).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(common_arg(
{"-dt", "--defrag-thold"}, "N",
- string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
+ string_format("KV cache defragmentation threshold (DEPRECATED)"),
[](common_params & params, const std::string & value) {
- params.defrag_thold = std::stof(value);
+ GGML_UNUSED(params);
+ GGML_UNUSED(value);
+ LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
}
).set_env("LLAMA_ARG_DEFRAG_THOLD"));
add_opt(common_arg(
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.attention_type = params.attention_type;
- cparams.defrag_thold = params.defrag_thold;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload;
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
- float defrag_thold = 0.1f; // KV cache defragmentation threshold
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
"
" start the llama.cpp server with a FIM-compatible model. for example:
"
-" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa -dt 0.1 --ubatch-size 512 --batch-size 1024 --cache-reuse 256
+" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa --ubatch-size 512 --batch-size 1024 --cache-reuse 256
"
" --batch-size [512, model max context]
"
float yarn_beta_fast; // YaRN low correction dim
float yarn_beta_slow; // YaRN high correction dim
uint32_t yarn_orig_ctx; // YaRN original context size
- float defrag_thold; // defragment the KV cache if holes/size > thold, <= 0 disabled (default)
+ float defrag_thold; // [DEPRECATED] defragment the KV cache if holes/size > thold, <= 0 disabled (default)
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
- "defrag_thold",
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth",
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
]
cparams.yarn_attn_factor = params.yarn_attn_factor;
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
- cparams.defrag_thold = params.defrag_thold;
cparams.embeddings = params.embeddings;
cparams.offload_kqv = params.offload_kqv;
cparams.flash_attn = params.flash_attn;
bool did_optimize = false;
- // handle any pending defrags/shifts
+ // handle any pending shifts/copies
memory_update(false);
llama_memory_context_ptr mctx;
float yarn_attn_factor;
float yarn_beta_fast;
float yarn_beta_slow;
- float defrag_thold;
bool embeddings;
bool causal_attn;
}
llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) {
- bool do_shift = get_has_shift();
-
- defrag_info dinfo;
-
- // see if we need to defrag
- if (n_stream == 1) {
- // note : for now do not consider defrag for n_stream > 1
- const auto & cells = v_cells[seq_to_stream[0]];
-
- bool do_defrag = optimize;
-
- const auto thold = lctx->get_cparams().defrag_thold;
-
- if (!do_defrag && thold > 0.0f) {
- const auto n_kv = cells.used_max_p1();
-
- // - do not defrag small contexts (i.e. < 2048 tokens)
- // - count the padding towards the number of used tokens
- const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f;
-
- if (fragmentation > thold) {
- LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
-
- do_defrag = true;
- }
- }
+ GGML_UNUSED(optimize);
- if (do_defrag) {
- dinfo = defrag_prepare(lctx->graph_max_nodes());
- }
- }
+ bool do_shift = get_has_shift();
- return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(dinfo), std::move(sc_info));
+ return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info));
}
llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) {
return res;
}
-bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info) {
+bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) {
bool updated = false;
auto * sched = lctx->get_sched();
}
}
- if (!dinfo.empty()) {
- LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
-
- // note: for now do not consider defrag for n_stream > 1
- auto & cells = v_cells[seq_to_stream[0]];
- auto & head = v_heads[seq_to_stream[0]];
-
- // apply moves:
- {
- const auto n_kv = dinfo.ids.size();
-
- for (uint32_t i = 0; i < n_kv; ++i) {
- assert(dinfo.ids[i] <= n_kv);
-
- if (dinfo.ids[i] == n_kv || dinfo.ids[i] == i) {
- continue;
- }
-
- cells.mv(i, dinfo.ids[i]);
- }
-
- // reset the head so we can find the first free slot during the next ubatch
- head = 0;
- }
-
- ggml_backend_sched_reset(sched);
-
- auto * res = lctx->get_gf_res_reserve();
-
- res->reset();
-
- auto * gf = build_graph_defrag(res, lctx, dinfo);
- if (!ggml_backend_sched_alloc_graph(sched, gf)) {
- LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__);
- return updated;
- }
-
- res->set_inputs(nullptr);
-
- if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
- LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__);
- return updated;
- }
-
- updated = true;
- }
-
return updated;
}
return gf;
}
-ggml_cgraph * llama_kv_cache::build_graph_defrag(
- llm_graph_result * res,
- llama_context * lctx,
- const defrag_info & dinfo) const {
- auto * ctx = res->get_ctx();
- auto * gf = res->get_gf();
-
- GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
-
- const auto & cells = v_cells[0];
