]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
[CANN] get_rows and dup optimization (#12671)
authorChenguang Li <redacted>
Wed, 2 Apr 2025 07:22:13 +0000 (15:22 +0800)
committerGitHub <redacted>
Wed, 2 Apr 2025 07:22:13 +0000 (15:22 +0800)
* [CANN]get_rows and dup optimization.

Co-authored-by: hipudding <redacted>
Signed-off-by: noemotiovon <redacted>
* [CANN]GET_ROWS and CPY/DUP optimization

Co-authored-by: hipudding <redacted>
Signed-off-by: noemotiovon <redacted>
* [CANN]code style adjustment

Signed-off-by: noemotiovon <redacted>
* [CANN]code style adjustment

Signed-off-by: noemotiovon <redacted>
* [CANN]code style adjustment

Signed-off-by: noemotiovon <redacted>
* [CANN]code style adjustment

Signed-off-by: noemotiovon <redacted>
---------

Signed-off-by: noemotiovon <redacted>
Co-authored-by: noemotiovon <redacted>
Co-authored-by: hipudding <redacted>
13 files changed:
ggml/src/ggml-cann/CMakeLists.txt
ggml/src/ggml-cann/aclnn_ops.cpp
ggml/src/ggml-cann/ggml-cann.cpp
ggml/src/ggml-cann/kernels/CMakeLists.txt [deleted file]
ggml/src/ggml-cann/kernels/ascendc_kernels.h [deleted file]
ggml/src/ggml-cann/kernels/dup.cpp [deleted file]
ggml/src/ggml-cann/kernels/get_row_f16.cpp [deleted file]
ggml/src/ggml-cann/kernels/get_row_f32.cpp [deleted file]
ggml/src/ggml-cann/kernels/get_row_q4_0.cpp [deleted file]
ggml/src/ggml-cann/kernels/get_row_q8_0.cpp [deleted file]
ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp [deleted file]
ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp [deleted file]
ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp [deleted file]

index 05cf06bfab4fc3639549e59b33ec6a9e33c29acd..0d8e483b291c79e6b1391f191c8faa064de91eba 100644 (file)
@@ -51,13 +51,11 @@ if (CANN_INSTALL_DIR)
         ${CANN_INSTALL_DIR}/acllib/include
     )
 
-    add_subdirectory(kernels)
     list(APPEND CANN_LIBRARIES
         ascendcl
         nnopbase
         opapi
         acl_op_compiler
-        ascendc_kernels
     )
 
     file(GLOB GGML_SOURCES_CANN "*.cpp")
index 6bb5d0834919724b3b3c36f3c059188499fe9b4a..8482bb53761f4f9ff0772359c05212b023e54442 100644 (file)
@@ -30,6 +30,7 @@
 #include <aclnnop/aclnn_copy.h>
 #include <aclnnop/aclnn_cos.h>
 #include <aclnnop/aclnn_div.h>
+#include <aclnnop/aclnn_embedding.h>
 #include <aclnnop/aclnn_exp.h>
 #include <aclnnop/aclnn_fill_scalar.h>
 #include <aclnnop/aclnn_group_norm.h>
@@ -58,7 +59,6 @@
 #include <vector>
 
 #include "ggml-impl.h"
-#include "kernels/ascendc_kernels.h"
 
 #define GGML_COMMON_DECL_C
 
@@ -99,6 +99,35 @@ static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src,
     ACL_CHECK(aclDestroyIntArray(repeats));
 }
 
+/**
+ * @brief Casts the elements of a tensor to a specified data type using the CANN backend.
+ *
+ * @details This function performs a type conversion on the elements of the input tensor `acl_src`
+ *          and stores the results in the destination tensor `acl_dst`. The conversion type is
+ *          determined based on the `dst` tensor's data type.
+ *
+ * @param ctx The context for the CANN backend operations.
+ * @param acl_src The source tensor whose elements will be cast.
+ * @param acl_dst The destination tensor that will store the casted elements.
+ * @param dst The ggml tensor specifying the target data type.
+ */
+static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src,
+                    aclTensor* acl_dst, ggml_tensor* dst) {
+    uint64_t workspaceSize = 0;
+    aclOpExecutor* executor;
+    void* workspaceAddr = nullptr;
+    ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src,
+                                        ggml_cann_type_mapping(dst->type),
+                                        acl_dst, &workspaceSize, &executor));
+
+    if (workspaceSize > 0) {
+        ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
+        workspaceAddr = workspace_allocator.get();
+    }
+
+    ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
+}
+
 void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
     ggml_tensor* src = dst->src[0];
     GGML_ASSERT(ggml_can_repeat(src, dst));
@@ -889,173 +918,76 @@ static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src,
 }
 
 void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
-    ggml_tensor* src = dst->src[0];
+    ggml_tensor* src0 = dst->src[0];
 
