--- /dev/null
+# Benchmark
+name: Benchmark
+
+on:
+ workflow_dispatch:
+ inputs:
+ gpu-series:
+ description: 'Azure GPU series to run with'
+ required: true
+ type: choice
+ options:
+ - Standard_NC4as_T4_v3
+ - Standard_NC24ads_A100_v4
+ - Standard_NC80adis_H100_v5
+ sha:
+ description: 'Commit SHA1 to build'
+ required: false
+ type: string
+ duration:
+ description: 'Duration of the bench'
+ type: string
+ default: 10m
+
+ push:
+ branches:
+ - master
+ paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
+ pull_request:
+ types: [opened, synchronize, reopened]
+ paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
+ schedule:
+ - cron: '04 2 * * *'
+
+concurrency:
+ group: ${{ github.workflow }}-${{ github.ref }}
+ cancel-in-progress: true
+
+jobs:
+ bench-server-baseline:
+ runs-on: Standard_NC4as_T4_v3
+ env:
+ RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
+ N_USERS: 8
+ DURATION: 10m
+ if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.event.push.ref == 'refs/heads/master' }}
+ steps:
+ - name: Clone
+ id: checkout
+ uses: actions/checkout@v3
+ with:
+ fetch-depth: 0
+ ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
+
+ - name: Install python env
+ id: pipenv
+ run: |
+ cd examples/server/bench
+ python3 -m venv venv
+ source venv/bin/activate
+ pip install -r requirements.txt
+
+ - name: Prometheus
+ id: install_prometheus
+ run: |
+ wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
+ tar xzf prometheus*.tar.gz --strip-components=1
+ ./prometheus --config.file=examples/server/bench/prometheus.yml &
+ while ! nc -z localhost 9090; do
+ sleep 0.1
+ done
+
+ - name: Install k6
+ id: k6_installation
+ run: |
+ cd examples/server/bench
+ wget --quiet https://github.com/grafana/k6/releases/download/v0.49.0/k6-v0.49.0-linux-amd64.tar.gz
+ tar xzf k6*.tar.gz --strip-components=1
+
+ - name: Build
+ id: cmake_build
+ run: |
+ set -eux
+ mkdir build
+ cd build
+ cmake .. \
+ -DLLAMA_NATIVE=OFF \
+ -DLLAMA_BUILD_SERVER=ON \
+ -DLLAMA_CURL=ON \
+ -DLLAMA_CUBLAS=ON \
+ -DCUDAToolkit_ROOT=/usr/local/cuda \
+ -DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
+ -DCMAKE_CUDA_ARCHITECTURES=75 \
+ -DLLAMA_FATAL_WARNINGS=OFF \
+ -DLLAMA_ALL_WARNINGS=OFF \
+ -DCMAKE_BUILD_TYPE=Release;
+ cmake --build . --config Release -j $(nproc) --target server
+
+ - name: Download the dataset
+ id: download_dataset
+ run: |
+ cd examples/server/bench
+ wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
+
+ - name: Server bench
+ id: server_bench
+ run: |
+ set -eux
+
+ cd examples/server/bench
+ source venv/bin/activate
+ BENCH_K6_BIN_PATH=./k6 python bench.py \
+ --runner-label ${{ env.RUNNER_LABEL }} \
+ --name ${{ github.job }} \
+ --branch ${{ github.head_ref || github.ref_name }} \
+ --commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
+ --scenario script.js \
+ --duration ${{ github.event.inputs.duration || env.DURATION }} \
+ --hf-repo ggml-org/models \
+ --hf-file phi-2/ggml-model-q4_0.gguf \
+ --model-path-prefix /models \
+ --parallel ${{ env.N_USERS }} \
+ -ngl 33 \
+ --batch-size 2048 \
+ --ubatch-size 256 \
+ --ctx-size 16384 \
+ --n-prompts 1000 \
+ --max-prompt-tokens 1024 \
+ --max-tokens 2048
+
+ cat results.github.env >> $GITHUB_ENV
+
+ # Remove dataset as we do not want it in the artefact
+ rm ShareGPT_V3_unfiltered_cleaned_split.json
+
+ - uses: actions/upload-artifact@v4
+ with:
+ name: benchmark-results
+ compression-level: 9
+ path: |
+ examples/server/bench/*.jpg
+ examples/server/bench/*.json
+ examples/server/bench/*.log
+
+ - name: Commit status
+ uses: Sibz/github-status-action@v1