-
- const auto & ids = dinfo.ids;
-
- const auto & cparams = lctx->get_cparams();
-
-#if 0
- // CPU defrag
- //
- // TODO: optimizations are possible:
- // - multiple threads
- // - avoid copying to the host memory when already there
- //
- // likely not worth the effort, as we have ggml_graph based defrag
- //
-
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
-
- const uint32_t kv_size = size;
-
- std::vector<uint8_t> buf_k;
- std::vector<uint8_t> buf_v;
-
- for (uint32_t il = 0; il < n_layer; ++il) {
- const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
- const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
-
- const size_t v_size_el = ggml_type_size(v_l[il]->type);
- const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
-
- buf_k.resize(k_size);
- buf_v.resize(v_size);
-
- ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
-
- // batch move [i, i+nm) to [id, id+nm)
- // note: cells can move only to a lower index
- for (uint32_t i = 0; i < n_kv; ++i) {
- const uint32_t id = ids[i];
-
- if (i == id || id == n_kv) {
- continue;
- }
-
- uint32_t nm = 1;
-
- while (i + nm < n_kv && ids[i + nm] == id + nm) {
- nm++;
- }
-
- // move keys
- {
- const int64_t os = i*k_size_row;
- const int64_t od = id*k_size_row;
-
- memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
- }
-
- // move values (note: they are transposed)
- {
- const int64_t os = i;
- const int64_t od = id;
-
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
- }
- }
-
- i += nm - 1;
- }
-
- ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
- }
-#else
- for (uint32_t i = 0; i < ids.size(); ++i) {
- const uint32_t id = ids[i];
-
- if (i == id || id == ids.size()) {
- continue;
- }
-
- uint32_t nm = 1;
-
- while (i + nm < ids.size() && ids[i + nm] == id + nm) {
- nm++;
- }
-
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
-
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
-
- ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
- n_embd_k_gqa, nm,
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- ggml_row_size(layer.k->type, n_embd_k_gqa*i));
-
- ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
- n_embd_k_gqa, nm,
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- ggml_row_size(layer.k->type, n_embd_k_gqa*id));
-
- ggml_tensor * view_v_src;
- ggml_tensor * view_v_dst;
-
- if (cparams.flash_attn) {
- // NOTE: the V cache is not transposed when using flash attention
- view_v_src = ggml_view_2d(ctx, layer.v,
- n_embd_v_gqa, nm,
- ggml_row_size(layer.v->type, n_embd_v_gqa),
- ggml_row_size(layer.v->type, n_embd_v_gqa*i));
-
- view_v_dst = ggml_view_2d(ctx, layer.v,
- n_embd_v_gqa, nm,
- ggml_row_size(layer.v->type, n_embd_v_gqa),
- ggml_row_size(layer.v->type, n_embd_v_gqa*id));
- } else {
- view_v_src = ggml_view_2d(ctx, layer.v,
- nm, n_embd_v_gqa,
- ggml_row_size(layer.v->type, cells.size()),
- ggml_row_size(layer.v->type, i));
-
- view_v_dst = ggml_view_2d(ctx, layer.v,
- nm, n_embd_v_gqa,
- ggml_row_size(layer.v->type, cells.size()),
- ggml_row_size(layer.v->type, id));
- }
-
- ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
- ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
- }
-
- i += nm - 1;
- }
-
- //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
-#endif
-
- return gf;
-}
-
-llama_kv_cache::defrag_info llama_kv_cache::defrag_prepare(int32_t n_max_nodes) const {
- GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
-
- const auto & cells = v_cells[0];
-
- const uint32_t n_layer = layers.size();
-
- const uint32_t n_kv = cells.used_max_p1();
- const uint32_t n_used = cells.get_used();
-
- assert(n_used <= n_kv);
-
- //const int64_t t_start = ggml_time_us();
-
- // number of cells moved
- uint32_t n_moves = 0;
-
- // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
- // - source view, destination view, copy operation
- // - x2 for keys and values
- //const uint32_t max_moves = max_nodes()/(6*n_layer);
- // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
- const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
-
- // determine which KV cells to move where
- defrag_info res;
- auto & ids = res.ids;
-
- ids.resize(n_kv, n_kv);
-
- for (uint32_t i0 = 0; i0 < n_used; ++i0) {
- if (!cells.is_empty(i0)) {
- ids[i0] = i0;
-
- continue;
- }
-
- // found a hole - fill it with data from the end of the cache
-
- uint32_t nh = 1;
-
- // determine the size of the hole
- while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
- nh++;
- }
-
- uint32_t nf = 0;
- uint32_t is = n_kv - 1;
-
- // starting from the end, find nh non-empty cells
- for (; is > i0; --is) {
- if (cells.is_empty(is) || ids[is] != n_kv) {
- continue;
- }
-
- // non-empty cell which is not yet moved
- nf++;
-
- if (nf == nh) {
- break;
- }
- }
-
- // this can only happen if `n_used` is not accurate, which would be a bug
- GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
-
- nf = 0;
-
- uint32_t i1 = is;
-
- // are we moving a continuous block of memory?