-    aclTensor* acl_src = ggml_cann_create_tensor(src);
+    aclTensor* acl_src = ggml_cann_create_tensor(src0);
     aclTensor* acl_dst = ggml_cann_create_tensor(dst);
-
-    ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
-    ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
-    src->extra = src_extra_allocator.get();
-    dst->extra = dst_extra_allocator.get();
-    ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src,
-                               sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
-                               ctx.stream()));
-    ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
-                               sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
-                               ctx.stream()));
-
-    if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) &&
-        ggml_are_same_shape(src, dst)) {
-        cann_copy(ctx, acl_src, acl_dst);
-        ACL_CHECK(aclDestroyTensor(acl_src));
-        ACL_CHECK(aclDestroyTensor(acl_dst));
-        return;
-    }
-    // TODO: simplify
-    if (src->type == GGML_TYPE_F16) {
-        if (dst->type == GGML_TYPE_Q8_0) {
-            aclrtlaunch_ascendc_quantize_f16_q8_0(
-                24, ctx.stream(), src->data, dst->data,
-                ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
-                ((ggml_tensor*)dst->extra)->ne);
-            return;
-        }
-        if (dst->type == GGML_TYPE_Q4_0) {
-            aclrtlaunch_ascendc_quantize_f16_to_q4_0(
-                24, ctx.stream(), src->data, dst->data,
-                ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
-                ((ggml_tensor*)dst->extra)->ne);
-            return;
-        }
-        if (dst->type == GGML_TYPE_F16) {
-            if (ggml_are_same_shape(src, dst)) {
-                cann_copy(ctx, acl_src, acl_dst);
-                ACL_CHECK(aclDestroyTensor(acl_src));
-                ACL_CHECK(aclDestroyTensor(acl_dst));
-                return;
-            }
-            if (ggml_is_contiguous(dst)) {
-                const size_t src_type_size = ggml_type_size(src->type);
-                if (src->nb[0] == src_type_size) {
-                    // src0 is contigous on first dimension, copy by rows
-                    int64_t rows_num = ggml_nrows(src);
-
-                    aclrtlaunch_ascendc_dup_by_rows_fp16(
-                        rows_num, ctx.stream(), src->data, dst->data,
-                        ((ggml_tensor*)src->extra)->ne,
-                        ((ggml_tensor*)src->extra)->nb,
-                        ((ggml_tensor*)dst->extra)->ne,
-                        ((ggml_tensor*)dst->extra)->nb);
-                    return;
-                }
-                GGML_ABORT("fatal error");
-            }
-            GGML_ABORT("fatal error");
-        }
-        if (dst->type == GGML_TYPE_F32) {
-            if (ggml_are_same_shape(src, dst)) {
-                cann_copy(ctx, acl_src, acl_dst);
-                ACL_CHECK(aclDestroyTensor(acl_src));
-                ACL_CHECK(aclDestroyTensor(acl_dst));
-                return;
-            }
-            if (ggml_is_contiguous(dst)) {
-                const size_t src_type_size = ggml_type_size(src->type);
-                if (src->nb[0] == src_type_size) {
-                    // src0 is contigous on first dimension, copy by rows
-                    int64_t rows_num = ggml_nrows(src);
-                    aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32(
-                        rows_num, ctx.stream(), src->data, dst->data,
-                        ((ggml_tensor*)src->extra)->ne,
-                        ((ggml_tensor*)src->extra)->nb,
-                        ((ggml_tensor*)dst->extra)->ne,
-                        ((ggml_tensor*)dst->extra)->nb);
-                    return;
-                }
-                GGML_ABORT("fatal error");
-            }
-            GGML_ABORT("fatal error");
-        }
-        // TODO
-        GGML_ABORT("fatal error");
-    } else if (src->type == GGML_TYPE_F32) {
-        // TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size
-        //          && nb0 == type_size)
-        if (dst->type == GGML_TYPE_Q8_0) {
-            aclrtlaunch_ascendc_quantize_f32_q8_0(
-                24, ctx.stream(), src->data, dst->data,
-                ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
-                ((ggml_tensor*)dst->extra)->ne);
-            return;
-        }
-        if (dst->type == GGML_TYPE_Q4_0) {
-            aclrtlaunch_ascendc_quantize_f32_to_q4_0(
-                24, ctx.stream(), src->data, dst->data,
-                ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
-                ((ggml_tensor*)dst->extra)->ne);
-            return;
+    if (ggml_are_same_shape(src0, dst)) {
+        if (dst->type == src0->type) {
+            cann_copy(ctx, acl_src, acl_dst);
+        } else {
+            aclnn_cast(ctx, acl_src, acl_dst, dst);
         }
-        if (dst->type == GGML_TYPE_F32) {
-            if (ggml_are_same_shape(src, dst)) {
-                cann_copy(ctx, acl_src, acl_dst);
-                ACL_CHECK(aclDestroyTensor(acl_src));
-                ACL_CHECK(aclDestroyTensor(acl_dst));
+    } else {
+        if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
+            if (dst->type == src0->type) {
+                size_t cpy_size = ggml_nbytes(dst);
+                ACL_CHECK(aclrtMemcpyAsync(
+                    dst->data, cpy_size, src0->data, cpy_size,
+                    ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
                 return;
-            }
-            if (ggml_is_contiguous(dst)) {
-                const size_t src_type_size = ggml_type_size(src->type);
-                if (src->nb[0] == src_type_size) {
-                    // src0 is contigous on first dimension, copy by rows
-                    int64_t rows_num = ggml_nrows(src);
-                    aclrtlaunch_ascendc_dup_by_rows_fp32(
-                        rows_num, ctx.stream(), src->data, dst->data,
-                        ((ggml_tensor*)src->extra)->ne,
-                        ((ggml_tensor*)src->extra)->nb,
-                        ((ggml_tensor*)dst->extra)->ne,
-                        ((ggml_tensor*)dst->extra)->nb);
-                    return;
-                }
-                GGML_ABORT("fatal error");
             } else {
-                // TODO: dst not contiguous
-                GGML_ABORT("fatal error");
-            }
-        }
-        if (dst->type == GGML_TYPE_F16) {
-            if (ggml_are_same_shape(src, dst)) {
-                cann_copy(ctx, acl_src, acl_dst);
-                ACL_CHECK(aclDestroyTensor(acl_src));
-                ACL_CHECK(aclDestroyTensor(acl_dst));
+                ggml_cann_pool_alloc src_buffer_allocator(
+                    ctx.pool(),
+                    ggml_nelements(dst) * ggml_type_size(dst->type));
+                void* src_trans_buffer = src_buffer_allocator.get();
+                size_t src_trans_nb[GGML_MAX_DIMS];
+                src_trans_nb[0] = ggml_type_size(dst->type);
+                for (int i = 1; i < GGML_MAX_DIMS; i++) {
+                    src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
+                }
+                aclTensor* src_trans_tensor = ggml_cann_create_tensor(
+                    src_trans_buffer, ggml_cann_type_mapping(dst->type),
+                    ggml_type_size(dst->type), src0->ne, src_trans_nb,
+                    GGML_MAX_DIMS);
+
+                aclnn_cast(ctx, acl_src, src_trans_tensor, dst);
+                size_t cpy_size = ggml_nbytes(dst);
+                ACL_CHECK(aclrtMemcpyAsync(
+                    dst->data, cpy_size, src_trans_buffer, cpy_size,
+                    ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
+                ACL_CHECK(aclDestroyTensor(src_trans_tensor));
                 return;
             }
-            if (ggml_is_contiguous(dst)) {
-                const size_t src_type_size = ggml_type_size(src->type);
-                if (src->nb[0] == src_type_size) {
-                    // src0 is contigous on first dimension, copy by rows
-                    int64_t rows_num = ggml_nrows(src);
-                    aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16(
-                        rows_num, ctx.stream(), src->data, dst->data,
-                        ((ggml_tensor*)src->extra)->ne,
-                        ((ggml_tensor*)src->extra)->nb,
-                        ((ggml_tensor*)dst->extra)->ne,
-                        ((ggml_tensor*)dst->extra)->nb);
-                    return;
-                }
-                GGML_ABORT("fatal error");
+        } else if (ggml_is_contiguous(dst)) {
+            ggml_cann_pool_alloc src_buffer_allocator(
+                ctx.pool(), ggml_nelements(dst) * ggml_type_size(dst->type));
+            void* src_trans_buffer = src_buffer_allocator.get();
+            size_t src_trans_nb[GGML_MAX_DIMS];
+            src_trans_nb[0] = ggml_type_size(dst->type);
+            for (int i = 1; i < GGML_MAX_DIMS; i++) {
+                src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
             }
-        }
-        // TODO
-        GGML_ABORT("fatal error");
-    } else {
-        if (ggml_are_same_shape(src, dst)) {
-            cann_copy(ctx, acl_src, acl_dst);
-            ACL_CHECK(aclDestroyTensor(acl_src));
-            ACL_CHECK(aclDestroyTensor(acl_dst));
+            aclTensor* src_trans_tensor = ggml_cann_create_tensor(
+                src_trans_buffer, ggml_cann_type_mapping(dst->type),
+                ggml_type_size(dst->type), src0->ne, src_trans_nb,
+                GGML_MAX_DIMS);
+
+            aclnn_cast(ctx, acl_src, src_trans_tensor, dst);
+
+            size_t cpy_size = ggml_nbytes(dst);
+            ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src_trans_buffer,
+                                       cpy_size, ACL_MEMCPY_DEVICE_TO_DEVICE,
+                                       ctx.stream()));
+            ACL_CHECK(aclDestroyTensor(src_trans_tensor));
             return;
+        } else {
+            GGML_ABORT("Unsupport dst is not tontiguous.");
         }
-        GGML_ABORT("fatal error");
     }
+
+    ACL_CHECK(aclDestroyTensor(acl_src));
+    ACL_CHECK(aclDestroyTensor(acl_dst));
 }
 