+ with:
+ authToken: ${{secrets.GITHUB_TOKEN}}
+ sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
+ context: bench-server-baseline
+ description: |
+ ${{ env.BENCH_RESULTS }}
+ state: 'success'
+
+ - name: Upload benchmark images
+ uses: devicons/public-upload-to-imgur@v2.2.2
+ continue-on-error: true # Important as it looks unstable: 503
+ id: imgur_step
+ with:
+ client_id: ${{secrets.IMGUR_CLIENT_ID}}
+ path: |
+ examples/server/bench/prompt_tokens_seconds.jpg
+ examples/server/bench/predicted_tokens_seconds.jpg
+ examples/server/bench/kv_cache_usage_ratio.jpg
+ examples/server/bench/requests_processing.jpg
+
+ - name: Extract mermaid
+ id: set_mermaid
+ run: |
+ set -eux
+
+ cd examples/server/bench
+ PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
+ echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
+ echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
+ echo "EOF" >> $GITHUB_ENV
+
+ PREDICTED_TOKENS_SECONDS=$(cat predicted_tokens_seconds.mermaid)
+ echo "PREDICTED_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
+ echo "$PREDICTED_TOKENS_SECONDS" >> $GITHUB_ENV
+ echo "EOF" >> $GITHUB_ENV
+
+ KV_CACHE_USAGE_RATIO=$(cat kv_cache_usage_ratio.mermaid)
+ echo "KV_CACHE_USAGE_RATIO<<EOF" >> $GITHUB_ENV
+ echo "$KV_CACHE_USAGE_RATIO" >> $GITHUB_ENV
+ echo "EOF" >> $GITHUB_ENV
+
+ REQUESTS_PROCESSING=$(cat requests_processing.mermaid)
+ echo "REQUESTS_PROCESSING<<EOF" >> $GITHUB_ENV
+ echo "$REQUESTS_PROCESSING" >> $GITHUB_ENV
+ echo "EOF" >> $GITHUB_ENV
+
+ - name: Extract image url
+ id: extract_image_url
+ continue-on-error: true
+ run: |
+ set -eux
+
+ echo "IMAGE_O=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[0] }}" >> $GITHUB_ENV
+ echo "IMAGE_1=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[1] }}" >> $GITHUB_ENV
+ echo "IMAGE_2=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[2] }}" >> $GITHUB_ENV
+ echo "IMAGE_3=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[3] }}" >> $GITHUB_ENV
+
+ - name: Comment PR
+ uses: mshick/add-pr-comment@v2
+ id: comment_pr
+ if: ${{ github.event.pull_request != '' }}
+ with:
+ message-id: bench-${{ github.job }}-${{ env.RUNNER_LABEL }}
+ message: |
+ 📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
+
+ - Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
+ - HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(90)=${{ env.HTTP_REQ_DURATION_P_90_ }}ms fails=${{ env.HTTP_REQ_FAILED_PASSES }}, finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }} truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}
+ - Prompt processing (pp): avg=${{ env.LLAMACPP_PROMPT_TOKENS_AVG }}tk/s p(90)=${{ env.LLAMACPP_PROMPT_TOKENS_P_90_ }}tk/s **total=${{ env.LLAMACPP_PROMPT_TOKENS_TOTAL_COUNTER_RATE }}tk/s**
+ - Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(90)=${{ env.LLAMACPP_TOKENS_SECOND_P_90_ }}tk/s **total=${{ env.LLAMACPP_COMPLETION_TOKENS_TOTAL_COUNTER_RATE }}tk/s**
+ - ${{ env.BENCH_GRAPH_XLABEL }}
+
+ <details>
+
+ <summary>Time series</summary>
+
+ <p align="center">
+
+ <img width="100%" height="100%" src="${{ env.IMAGE_O }}" alt="prompt_tokens_seconds" />
+
+ <details>
+
+ <summary>More</summary>
+
+ ```mermaid
+ ${{ env.PROMPT_TOKENS_SECONDS }}
+ ```
+
+ </details>
+
+ <img width="100%" height="100%" src="${{ env.IMAGE_1 }}" alt="predicted_tokens_seconds"/>
+
+ <details>
+ <summary>More</summary>
+
+ ```mermaid
+ ${{ env.PREDICTED_TOKENS_SECONDS }}
+ ```
+
+ </details>
+
+ </p>
+
+ <details>
+
+ <summary>Details</summary>
+
+ <p align="center">
+
+ <img width="100%" height="100%" src="${{ env.IMAGE_2 }}" alt="kv_cache_usage_ratio" />
