--- /dev/null
+#include "conv2d-dw.cuh"
+
+struct conv_params {
+ int in_w, in_h;
+ int out_w, out_h;
+ int kernel_w, kernel_h;
+ int stride_x, stride_y;
+ int padding_x, padding_y;
+ int dilation_x, dilation_y;
+ int channels, batches;
+};
+
+struct kernel_bounds {
+ int y_min, y_max;
+ int x_min, x_max;
+};
+
+__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int out_x, int out_y, const conv_params & params) {
+ kernel_bounds bounds;
+ bounds.y_min = max(0, (params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
+ bounds.y_max =
+ min(params.kernel_h,
+ (params.in_h + params.padding_y - out_y * params.stride_y + params.dilation_y - 1) / params.dilation_y);
+ bounds.x_min = max(0, (params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
+ bounds.x_max =
+ min(params.kernel_w,
+ (params.in_w + params.padding_x - out_x * params.stride_x + params.dilation_x - 1) / params.dilation_x);
+ return bounds;
+}
+
+__device__ __forceinline__ int calculate_input_coord(int out_coord, int kern_coord, int stride, int dilation, int padding) {
+ return out_coord * stride + kern_coord * dilation - padding;
+}
+
+struct whcn_layout {
+ __device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
+ return n * (params.channels * params.in_w * params.in_h) + c * params.in_w * params.in_h + y * params.in_w + x;
+ }
+
+ __device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
+ return c * params.kernel_h * params.kernel_w + ky * params.kernel_w + kx;
+ }
+
+ __device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
+ return n * (params.channels * params.out_w * params.out_h) + c * params.out_w * params.out_h +
+ y * params.out_w + x;
+ }
+
+ __device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
+ int & out_x) {
+ out_x = global_idx % params.out_w;
+ out_y = (global_idx / params.out_w) % params.out_h;
+ c = (global_idx / (params.out_w * params.out_h)) % params.channels;
+ n = global_idx / (params.out_w * params.out_h * params.channels);
+ }
+};
+
+struct cwhn_layout {
+ __device__ static int input_index(int n, int c, int y, int x, const conv_params & params) {
+ return n * (params.channels * params.in_w * params.in_h) + (y * params.in_w + x) * params.channels + c;
+ }
+
+ __device__ static int kernel_index(int c, int ky, int kx, const conv_params & params) {
+ return (ky * params.kernel_w + kx) * params.channels + c;
+ }
+
+ __device__ static int output_index(int n, int c, int y, int x, const conv_params & params) {
+ return n * (params.channels * params.out_w * params.out_h) + y * (params.out_w * params.channels) +
+ x * params.channels + c;
+ }
+
+ __device__ static void unpack_indices(int global_idx, const conv_params & params, int & n, int & c, int & out_y,
+ int & out_x) {
+ c = global_idx % params.channels;
+ out_x = (global_idx / params.channels) % params.out_w;
+ out_y = (global_idx / (params.channels * params.out_w)) % params.out_h;
+ n = global_idx / (params.channels * params.out_w * params.out_h);
+ }
+};
+
+template <typename T, typename Layout>
+__global__ void conv2d_dw_kernel(const T * __restrict__ input, const T * __restrict__ kernel, T * __restrict__ output,
+ const int in_w, const int in_h, const int out_w, const int out_h,
+ const int kernel_w, const int kernel_h, const int stride_x, const int stride_y,
+ const int padding_x, const int padding_y, const int dilation_x, const int dilation_y,
+ const int channels, const int batches) {
+ const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
+ const int total_elements = batches * channels * out_h * out_w;
+
+ if (global_idx >= total_elements) {
+ return;
+ }
+
+ conv_params params = { in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x,
+ stride_y, padding_x, padding_y, dilation_x, dilation_y, channels, batches };
+
+ int batch_idx, channel_idx, out_y_idx, out_x_idx;
+ Layout::unpack_indices(global_idx, params, batch_idx, channel_idx, out_y_idx, out_x_idx);
+
+ T accumulator = 0;
+ kernel_bounds bounds = calculate_kernel_bounds(out_x_idx, out_y_idx, params);
+
+ for (int kern_y = bounds.y_min; kern_y < bounds.y_max; ++kern_y) {
+ int in_y_idx = calculate_input_coord(out_y_idx, kern_y, params.stride_y, params.dilation_y, params.padding_y);
+
+ for (int kern_x = bounds.x_min; kern_x < bounds.x_max; ++kern_x) {
+ int in_x_idx = calculate_input_coord(out_x_idx, kern_x, params.stride_x, params.dilation_x, params.padding_x);
+
+ const T input_val = input[Layout::input_index(batch_idx, channel_idx, in_y_idx, in_x_idx, params)];
+ const T kernel_val = kernel[Layout::kernel_index(channel_idx, kern_y, kern_x, params)];
+
+ accumulator += input_val * kernel_val;
+ }
+ }
+
+ output[Layout::output_index(batch_idx, channel_idx, out_y_idx, out_x_idx, params)] = accumulator;
+}
+
+void ggml_cuda_op_conv2d_dw(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * kernel = dst->src[0];
+ const ggml_tensor * input = dst->src[1];
+
+ GGML_ASSERT(kernel->type == GGML_TYPE_F32 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
+ const float * w_d = (const float *) kernel->data;
+ const float * x_d = (const float *) input->data;
+ float * y_d = (float *) dst->data;
+
+ const int32_t * p = (const int32_t *) dst->op_params;
+ const int stride_x = p[0];
+ const int stride_y = p[1];
+ const int padding_x = p[2];
+ const int padding_y = p[3];
+ const int dilation_x = p[4];
+ const int dilation_y = p[5];
+
+ const int in_w = input->ne[0];
+ const int in_h = input->ne[1];
+ const int kernel_w = kernel->ne[0];
+ const int kernel_h = kernel->ne[1];
+ const int out_w = dst->ne[0];
+ const int out_h = dst->ne[1];
+ const int channels = dst->ne[2];
+ const int batches = dst->ne[3];
+
+ cudaStream_t st = ctx.stream();
+
+ const int total = batches * channels * out_h * out_w;
+ const int blocks = (total + CUDA_CONV2D_DW_BLOCK_SIZE - 1) / CUDA_CONV2D_DW_BLOCK_SIZE;
+
+ if (ggml_is_contiguous(input)) {
+ conv2d_dw_kernel<float, whcn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
+ x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
+ dilation_x, dilation_y, channels, batches);
+ } else if (ggml_is_contiguous_channels(input)) {
+ conv2d_dw_kernel<float, cwhn_layout><<<blocks, CUDA_CONV2D_DW_BLOCK_SIZE, 0, st>>>(
+ x_d, w_d, y_d, in_w, in_h, out_w, out_h, kernel_w, kernel_h, stride_x, stride_y, padding_x, padding_y,
+ dilation_x, dilation_y, channels, batches);
+ } else {
+ GGML_ABORT("Unsupported memory layout for conv_2d_dw");
+ }
+}