 #ifdef __cplusplus
@@ -2378,85 +2310,168 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
     ACL_CHECK(aclDestroyTensor(tmp_mask_tensor));
 }
 
-void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
-    ggml_tensor* src0 = dst->src[0];
-    ggml_tensor* src1 = dst->src[1];
+/**
+ * @brief Performs embedding operation on a 4D tensor using the CANN backend.
+ *
+ * This function extracts slices from the source tensor (`src_buffer`),
+ * index tensor (`index`), and destination tensor (`dst`), and performs an
+ * embedding operation on them. The embedding operation is applied by iterating
+ * over the last two dimensions of the source tensor, creating the necessary
+ * tensors for the source, index, and output, and executing the embedding operation.
+ *
+ * @param ctx The context for CANN backend operations.
+ * @param src_buffer The source buffer holding the data for the source tensor.
+ * @param src_ne The dimensions of the source tensor.
+ * @param src_nb The strides (byte offsets) of the source tensor.
+ * @param index The index tensor used in the embedding operation.
+ * @param dst The destination tensor where the result will be stored.
+ */
+static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
+                            int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
+                            ggml_tensor* dst) {
+    for (int64_t i = 0; i < src_ne[3]; i++) {
+        for (int64_t j = 0; j < src_ne[2]; j++) {
+            // src
+            int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
+            size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
+            aclTensor* acl_src_tensor = ggml_cann_create_tensor(
+                (char*)src_buffer + i * src_nb[3] + j * src_nb[2],
+                ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
+                acl_src_ne, acl_src_nb, 2);
+
+            // index
+            int64_t acl_index_ne[1] = {index->ne[0]};
+            size_t acl_index_nb[1] = {index->nb[0]};
+            aclTensor* acl_index = ggml_cann_create_tensor(
+                (char*)index->data + i * index->nb[2] + j * index->nb[1],
+                ggml_cann_type_mapping(index->type), ggml_element_size(index),
+                acl_index_ne, acl_index_nb, 1);
+
+            // out
+            int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
+            size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
+            aclTensor* acl_out = ggml_cann_create_tensor(
+                (char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
+                ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
+                acl_out_ne, acl_out_nb, 2);
+
+            uint64_t workspaceSize = 0;
+            aclOpExecutor* executor;
+            void* workspaceAddr = nullptr;
+
+            ACL_CHECK(aclnnEmbeddingGetWorkspaceSize(
+                acl_src_tensor, acl_index, acl_out, &workspaceSize, &executor));
+
+            if (workspaceSize > 0) {
+                ggml_cann_pool_alloc workspace_allocator(ctx.pool(),
+                                                         workspaceSize);
+                workspaceAddr = workspace_allocator.get();
+            }
+
+            ACL_CHECK(aclnnEmbedding(workspaceAddr, workspaceSize, executor,
+                                     ctx.stream()));
+
+            ACL_CHECK(aclDestroyTensor(acl_src_tensor));
+            ACL_CHECK(aclDestroyTensor(acl_index));
+            ACL_CHECK(aclDestroyTensor(acl_out));
+        }
+    }
+}
 
-    ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
-    ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
-    ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
-    src0->extra = src0_extra_allocator.get();
-    src1->extra = src1_extra_allocator.get();
-    dst->extra = dst_extra_allocator.get();
-    ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0,
-                               sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
-                               ctx.stream()));
-    ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1,
-                               sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
-                               ctx.stream()));
-    ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
-                               sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
-                               ctx.stream()));
+void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+    ggml_tensor* src0 = dst->src[0];  // src
+    ggml_tensor* src1 = dst->src[1];  // index
 
     switch (src0->type) {
         case GGML_TYPE_F32: {
-#ifdef ASCEND_310P
-            // Special operation for get_row_f32 kernel of 310P: clear the
-            // content of dest data buffer when row is not aligned to 32 bytes
-            if ((src0->ne[0] % 8) != 0) {
-                size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] *
-                                 src0->ne[0] * ggml_type_size(GGML_TYPE_F32);
-                ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
-            }
-#endif
-            aclrtlaunch_ascendc_get_row_f32(
-                24, ctx.stream(), src0->data, src1->data, dst->data,
-                ((ggml_tensor*)src0->extra)->ne,
-                ((ggml_tensor*)src0->extra)->nb,
-                ((ggml_tensor*)src1->extra)->ne,
-                ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
-                ((ggml_tensor*)dst->extra)->nb);
+            aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
+                                   dst);
             break;
         }
         case GGML_TYPE_F16: {
-#ifdef ASCEND_310P
-            // Special operation for get_row_f16 kernel of 310P: clear the
-            // content of dest data buffer when row is not aligned to 32 bytes
-            if ((src0->ne[0] % 16) != 0) {
-                size_t dst_len =
-                    src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] *
-                    ggml_type_size(
-                        GGML_TYPE_F32);  // out is also f32, even input is f16
-                ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
+            aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
+            ggml_cann_pool_alloc src_buffer_allocator(
+                ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
+            void* src_trans_buffer = src_buffer_allocator.get();
+            size_t src_trans_nb[GGML_MAX_DIMS];
+            src_trans_nb[0] = sizeof(float_t);
+            for (int i = 1; i < GGML_MAX_DIMS; i++) {
+                src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
             }
-#endif
-            aclrtlaunch_ascendc_get_row_f16(
-                24, ctx.stream(), src0->data, src1->data, dst->data,
-                ((ggml_tensor*)src0->extra)->ne,
-                ((ggml_tensor*)src0->extra)->nb,
-                ((ggml_tensor*)src1->extra)->ne,
-                ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
-                ((ggml_tensor*)dst->extra)->nb);
+            aclTensor* src_trans_tensor = ggml_cann_create_tensor(
+                src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
+                src0->ne, src_trans_nb, GGML_MAX_DIMS);
+            aclnn_cast(ctx, acl_src0, src_trans_tensor, dst);
+            aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
+                                   src_trans_nb, src1, dst);
+            ACL_CHECK(aclDestroyTensor(acl_src0));
+            ACL_CHECK(aclDestroyTensor(src_trans_tensor));
             break;
         }
-        case GGML_TYPE_Q4_0:
-            aclrtlaunch_ascendc_get_row_q4_0(
-                24, ctx.stream(), src0->data, src1->data, dst->data,
-                ((ggml_tensor*)src0->extra)->ne,
-                ((ggml_tensor*)src1->extra)->ne,
-                ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
-                ((ggml_tensor*)dst->extra)->nb);
-            break;
-        case GGML_TYPE_Q8_0:
-            aclrtlaunch_ascendc_get_row_q8_0(
-                24, ctx.stream(), src0->data, src1->data, dst->data,
-                ((ggml_tensor*)src0->extra)->ne,
-                ((ggml_tensor*)src1->extra)->ne,
-                ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
-                ((ggml_tensor*)dst->extra)->nb);
+        case GGML_TYPE_Q8_0: {
+            // add 1 dim for bcast mul.
+            size_t weight_nb[GGML_MAX_DIMS + 1], scale_nb[GGML_MAX_DIMS + 1],
+                dequant_nb[GGML_MAX_DIMS + 1];
+            int64_t weight_ne[GGML_MAX_DIMS + 1], scale_ne[GGML_MAX_DIMS + 1],
+                *dequant_ne;
+            int64_t scale_offset = 0;
+
+            // [3,4,5,64] -> [3,4,5,2,32]
+            weight_ne[0] = QK8_0;
+            weight_ne[1] = src0->ne[0] / QK8_0;
+            weight_nb[0] = sizeof(int8_t);
+            weight_nb[1] = weight_nb[0] * weight_ne[0];
+            for (int i = 2; i < GGML_MAX_DIMS + 1; i++) {
+                weight_ne[i] = src0->ne[i - 1];
+                weight_nb[i] = weight_nb[i - 1] * weight_ne[i - 1];
+            }
+
+            // [3,4,5,64] -> [3,4,5,2,1]
+            scale_ne[0] = 1;
+            scale_ne[1] = src0->ne[0] / QK8_0;
+            scale_nb[0] = sizeof(uint16_t);
+            scale_nb[1] = scale_nb[0] * scale_ne[0];
+            for (int i = 2; i < GGML_MAX_DIMS + 1; i++) {
+                scale_ne[i] = src0->ne[i - 1];
+                scale_nb[i] = scale_nb[i - 1] * scale_ne[i - 1];
+            }
+
+            // [3,4,5,64] -> [3,4,5,2,32]
+            dequant_ne = weight_ne;
+            dequant_nb[0] = sizeof(float_t);
+            for (int i = 1; i < GGML_MAX_DIMS + 1; i++) {
+                dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1];
+            }
+
+            scale_offset = ggml_nelements(src0) * sizeof(int8_t);
+            ggml_cann_pool_alloc dequant_buffer_allocator(
+                ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
+
+            aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
+                src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb,
+                GGML_MAX_DIMS + 1);
+            aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
+                src0->data, ACL_FLOAT16, sizeof(float16_t), scale_ne, scale_nb,
+                GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset);
+            aclTensor* dequant_tensor = ggml_cann_create_tensor(
+                dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t),
+                dequant_ne, dequant_nb, GGML_MAX_DIMS + 1);
+
+            aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
+            dequant_nb[0] = sizeof(float_t);
+            dequant_ne = src0->ne;
+            for (int i = 1; i < GGML_MAX_DIMS; i++) {
+                dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
+            }
+
+            aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
+                                   dequant_ne, dequant_nb, src1, dst);
+
+            ACL_CHECK(aclDestroyTensor(dequant_tensor));
             break;
+        }
         default:
-            GGML_ABORT("fatal error");
+            GGML_ABORT("Unsupported tensor type for GGML_OP_GET_ROWS");
             break;
     }
 }
@@ -2797,8 +2812,8 @@ static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
 
             ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
                 acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
-                nullptr, nullptr, nullptr, antiquantGroupSize, acl_output_tensor,
-                &workspaceSize, &executor));
+                nullptr, nullptr, nullptr, antiquantGroupSize,
+                acl_output_tensor, &workspaceSize, &executor));
             if (workspaceAddr == nullptr) {
                 workspaceAddr = workspace_allocator.alloc(workspaceSize);
             }
index 68cd9920d1ace75dc5c6504ff7828563ade9c9d3..da75f77f511a8f31feaa5be9c2d6fe5b57062006 100644 (file)
@@ -1704,7 +1704,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
             switch (op->src[0]->type) {
                 case GGML_TYPE_F32:
                 case GGML_TYPE_F16:
-                case GGML_TYPE_Q4_0:
                 case GGML_TYPE_Q8_0:
                     return true;
                 default:
@@ -1712,16 +1711,21 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
             }
         } break;
         case GGML_OP_CPY: {
-            switch (op->type) {
-                case GGML_TYPE_F32:
-                case GGML_TYPE_F16:
-                case GGML_TYPE_Q8_0:
-                case GGML_TYPE_Q4_0:
-                    return true;
-                default:
-                    return false;
+            ggml_tensor *src = op->src[0];
+            if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
+                  (src->type != GGML_TYPE_F32 &&
+                    src->type != GGML_TYPE_F16)) {
+                // only support F32 and F16.
+                return false;
             }
-        }
+
+            if (!ggml_are_same_shape(op, src) && !ggml_is_contiguous(op)) {
+                // unsupport dst is not contiguous.
+                return false;
+            }
+
+            return true;
+        } break;
         case GGML_OP_CONT: {
             // TODO: support GGML_TYPE_BF16
             switch (op->src[0]->type) {
@@ -1762,9 +1766,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
             }
             return true;
         }
+        case GGML_OP_DUP:
         case GGML_OP_IM2COL:
         case GGML_OP_CONCAT:
-        case GGML_OP_DUP:
         case GGML_OP_REPEAT:
         case GGML_OP_NONE:
         case GGML_OP_RESHAPE:
diff --git a/ggml/src/ggml-cann/kernels/CMakeLists.txt b/ggml/src/ggml-cann/kernels/CMakeLists.txt
deleted file mode 100644 (file)
index d687220..0000000
+++ /dev/null
@@ -1,30 +0,0 @@
-file(GLOB SRC_FILES
-    get_row_f32.cpp
-    get_row_f16.cpp
-    get_row_q4_0.cpp
-    get_row_q8_0.cpp
-    quantize_f32_q8_0.cpp
-    quantize_f16_q8_0.cpp
-    quantize_float_to_q4_0.cpp
-    dup.cpp
-)
-
-set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
-set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
-
-if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
-    set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
-elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
-    set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
-else()
-    message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
-endif()
-include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
-
-ascendc_library(ascendc_kernels STATIC
-    ${SRC_FILES}
-)
-
-message(STATUS "CANN: compile ascend kernels witch SOC_TYPE:${SOC_TYPE}, SOC_VERSION:${SOC_VERSION}, compile macro:-D${SOC_TYPE_COMPILE_OPTION}.")
-ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
-# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
diff --git a/ggml/src/ggml-cann/kernels/ascendc_kernels.h b/ggml/src/ggml-cann/kernels/ascendc_kernels.h
deleted file mode 100644 (file)
index 7e15320..0000000
+++ /dev/null
@@ -1,19 +0,0 @@
-#ifndef ASCENDC_KERNELS_H
-#define ASCENDC_KERNELS_H
-
-#include "aclrtlaunch_ascendc_get_row_f32.h"
-#include "aclrtlaunch_ascendc_get_row_f16.h"
-#include "aclrtlaunch_ascendc_get_row_q8_0.h"
-#include "aclrtlaunch_ascendc_get_row_q4_0.h"
-
-#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
-#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
-#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
-#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
-
-#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
-#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
-#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
-#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
-
-#endif  // ASCENDC_KERNELS_H
diff --git a/ggml/src/ggml-cann/kernels/dup.cpp b/ggml/src/ggml-cann/kernels/dup.cpp
deleted file mode 100644 (file)
index d9b9574..0000000
+++ /dev/null
@@ -1,234 +0,0 @@
-#include "kernel_operator.h"
-
-using namespace AscendC;
-
-#define BUFFER_NUM 2
-const int64_t SUPPORTED_MAX_DIM = 65535;  // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
-
-template <typename SRC_T, typename DST_T>
-class DupByRows {
-   public:
-    __aicore__ inline DupByRows() {}
-    __aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
-                                size_t *input_nb_ub) {
-        /* Dup by rows when src is contigous on first dimension and dst is
-        contiguous, each kernel process one row.
-        */
-
-        // Input has four dims.
-        int64_t op_block_num = GetBlockNum();
-        int64_t op_block_idx = GetBlockIdx();
-
-        // param
-        num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
-        num_elem = input_ne_ub[0];
-
-        // index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
-        idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
-        idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
-                  / (input_ne_ub[1]);
-        idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
-                - idx_ne2 * input_ne_ub[1];
-
-        // src may not contiguous in dim [1,2,3], so stride decited by ne&nb
-        src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
-                     + input_nb_ub[1] * idx_ne1;
-
-        // dst is contiguous
-        dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
-
-        src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
-                                                                src_stride));
-        dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
-                                                                dst_stride));
-
-        pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
-                                                32 - 1) / 32 * 32);
-        pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
-                                                32 - 1) / 32 * 32);
-    }
-
-    __aicore__ inline void copy_in() {
-        LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
-        const size_t elem_per_block = 32 / sizeof(SRC_T);
-        size_t tail = num_elem % elem_per_block;
-        size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
-        DataCopy(src_local, src_gm, cpy_elements_len);
-        src_queue.EnQue(src_local);
-    }
-
-    __aicore__ inline void copy_out() {
-        LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
-#ifdef ASCEND_310P
-        const size_t elem_per_block = 32 / sizeof(DST_T);
-        size_t tail = num_elem % elem_per_block;
-        size_t len = num_elem & ~(elem_per_block - 1);
-        if (len > 0) {
-            DataCopy(dst_gm, dst_local, len);
-        }
-        if(tail != 0) {
-            for (size_t i = tail; i < elem_per_block; i++) {
-                dst_local[len + i].SetValue(0, 0);
-            }
-            SetAtomicAdd<float>();
-            DataCopy(dst_gm[len], dst_local[len], elem_per_block);
-            SetAtomicNone();
-        }
-#else
-        DataCopyExtParams dataCopyParams;
-        dataCopyParams.blockCount = 1;
-        dataCopyParams.blockLen = num_elem * sizeof(DST_T);
-        DataCopyPad(dst_gm, dst_local, dataCopyParams);
-#endif
-        dst_queue.FreeTensor(dst_local);
-    }
-
-    __aicore__ inline void dup() {
-        // main process, copy one row data from src to dst.
-        copy_in();