+
+ <details>
+ <summary>More</summary>
+
+ ```mermaid
+ ${{ env.KV_CACHE_USAGE_RATIO }}
+ ```
+
+ </details>
+
+ <img width="100%" height="100%" src="${{ env.IMAGE_3 }}" alt="requests_processing"/>
+
+ <details>
+ <summary>More</summary>
+
+ ```mermaid
+ ${{ env.REQUESTS_PROCESSING }}
+ ```
+
+ </details>
+
+ </p>
+ </details>
+ </details>
--- /dev/null
+import argparse
+import json
+import os
+import re
+import signal
+import socket
+import subprocess
+import sys
+import threading
+import time
+import traceback
+from contextlib import closing
+from datetime import datetime
+
+import matplotlib
+import matplotlib.dates
+import matplotlib.pyplot as plt
+import requests
+
+
+def main(args_in: list[str] | None = None) -> None:
+ parser = argparse.ArgumentParser(description="Start server benchmark scenario")
+ parser.add_argument("--name", type=str, help="Bench name", required=True)
+ parser.add_argument("--runner-label", type=str, help="Runner label", required=True)
+ parser.add_argument("--branch", type=str, help="Branch name", default="detached")
+ parser.add_argument("--commit", type=str, help="Commit name", default="dirty")
+ parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0")
+ parser.add_argument("--port", type=int, help="Server listen host", default="8080")
+ parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models")
+ parser.add_argument("--n-prompts", type=int,
+ help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True)
+ parser.add_argument("--max-prompt-tokens", type=int,
+ help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset",
+ required=True)
+ parser.add_argument("--max-tokens", type=int,
+ help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens",
+ required=True)
+ parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True)
+ parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True)
+ parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True)
+ parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True)
+ parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True)
+ parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True)
+ parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True)
+ parser.add_argument("--scenario", type=str, help="Scenario to run", required=True)
+ parser.add_argument("--duration", type=str, help="Bench scenario", required=True)
+
+ args = parser.parse_args(args_in)
+
+ start_time = time.time()
+
+ # Start the server and performance scenario
+ try:
+ server_process = start_server(args)
+ except Exception:
+ print("bench: server start error :")
+ traceback.print_exc(file=sys.stdout)
+ sys.exit(1)
+
+ # start the benchmark
+ try:
+ start_benchmark(args)
+
+ iterations = 0
+ with open("results.github.env", 'w') as github_env:
+ # parse output
+ with open('k6-results.json', 'r') as bench_results:
+ # Load JSON data from file
+ data = json.load(bench_results)
+ for metric_name in data['metrics']:
+ for metric_metric in data['metrics'][metric_name]:
+ value = data['metrics'][metric_name][metric_metric]
+ if isinstance(value, float) or isinstance(value, int):
+ value = round(value, 2)
+ data['metrics'][metric_name][metric_metric]=value
+ github_env.write(
+ f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n")
+ token_seconds = data['metrics']['llamacpp_tokens_second']['avg']
+ iterations = data['root_group']['checks']['success completion']['passes']
+
+ except Exception:
+ print("bench: error :")
+ traceback.print_exc(file=sys.stdout)
+
+ # Stop the server
+ if server_process:
+ try:
+ print(f"bench: shutting down server pid={server_process.pid} ...")