- bool cont = false;
-
- // should we stop searching for the next move?
- bool stop = false;
-
- // go back and move the nf cells to the hole
- for (; i1 < n_kv; ++i1) {
- if (cells.is_empty(i1) || ids[i1] != n_kv) {
- if (n_moves == max_moves) {
- stop = true;
- break;
- }
-
- cont = false;
- continue;
- }
-
- // this cell goes to (i0 + nf)
- ids[i1] = i0 + nf;
-
- if (!cont) {
- n_moves++;
- cont = true;
- }
-
- nf++;
-
- if (nf == nh) {
- break;
- }
- }
-
- if (stop || n_moves == max_moves) {
- break;
- }
-
- //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
-
- i0 += nh - 1;
- }
-
- if (n_moves == 0) {
- return {};
- }
-
- LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
-
- LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
-
- return res;
-}
-
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
assert(p0 >= 0 && p1 >= 0);
llama_kv_cache * kv,
llama_context * lctx,
bool do_shift,
- defrag_info dinfo,
- stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)), sc_info(std::move(sc_info)) {
- if (!do_shift && this->dinfo.empty() && this->sc_info.empty()) {
+ stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) {
+ if (!do_shift && this->sc_info.empty()) {
status = LLAMA_MEMORY_STATUS_NO_UPDATE;
}
}
// no ubatches -> this is a KV cache update
if (ubatches.empty()) {
- kv->update(lctx, do_shift, dinfo, sc_info);
+ kv->update(lctx, do_shift, sc_info);
return true;
}
// this callback is used to filter out layers that should not be included in the cache
using layer_filter_cb = std::function<bool(int32_t il)>;
- struct defrag_info {
- bool empty() const {
- return ids.empty();
- }
-
- // contains information about which cell moves where:
- // - cell i moves to ids[i]
- // - if ids[i] == i || ids[i] == ids.size(), then cell i is not moved
- std::vector<uint32_t> ids;
- };
-
struct stream_copy_info {
bool empty() const {
assert(ssrc.size() == sdst.size());
// return empty vector on failure
slot_info_vec_t prepare(const std::vector<llama_ubatch> & ubatches);
- bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info);
+ bool update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info);
// find a slot of kv cells that can hold the ubatch
// if cont == true, then the slot must be continuous
// model layer id -> KV cache layer id
std::unordered_map<int32_t, int32_t> map_layer_ids;
- // return non-empty vector if cells have been moved
- defrag_info defrag_prepare(int32_t n_max_nodes) const;
-
size_t total_size() const;
size_t size_k_bytes() const;
llm_graph_result * res,
llama_context * lctx) const;
- ggml_cgraph * build_graph_defrag(
- llm_graph_result * res,
- llama_context * lctx,
- const defrag_info & dinfo) const;
-
struct cell_ranges_t {
uint32_t strm;
public:
// some shorthands
using slot_info_vec_t = llama_kv_cache::slot_info_vec_t;
- using defrag_info = llama_kv_cache::defrag_info;
using stream_copy_info = llama_kv_cache::stream_copy_info;
// used for errors
llama_kv_cache * kv,
llama_context * lctx,
bool do_shift,
- defrag_info dinfo,
stream_copy_info sc_info);
// used to create a batch procesing context from a batch
bool do_shift = false;
- defrag_info dinfo;
-
stream_copy_info sc_info;
//
}
// move cell isrc to idst (used during defrag)
- void mv(uint32_t isrc, uint32_t idst) {
- assert(isrc < pos.size());
- assert(idst < pos.size());
+ //void mv(uint32_t isrc, uint32_t idst) {
+ // assert(isrc < pos.size());
+ // assert(idst < pos.size());
- assert(pos[idst] == -1);
- assert(pos[isrc] != -1);
+ // assert(pos[idst] == -1);
+ // assert(pos[isrc] != -1);
- pos [idst] = pos [isrc];
- shift[idst] = shift[isrc];
- seq [idst] = seq [isrc];
+ // pos [idst] = pos [isrc];
+ // shift[idst] = shift[isrc];
+ // seq [idst] = seq [isrc];
- pos [isrc] = -1;
- shift[isrc] = 0;
- seq [isrc].reset();
+ // pos [isrc] = -1;
+ // shift[isrc] = 0;
+ // seq [isrc].reset();
- used.erase (isrc);
- used.insert(idst);
- }
+ // used.erase (isrc);
+ // used.insert(idst);
+ //}
// copy the state of cells [i, i + n) (used for save/restore the state of the cells)
llama_kv_cells cp(uint32_t i, uint32_t n) const {
// simulate full cache, used for allocating worst-case compute buffers
virtual llama_memory_context_ptr init_full() = 0;
- // prepare for any pending memory updates, such as shifts, defrags, etc.