-
-        LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
-        LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
-
-        int32_t BLOCK_NUM = 32 / sizeof(DST_T);
-        DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
-                                        / BLOCK_NUM * BLOCK_NUM);
-        dst_queue.EnQue<DST_T>(dst_local);
-
-        src_queue.FreeTensor(src_local);
-        copy_out();
-    }
-
-    __aicore__ inline void dup_with_cast() {
-        // main process, copy one row data from src to dst.
-        // cast dtype from src to dst.
-        copy_in();
-
-        LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
-        LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
-
-        Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
-        dst_queue.EnQue<DST_T>(dst_local);
-
-        src_queue.FreeTensor(src_local);
-        copy_out();
-    }
-
-   private:
-
-    TPipe pipe;
-    GlobalTensor<SRC_T> src_gm;
-    GlobalTensor<DST_T> dst_gm;
-
-    int64_t num_rows;
-    int64_t num_elem;
-    int64_t idx_ne3;
-    int64_t idx_ne2;
-    int64_t idx_ne1;
-    int64_t src_stride;
-    int64_t dst_stride;
-
-    TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
-                                                        GM_ADDR src_gm,
-                                                        GM_ADDR dst_gm,
-                                                        GM_ADDR input_ne_gm,
-                                                        GM_ADDR input_nb_gm,
-                                                        GM_ADDR output_ne_gm,
-                                                        GM_ADDR output_nb_gm) {
-
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    DupByRows<half, half> op;
-    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
-    op.dup();
-}
-
-extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
-                                                        GM_ADDR src_gm,
-                                                        GM_ADDR dst_gm,
-                                                        GM_ADDR input_ne_gm,
-                                                        GM_ADDR input_nb_gm,
-                                                        GM_ADDR output_ne_gm,
-                                                        GM_ADDR output_nb_gm) {
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    DupByRows<float, float> op;
-    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
-    op.dup();
-}
-
-extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
-                                                        GM_ADDR src_gm,
-                                                        GM_ADDR dst_gm,
-                                                        GM_ADDR input_ne_gm,
-                                                        GM_ADDR input_nb_gm,
-                                                        GM_ADDR output_ne_gm,
-                                                        GM_ADDR output_nb_gm) {
-
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    DupByRows<float, half> op;
-    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
-    op.dup_with_cast();
-}
-
-extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
-                                                        GM_ADDR src_gm,
-                                                        GM_ADDR dst_gm,
-                                                        GM_ADDR input_ne_gm,
-                                                        GM_ADDR input_nb_gm,
-                                                        GM_ADDR output_ne_gm,
-                                                        GM_ADDR output_nb_gm) {
-
-    // copy params from gm to ub.
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    DupByRows<half, float> op;
-    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
-    op.dup_with_cast();
-}
diff --git a/ggml/src/ggml-cann/kernels/get_row_f16.cpp b/ggml/src/ggml-cann/kernels/get_row_f16.cpp
deleted file mode 100644 (file)
index 416b451..0000000
+++ /dev/null
@@ -1,197 +0,0 @@
-#include "kernel_operator.h"
-
-// optimize me. Use template to avoid copy code.
-using namespace AscendC;
-
-#define BUFFER_NUM 2
-
-class GET_ROW_F16 {
-   public:
-    __aicore__ inline GET_ROW_F16() {}
-    __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
-                                int64_t *input_ne_ub, size_t *input_nb_ub,
-                                int64_t *indices_ne_ub, size_t *indices_nb_ub,
-                                int64_t *output_ne_ub, size_t *output_nb_ub) {
-        // TODO, use template for F16/f32
-        int64_t op_block_num = GetBlockNum();
-        op_block_idx = GetBlockIdx();
-
-        for (int i = 0; i < 4; i++) {
-            input_ne[i] = input_ne_ub[i];
-            input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
-
-            indices_ne[i] = indices_ne_ub[i];
-            indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
-
-            output_ne[i] = output_ne_ub[i];
-            output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
-        }
-
-        // Indices has two dims. n_elements = all rows should get.
-        // dr, all rows should this thread get.
-        uint64_t n_elements =
-            indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
-        dr = n_elements / op_block_num;
-
-        uint64_t tails = n_elements % op_block_num;
-        if (op_block_idx < tails) {
-            dr += 1;
-            ir = dr * op_block_idx;
-        } else {
-            ir = dr * op_block_idx + tails;
-        }
-
-        input_gm.SetGlobalBuffer((__gm__ half *)input);
-        indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
-        output_gm.SetGlobalBuffer((__gm__ float *)output);
-
-        uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
-                                             & ~31);
-        uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
-                                              & ~31);
-
-        local_buffer_elems = input_local_buffer_size / sizeof(half);
-
-        // TODO, consider long row that can't put in UB.
-        // All data should asign to 32. It's ok because all data is align to 32.
-        pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
-        pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
-    }
-
-    __aicore__ inline void copy_in(uint32_t offset, size_t len) {
-        size_t origin_len = len;
-        LocalTensor<half> input_local = input_queue.AllocTensor<half>();
-        const size_t elem_per_block = 32 / sizeof(half);
-        size_t tail = len % elem_per_block;
-        len = len & ~(elem_per_block - 1);
-        if(tail != 0) {
-            len += elem_per_block;
-        }
-        DataCopy(input_local, input_gm[offset], len);
-        input_queue.EnQue(input_local);
-    }
-
-    __aicore__ inline void copy_out(uint32_t offset, size_t len) {
-        LocalTensor<float> output_local = output_queue.DeQue<float>();
-        const size_t elem_per_block = 32 / sizeof(float);
-        size_t tail = len % elem_per_block;
-        len = len & ~(elem_per_block - 1);
-        if (len > 0) {
-            DataCopy(output_gm[offset], output_local, len);
-        }
-
-        if(tail != 0) {
-#ifdef ASCEND_310P
-            for (size_t i = tail; i < elem_per_block; i++) {
-                output_local[len + i].SetValue(0, 0);
-            }
-            SetAtomicAdd<float>();
-            DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
-            SetAtomicNone();
-#else
-            DataCopyExtParams dataCopyParams;
-            dataCopyParams.blockCount = 1;
-            dataCopyParams.blockLen = tail * sizeof(float);
-            DataCopyPad(output_gm[offset + len], output_local[len],
-                        dataCopyParams);
-#endif
-        }
-        output_queue.FreeTensor(output_local);
-    }
-
-    __aicore__ inline void calculate_row(int64_t idx) {
-        const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