+ if os.name == 'nt':
+ interrupt = signal.CTRL_C_EVENT
+ else:
+ interrupt = signal.SIGINT
+ server_process.send_signal(interrupt)
+ server_process.wait(0.5)
+
+ except subprocess.TimeoutExpired:
+ print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...")
+ server_process.kill() # SIGKILL
+ server_process.wait()
+
+ while is_server_listening(args.host, args.port):
+ time.sleep(0.1)
+
+ title = (f"llama.cpp {args.name} on {args.runner_label}\n "
+ f"duration={args.duration} {iterations} iterations")
+ xlabel = (f"{args.hf_repo}/{args.hf_file}\n"
+ f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n"
+ f"branch={args.branch} commit={args.commit}")
+
+ # Prometheus
+ end_time = time.time()
+ if is_server_listening("0.0.0.0", 9090):
+ metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
+ 'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']
+
+ for metric in metrics:
+ resp = requests.get(f"http://localhost:9090/api/v1/query_range",
+ params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2})
+
+ with open(f"{metric}.json", 'w') as metric_json:
+ metric_json.write(resp.text)
+
+ if resp.status_code != 200:
+ print(f"bench: unable to extract prometheus metric {metric}: {resp.text}")
+ else:
+ metric_data = resp.json()
+ values = metric_data['data']['result'][0]['values']
+ timestamps, metric_values = zip(*values)
+ metric_values = [float(value) for value in metric_values]
+ timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps]
+ plt.figure(figsize=(16, 10), dpi=80)
+ plt.plot(timestamps_dt, metric_values, label=metric)
+ plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
+ plt.yticks(fontsize=12, alpha=.7)
+
+ ylabel = f"llamacpp:{metric}"
+ plt.title(title,
+ fontsize=14, wrap=True)
+ plt.grid(axis='both', alpha=.3)
+ plt.ylabel(ylabel, fontsize=22)
+ plt.xlabel(xlabel, fontsize=14, wrap=True)
+ plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator())
+ plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S"))
+ plt.gcf().autofmt_xdate()
+
+ # Remove borders
+ plt.gca().spines["top"].set_alpha(0.0)
+ plt.gca().spines["bottom"].set_alpha(0.3)
+ plt.gca().spines["right"].set_alpha(0.0)
+ plt.gca().spines["left"].set_alpha(0.3)
+
+ # Save the plot as a jpg image
+ plt.savefig(f'{metric}.jpg', dpi=60)
+ plt.close()
+
+ # Mermaid format in case images upload failed
+ with (open(f"{metric}.mermaid", 'w') as mermaid_f):
+ mermaid = (
+ f"""---
+config:
+ xyChart:
+ titleFontSize: 12
+ width: 900
+ height: 600
+ themeVariables:
+ xyChart:
+ titleColor: "#000000"
+---
+xychart-beta
+ title "{title}"
+ y-axis "llamacpp:{metric}"
+ x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))}
+ line [{', '.join([str(round(float(value), 2)) for value in metric_values])}]
+ """)
+ mermaid_f.write(mermaid)
+
+ # 140 chars max for commit status description
+ bench_results = {
+ "req": {
+ "p90": data['metrics']["http_req_duration"]["p(90)"],
+ "avg": data['metrics']["http_req_duration"]["avg"],
+ },
+ "pp": {
+ "p90": data['metrics']["llamacpp_prompt_tokens"]["p(90)"],
+ "avg": data['metrics']["llamacpp_prompt_tokens"]["avg"],
+ },
+ "tg": {
+ "p90": data['metrics']["llamacpp_tokens_second"]["p(90)"],
+ "avg": data['metrics']["llamacpp_tokens_second"]["avg"],
+ },
+ }
+ with open("results.github.env", 'a') as github_env:
+ github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n")
+ github_env.write(f"BENCH_ITERATIONS={iterations}\n")
+
+ title = title.replace('\n', ' ')
