generic_unary_op_combined}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
+
+    tasks.append(string_to_spv("gelu_f32", f"{generic_head}\n{shader_f32}\n{gelu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("silu_f32", f"{generic_head}\n{shader_f32}\n{silu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("relu_f32", f"{generic_head}\n{shader_f32}\n{relu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
+
+    tasks.append(string_to_spv("diag_mask_inf_f32", f"{diag_mask_inf_head}\n{shader_f32}\n{diag_mask_inf_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
+
+    tasks.append(string_to_spv("soft_max_f32", f"{soft_max_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float", "C_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("soft_max_f32_f16", f"{soft_max_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float16_t", "C_TYPE": "float16_t", "D_TYPE": "float"}))
+
+    tasks.append(string_to_spv("rope_f32", rope_src, {"A_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("rope_f16", rope_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
+
+    tasks.append(string_to_spv("rope_neox_f32", rope_neox_src, {"A_TYPE": "float", "D_TYPE": "float"}))
+    tasks.append(string_to_spv("rope_neox_f16", rope_neox_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
+
+    tasks.append(string_to_spv("argsort_f32", argsort_src, {"A_TYPE": "float"}))
+
+    # Helper to decorate tasks with semaphore acquisition.
+    async def withSemaphore(sem, task):
+        async with sem:
+            return await task
+
+    # Run tasks concurrently guarded by a concurrency limit.
+    sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY)
+    await asyncio.gather(*(withSemaphore(sem, task) for task in tasks))
+
+    with open("ggml-vulkan-shaders.hpp", "w") as f:
+        f.write("#include <cstdint>\n\n")
+        for name, path in sorted(shader_fnames):
+
+            with open(path, "rb") as spv:
+                counter = 0
+                newline_counter = 0
+                f.write(f"unsigned char {name}_data[] = {{\n")
+                for val in spv.read():
+                    f.write(f"0x{val:02x},")
+                    newline_counter += 1
+                    counter += 1
+                    if newline_counter >= 12:
+                        newline_counter = 0
+                        f.write("\n")
+            f.write("\n};\n")
+            f.write(f"const uint64_t {name}_len = {counter};\n\n")
+            os.remove(path)
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator")
+
+    parser.add_argument("--glslc", help="Path to glslc")
+    parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
+
+    args = parser.parse_args()
+
+    logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
+
+    if args.glslc:
+        GLSLC = args.glslc
+
+    asyncio.run(main())
\ No newline at end of file