-        const int64_t indices_ne1_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
-            indices_ne[0];
-        const int64_t indices_ne0_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
-             indices_ne1_idx * indices_ne[0]);
-
-        const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
-                                       indices_ne1_idx * indices_stride[1] +
-                                       indices_ne2_idx * indices_stride[2];
-        const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
-
-        const int64_t input_offset = selected_row_idx * input_stride[1] +
-                                     indices_ne1_idx * input_stride[2] +
-                                     indices_ne2_idx * input_stride[3];
-
-        const int64_t output_offset = indices_ne0_idx * output_stride[1] +
-                                      indices_ne1_idx * output_stride[2] +
-                                      indices_ne2_idx * output_stride[3];
-
-        copy_in(input_offset, input_ne[0]);
-        LocalTensor<half> input_local = input_queue.DeQue<half>();
-        LocalTensor<float> output_local = output_queue.AllocTensor<float>();
-
-        Cast(output_local, input_local, RoundMode::CAST_NONE,
-             local_buffer_elems);
-        output_queue.EnQue(output_local);
-        copy_out(output_offset, input_ne[0]);
-
-        input_queue.FreeTensor(input_local);
-    }
-
-    __aicore__ inline void calculate() {
-        for (int64_t i = ir; i < ir + dr; i++) {
-            calculate_row(i);
-        }
-    }
-
-   private:
-    int64_t input_ne[4];
-    size_t input_stride[4];
-
-    int64_t indices_ne[4];
-    size_t indices_stride[4];
-
-    int64_t output_ne[4];
-    size_t output_stride[4];
-
-    size_t local_buffer_elems;
-
-    int64_t ir;
-    int64_t dr;
-
-    TPipe pipe;
-    GlobalTensor<half> input_gm;
-    GlobalTensor<int32_t> indices_gm;
-    GlobalTensor<float> output_gm;
-    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
-    int64_t op_block_idx;
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_get_row_f16(
-    GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
-    GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
-    GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t indices_ne_ub[4];
-    size_t indices_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
-    copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    GET_ROW_F16 op;
-    op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
-            indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
-    op.calculate();
-}
diff --git a/ggml/src/ggml-cann/kernels/get_row_f32.cpp b/ggml/src/ggml-cann/kernels/get_row_f32.cpp
deleted file mode 100644 (file)
index 0211690..0000000
+++ /dev/null
@@ -1,190 +0,0 @@
-#include "kernel_operator.h"
-
-// optimize me. Use template to avoid copy code.
-using namespace AscendC;
-
-#define BUFFER_NUM 2
-
-class GET_ROW_F32 {
-   public:
-    __aicore__ inline GET_ROW_F32() {}
-    __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
-                                int64_t *input_ne_ub, size_t *input_nb_ub,
-                                int64_t *indices_ne_ub, size_t *indices_nb_ub,
-                                int64_t *output_ne_ub, size_t *output_nb_ub) {
-        int64_t op_block_num = GetBlockNum();
-        op_block_idx = GetBlockIdx();
-
-        for (int i = 0; i < 4; i++) {
-            input_ne[i] = input_ne_ub[i];
-            input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
-
-            indices_ne[i] = indices_ne_ub[i];
-            indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
-
-            output_ne[i] = output_ne_ub[i];
-            output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
-        }
-
-        // Indices has two dims. n_elements = all rows should get.
-        // dr, all rows should this thread get.
-        uint64_t n_elements =
-            indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
-        dr = n_elements / op_block_num;
-
-        uint64_t tails = n_elements % op_block_num;
-        if (op_block_idx < tails) {
-            dr += 1;
-            ir = dr * op_block_idx;
-        } else {
-            ir = dr * op_block_idx + tails;
-        }
-
-        input_gm.SetGlobalBuffer((__gm__ float *)input);
-        indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
-        output_gm.SetGlobalBuffer((__gm__ float *)output);
-
-        uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
-        local_buffer_elems = local_buffer_size / sizeof(float);
-
-        // TODO, consider long row that can't put in UB.
-        // All data should asign to 32. It's ok because all data is align to 32.
-        pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
-        pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
-    }
-
-    __aicore__ inline void copy_in(uint32_t offset, size_t len) {
-        LocalTensor<float> input_local = input_queue.AllocTensor<float>();
-        const size_t elem_per_block = 32 / sizeof(float);
-        size_t tail = len % elem_per_block;
-        len = len & ~(elem_per_block - 1);
-        if(tail != 0) {
-            len += elem_per_block;
-        }
-        DataCopy(input_local, input_gm[offset], len);
-        input_queue.EnQue(input_local);
-    }
-
-    __aicore__ inline void copy_out(uint32_t offset, size_t len) {
-        LocalTensor<float> output_local = output_queue.DeQue<float>();
-        const size_t elem_per_block = 32 / sizeof(float);
-        size_t tail = len % elem_per_block;
-        len = len & ~(elem_per_block - 1);
-        if (len > 0) {
-            DataCopy(output_gm[offset], output_local, len);
-        }
-
-        if(tail != 0) {
-#ifdef ASCEND_310P
-            for (size_t i = tail; i < elem_per_block; i++) {
-                output_local[len + i].SetValue(0, 0);
-            }
-            SetAtomicAdd<float>();
-            DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
-            SetAtomicNone();
-#else
-            DataCopyExtParams dataCopyParams;
-            dataCopyParams.blockCount = 1;
-            dataCopyParams.blockLen = tail * sizeof(float);
-            DataCopyPad(output_gm[offset + len], output_local[len],
-                        dataCopyParams);
-#endif
-        }
-        output_queue.FreeTensor(output_local);
-    }
-
-    __aicore__ inline void calculate_row(int64_t idx) {
-        const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
-        const int64_t indices_ne1_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
-            indices_ne[0];
-        const int64_t indices_ne0_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
-             indices_ne1_idx * indices_ne[0]);
-
-        const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
-                                       indices_ne1_idx * indices_stride[1] +
-                                       indices_ne2_idx * indices_stride[2];
-        const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
-
-        const int64_t input_offset = selected_row_idx * input_stride[1] +
-                                     indices_ne1_idx * input_stride[2] +
-                                     indices_ne2_idx * input_stride[3];
-
-        const int64_t output_offset = indices_ne0_idx * output_stride[1] +
-                                      indices_ne1_idx * output_stride[2] +
-                                      indices_ne2_idx * output_stride[3];
-
-        copy_in(input_offset, input_ne[0]);
-        LocalTensor<float> input_local = input_queue.DeQue<float>();
-        LocalTensor<float> output_local = output_queue.AllocTensor<float>();
-
-        DataCopy(output_local, input_local, local_buffer_elems);
-        output_queue.EnQue(output_local);
-        copy_out(output_offset, input_ne[0]);
-
-        input_queue.FreeTensor(input_local);
-    }
-
-    __aicore__ inline void calculate() {
-        for (int64_t i = ir; i < ir + dr; i++) {
-            calculate_row(i);
-        }
-    }
-
-   private:
-    int64_t input_ne[4];