+ xlabel = xlabel.replace('\n', ' ')
+ github_env.write(f"BENCH_GRAPH_TITLE={title}\n")
+ github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n")
+
+
+def start_benchmark(args):
+ k6_path = 'k6'
+ if 'BENCH_K6_BIN_PATH' in os.environ:
+ k6_path = os.environ['BENCH_K6_BIN_PATH']
+ k6_args = [
+ 'run', args.scenario,
+ '--no-color',
+ ]
+ k6_args.extend(['--duration', args.duration])
+ k6_args.extend(['--iterations', args.n_prompts])
+ k6_args.extend(['--vus', args.parallel])
+ k6_args.extend(['--summary-export', 'k6-results.json'])
+ args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
+ args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
+ print(f"bench: starting k6 with: {args}")
+ k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr)
+ if k6_completed.returncode != 0:
+ raise Exception("bench: unable to run k6")
+
+
+def start_server(args):
+ server_process = start_server_background(args)
+
+ attempts = 0
+ max_attempts = 20
+ if 'GITHUB_ACTIONS' in os.environ:
+ max_attempts *= 2
+
+ while not is_server_listening(args.host, args.port):
+ attempts += 1
+ if attempts > max_attempts:
+ assert False, "server not started"
+ print(f"bench: waiting for server to start ...")
+ time.sleep(0.5)
+
+ print("bench: server started.")
+ return server_process
+
+
+def start_server_background(args):
+ # Start the server
+ server_path = '../../../build/bin/server'
+ if 'LLAMA_SERVER_BIN_PATH' in os.environ:
+ server_path = os.environ['LLAMA_SERVER_BIN_PATH']
+ server_args = [
+ '--host', args.host,
+ '--port', args.port,
+ ]
+ model_file = args.model_path_prefix + os.path.sep + args.hf_file
+ model_dir = os.path.dirname(model_file)
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+ server_args.extend(['--model', model_file])
+ server_args.extend(['--hf-repo', args.hf_repo])
+ server_args.extend(['--hf-file', args.hf_file])
+ server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
+ server_args.extend(['--ctx-size', args.ctx_size])
+ server_args.extend(['--parallel', args.parallel])
+ server_args.extend(['--batch-size', args.batch_size])
+ server_args.extend(['--ubatch-size', args.ubatch_size])
+ server_args.extend(['--n-predict', args.max_tokens * 2])
+ server_args.extend(['--defrag-thold', "0.1"])
+ server_args.append('--cont-batching')
+ server_args.append('--metrics')
+ server_args.extend(['--log-format', "text"])
+ args = [str(arg) for arg in [server_path, *server_args]]
+ print(f"bench: starting server with: {' '.join(args)}")
+ pkwargs = {
+ 'stdout': subprocess.PIPE,
+ 'stderr': subprocess.PIPE
+ }
+ server_process = subprocess.Popen(
+ args,
+ **pkwargs)
+
+ def server_log(in_stream, out_stream):
+ for line in iter(in_stream.readline, b''):
+ print(line.decode('utf-8'), end='', file=out_stream)
+
+ thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout))
+ thread_stdout.start()
+ thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr))
+ thread_stderr.start()
+
+ return server_process
+
+
+def is_server_listening(server_fqdn, server_port):
+ with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
+ result = sock.connect_ex((server_fqdn, server_port))
+ _is_server_listening = result == 0
+ if _is_server_listening:
+ print(f"server is listening on {server_fqdn}:{server_port}...")
+ return _is_server_listening
+
+
+def escape_metric_name(metric_name):
+ return re.sub('[^A-Z0-9]', '_', metric_name.upper())
+
+
+if __name__ == '__main__':
+ main()