+ // prepare for any pending memory updates, such as shifts, copies, etc.
// status == LLAMA_MEMORY_STATUS_NO_UPDATE if there is nothing to update
virtual llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) = 0;
-ub, --ubatch-size <n> (default: 512)
-ctk, --cache-type-k <t> (default: f16)
-ctv, --cache-type-v <t> (default: f16)
- -dt, --defrag-thold <f> (default: -1)
-t, --threads <n> (default: system dependent)
-C, --cpu-mask <hex,hex> (default: 0x0)
--cpu-strict <0|1> (default: 0)
std::vector<int> n_ubatch;
std::vector<ggml_type> type_k;
std::vector<ggml_type> type_v;
- std::vector<float> defrag_thold;
std::vector<int> n_threads;
std::vector<std::string> cpu_mask;
std::vector<bool> cpu_strict;
/* n_ubatch */ { 512 },
/* type_k */ { GGML_TYPE_F16 },
/* type_v */ { GGML_TYPE_F16 },
- /* defrag_thold */ { -1.0f },
/* n_threads */ { cpu_get_num_math() },
/* cpu_mask */ { "0x0" },
/* cpu_strict */ { false },
join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv, --cache-type-v <t> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
- printf(" -dt, --defrag-thold <f> (default: %s)\n",
- join(cmd_params_defaults.defrag_thold, ",").c_str());
printf(" -t, --threads <n> (default: %s)\n",
join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
break;
}
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
- } else if (arg == "-dt" || arg == "--defrag-thold") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = string_split<float>(argv[i], split_delim);
- params.defrag_thold.insert(params.defrag_thold.end(), p.begin(), p.end());
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
if (params.type_v.empty()) {
params.type_v = cmd_params_defaults.type_v;
}
- if (params.defrag_thold.empty()) {
- params.defrag_thold = cmd_params_defaults.defrag_thold;
- }
if (params.n_gpu_layers.empty()) {
params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
}
int n_ubatch;
ggml_type type_k;
ggml_type type_v;
- float defrag_thold;
int n_threads;
std::string cpu_mask;
bool cpu_strict;
cparams.n_ubatch = n_ubatch;
cparams.type_k = type_k;
cparams.type_v = type_v;
- cparams.defrag_thold = defrag_thold;
cparams.offload_kqv = !no_kv_offload;
cparams.flash_attn = flash_attn;
cparams.embeddings = embeddings;
for (const auto & nub : params.n_ubatch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
- for (const auto & defrag_thold : params.defrag_thold)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & fa : params.flash_attn)
for (const auto & nt : params.n_threads)
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
- /* .defrag_thold = */ defrag_thold,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
- /* .defrag_thold = */ defrag_thold,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
- /* .defrag_thold = */ defrag_thold,
/* .n_threads = */ nt,
/* .cpu_mask = */ cm,
/* .cpu_strict = */ cs,
int poll;
ggml_type type_k;
ggml_type type_v;
- float defrag_thold;
int n_gpu_layers;
llama_split_mode split_mode;
int main_gpu;
poll = inst.poll;
type_k = inst.type_k;
type_v = inst.type_v;
- defrag_thold = inst.defrag_thold;
n_gpu_layers = inst.n_gpu_layers;
split_mode = inst.split_mode;
main_gpu = inst.main_gpu;
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
- "defrag_thold",
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth", "test_time",
"avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
};
field == "use_mmap" || field == "embeddings") {
return BOOL;
}
- if (field == "avg_ts" || field == "stddev_ts" || field == "defrag_thold") {
+ if (field == "avg_ts" || field == "stddev_ts") {
return FLOAT;
}
return STRING;
std::to_string(flash_attn),
tensor_split_str,
tensor_buft_overrides_str,
- std::to_string(defrag_thold),
std::to_string(use_mmap),
std::to_string(embeddings),
std::to_string(no_op_offload),
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
fields.emplace_back("type_v");
}
- if (params.defrag_thold.size() > 1 || params.defrag_thold != cmd_params_defaults.defrag_thold) {
- fields.emplace_back("defrag_thold");
- }
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.emplace_back("main_gpu");
}
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
-| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: 0.1, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
+| `-dt, --defrag-thold N` | KV cache defragmentation threshold (DEPRECATED)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
server_args.extend(['--batch-size', args.batch_size])
server_args.extend(['--ubatch-size', args.ubatch_size])
server_args.extend(['--n-predict', args.max_tokens * 2])
- server_args.extend(['--defrag-thold', "0.1"])
server_args.append('--cont-batching')
server_args.append('--metrics')
server_args.append('--flash-attn')