-    size_t input_stride[4];
-
-    int64_t indices_ne[4];
-    size_t indices_stride[4];
-
-    int64_t output_ne[4];
-    size_t output_stride[4];
-
-    size_t local_buffer_elems;
-
-    int64_t ir;
-    int64_t dr;
-
-    TPipe pipe;
-    GlobalTensor<float> input_gm;
-    GlobalTensor<int32_t> indices_gm;
-    GlobalTensor<float> output_gm;
-    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
-    int64_t op_block_idx;
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_get_row_f32(
-    GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
-    GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
-    GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t indices_ne_ub[4];
-    size_t indices_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
-    copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    GET_ROW_F32 op;
-    op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
-            indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
-    op.calculate();
-}
diff --git a/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp b/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp
deleted file mode 100644 (file)
index 4fbe722..0000000
+++ /dev/null
@@ -1,204 +0,0 @@
-#include "kernel_operator.h"
-
-// optimize me. Use template to avoid copy code.
-using namespace AscendC;
-#ifdef ASCEND_310P // 310P not support 4bit get row
-    extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
-        GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
-        GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
-        GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
-        // let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
-        printf("Ascend310P not support 4bit get row.\n");
-    }
-#else
-
-#define BUFFER_NUM 2
-
-#define QK4_0 32
-
-class GET_ROW_Q4_0 {
-   public:
-    __aicore__ inline GET_ROW_Q4_0() {}
-    __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
-                                int64_t *input_ne_ub, int64_t *indices_ne_ub,
-                                size_t *indices_nb_ub, int64_t *output_ne_ub,
-                                size_t *output_nb_ub) {
-        int64_t op_block_num = GetBlockNum();
-        int64_t op_block_idx = GetBlockIdx();
-
-        for (int i = 0; i < 4; i++) {
-            input_ne[i] = input_ne_ub[i];
-            indices_ne[i] = indices_ne_ub[i];
-            indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
-            scale_ne[i] = input_ne_ub[i];
-            output_ne[i] = output_ne_ub[i];
-            output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
-        }
-
-        // one scale for a group.
-        scale_ne[0] /= QK4_0;
-
-        input_stride[0] = 1;
-        scale_stride[0] = 1;
-        output_stride[0] = 1;
-        for (int i = 1; i < 4; i++) {
-            input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
-            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
-        }
-
-        group_size_in_row = input_ne[0] / QK4_0;
-        int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
-                               input_ne[3] / 2;
-
-        // Indices has two dims. n_elements = all rows should get.
-        // dr, all rows should this thread get.
-        uint64_t n_elements =
-            indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
-        dr = n_elements / op_block_num;
-
-        uint64_t tails = n_elements % op_block_num;
-        if (op_block_idx < tails) {
-            dr += 1;
-            ir = dr * op_block_idx;
-        } else {
-            ir = dr * op_block_idx + tails;
-        }
-
-        input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
-        scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
-        indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
-        output_gm.SetGlobalBuffer((__gm__ float *)output);
-
-        pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
-        pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
-        pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
-    }
-
-    __aicore__ inline void copy_in(uint32_t offset) {
-        LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
-        // 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
-        DataCopy(input_local, input_gm[offset], QK4_0);
-        input_queue.EnQue(input_local);
-    }
-
-    __aicore__ inline void copy_out(uint32_t offset) {
-        LocalTensor<float> output_local = output_queue.DeQue<float>();
-        DataCopy(output_gm[offset], output_local, QK4_0);
-        output_queue.FreeTensor(output_local);
-    }
-
-    __aicore__ inline void calculate_group(int64_t idx, int64_t group) {
-        const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
-        const int64_t indices_ne1_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
-            indices_ne[0];
-        const int64_t indices_ne0_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
-             indices_ne1_idx * indices_ne[0]);
-
-        const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
-                                       indices_ne1_idx * indices_stride[1] +
-                                       indices_ne2_idx * indices_stride[2];
-        const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
-
-        const int64_t input_offset = selected_row_idx * input_stride[1] +
-                                     indices_ne1_idx * input_stride[2] +
-                                     indices_ne2_idx * input_stride[3] +
-                                     group * QK4_0;
-        const int64_t scale_offset = selected_row_idx * scale_stride[1] +
-                                     indices_ne1_idx * scale_stride[2] +
-                                     indices_ne2_idx * scale_stride[3] + group;
-        const int64_t output_offset = indices_ne0_idx * output_stride[1] +
-                                      indices_ne1_idx * output_stride[2] +
-                                      indices_ne2_idx * output_stride[3] +
-                                      group * QK4_0;
-
-        copy_in(input_offset);
-        LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
-        LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
-        LocalTensor<float> output_local = output_queue.AllocTensor<float>();
-
-        // TODO: cast more data to speed up.
-        Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
-        Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
-
-        // Only mul need compile by group.
-        half scale = scale_gm.GetValue(scale_offset);
-
-        Muls(output_local, output_local, (float)scale, QK4_0);
-
-        input_queue.FreeTensor(input_local);
-        cast_queue.FreeTensor(cast_local);
-        output_queue.EnQue(output_local);
-
-        copy_out(output_offset);
-    }
-
-    __aicore__ inline void calculate() {
-        for (int64_t i = ir; i < ir + dr; i++) {
-            for (int64_t j = 0; j < group_size_in_row; j++) {
-                calculate_group(i, j);
-            }
-        }
-    }
-
-   private:
-    int64_t input_ne[4];
-    size_t input_stride[4];
-
-    int64_t scale_ne[4];
-    size_t scale_stride[4];
-
-    int64_t indices_ne[4];
-    size_t indices_stride[4];
-
-    int64_t output_ne[4];
-    size_t output_stride[4];
-
-    int64_t ir;
-    int64_t dr;
-
-    int64_t group_size_in_row;
-
-    TPipe pipe;
-    GlobalTensor<int4b_t> input_gm;
-    GlobalTensor<half> scale_gm;
-    GlobalTensor<int32_t> indices_gm;
-    GlobalTensor<float> output_gm;
-    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
-    TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
-    GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
-    GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
-    GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
-    int64_t input_ne_ub[4];
-    int64_t indices_ne_ub[4];
-    size_t indices_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
-    copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    GET_ROW_Q4_0 op;
-    op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
-            indices_nb_ub, output_ne_ub, output_nb_ub);
-    op.calculate();
-}
-
-#endif // #ifdef ASCEND_310P
diff --git a/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp b/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp
deleted file mode 100644 (file)
index ba9ab3c..0000000
+++ /dev/null
@@ -1,191 +0,0 @@
-#include "kernel_operator.h"
-
-// optimize me. Use template to avoid copy code.
-using namespace AscendC;
-
-#define BUFFER_NUM 2
-
-#define QK8_0 32
-
-class GET_ROW_Q8_0 {
-   public:
-    __aicore__ inline GET_ROW_Q8_0() {}
-    __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
-                                int64_t *input_ne_ub, int64_t *indices_ne_ub,
-                                size_t *indices_nb_ub, int64_t *output_ne_ub,
-                                size_t *output_nb_ub) {
-        int64_t op_block_num = GetBlockNum();
-        int64_t op_block_idx = GetBlockIdx();
-
-        for (int i = 0; i < 4; i++) {
-            input_ne[i] = input_ne_ub[i];
-            indices_ne[i] = indices_ne_ub[i];
-            indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
-            scale_ne[i] = input_ne_ub[i];
-            output_ne[i] = output_ne_ub[i];
-            output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
-        }
-
-        // one scale for a group.
-        scale_ne[0] /= QK8_0;
-
-        input_stride[0] = 1;
-        scale_stride[0] = 1;
-        output_stride[0] = 1;
-        for (int i = 1; i < 4; i++) {
-            input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
-            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
-        }
-
-        group_size_in_row = input_ne[0] / QK8_0;
-        int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
-                               input_ne[3] * sizeof(int8_t);
-
-        // Indices has two dims. n_elements = all rows should get.
-        // dr, all rows should this thread get.
-        uint64_t n_elements =
-            indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
-        dr = n_elements / op_block_num;
-
-        uint64_t tails = n_elements % op_block_num;
-        if (op_block_idx < tails) {
-            dr += 1;
-            ir = dr * op_block_idx;
-        } else {
-            ir = dr * op_block_idx + tails;
-        }
-
-        input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
-        scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
-        indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
-        output_gm.SetGlobalBuffer((__gm__ float *)output);
-
-        pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
-        pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
-        pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
-    }
-
-    __aicore__ inline void copy_in(uint32_t offset) {
-        LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
-        DataCopy(input_local, input_gm[offset], QK8_0);
-        input_queue.EnQue(input_local);
-    }
-
-    __aicore__ inline void copy_out(uint32_t offset) {
-        LocalTensor<float> output_local = output_queue.DeQue<float>();
-        DataCopy(output_gm[offset], output_local, QK8_0);
-        output_queue.FreeTensor(output_local);
-    }
-
-    __aicore__ inline void calculate_group(int64_t idx, int64_t group) {
-        const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
-        const int64_t indices_ne1_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
-            indices_ne[0];
-        const int64_t indices_ne0_idx =
-            (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
-             indices_ne1_idx * indices_ne[0]);
-
-        const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
-                                       indices_ne1_idx * indices_stride[1] +
-                                       indices_ne2_idx * indices_stride[2];
-        const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
-
-        const int64_t input_offset = selected_row_idx * input_stride[1] +
-                                     indices_ne1_idx * input_stride[2] +
-                                     indices_ne2_idx * input_stride[3] +
-                                     group * QK8_0;
-        const int64_t scale_offset = selected_row_idx * scale_stride[1] +
-                                     indices_ne1_idx * scale_stride[2] +
-                                     indices_ne2_idx * scale_stride[3] + group;
-        const int64_t output_offset = indices_ne0_idx * output_stride[1] +
-                                      indices_ne1_idx * output_stride[2] +
-                                      indices_ne2_idx * output_stride[3] +
-                                      group * QK8_0;
-
-        copy_in(input_offset);
-        LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
-        LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
-        LocalTensor<float> output_local = output_queue.AllocTensor<float>();
-
-        // TODO: cast more data to speed up.
-        Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
-        Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
-
-        // Only mul need compile by group.
-        half scale = scale_gm.GetValue(scale_offset);
-        Muls(output_local, output_local, (float)scale, QK8_0);
-
-        input_queue.FreeTensor(input_local);
-        cast_queue.FreeTensor(cast_local);
-        output_queue.EnQue(output_local);
-
-        copy_out(output_offset);
-    }
-
-    __aicore__ inline void calculate() {
-        for (int64_t i = ir; i < ir + dr; i++) {
-            for (int64_t j = 0; j < group_size_in_row; j++) {
-                calculate_group(i, j);
-            }
-        }
-    }
-
-   private:
-    int64_t input_ne[4];
-    size_t input_stride[4];
-
-    int64_t scale_ne[4];
-    size_t scale_stride[4];
-
-    int64_t indices_ne[4];
-    size_t indices_stride[4];
-
-    int64_t output_ne[4];
-    size_t output_stride[4];
-
-    int64_t ir;
-    int64_t dr;
-
-    int64_t group_size_in_row;
-
-    TPipe pipe;
-    GlobalTensor<int8_t> input_gm;
-    GlobalTensor<half> scale_gm;
-    GlobalTensor<int32_t> indices_gm;
-    GlobalTensor<float> output_gm;
-    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
-    TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
-    GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
-    GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
-    GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
-    int64_t input_ne_ub[4];
-    int64_t indices_ne_ub[4];
-    size_t indices_nb_ub[4];
-    int64_t output_ne_ub[4];
-    size_t output_nb_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
-    copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-    copy_to_ub(output_nb_gm, output_nb_ub, 32);
-
-    GET_ROW_Q8_0 op;
-    op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
-            indices_nb_ub, output_ne_ub, output_nb_ub);
-    op.calculate();
-}
diff --git a/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp b/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp
deleted file mode 100644 (file)
index 504b43a..0000000
+++ /dev/null
@@ -1,218 +0,0 @@
-#include "kernel_operator.h"
-
-using namespace AscendC;
-#ifdef ASCEND_310P
-    extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
-        GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-        GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-        // let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
-        printf("Ascend310P not support f16->8bit quantization.\n");
-    }
-#else
-
-#define BUFFER_NUM 2
-#define QK8_0 32
-
-class QUANTIZE_F16_Q8_0 {
-   public:
-    __aicore__ inline QUANTIZE_F16_Q8_0() {}
-    __aicore__ inline void init(GM_ADDR input, GM_ADDR output,
-                                int64_t *input_ne_ub, size_t *input_nb_ub,
-                                int64_t *output_ne_ub) {
-        int64_t op_block_num = GetBlockNum();
-        int64_t op_block_idx = GetBlockIdx();
-
-        for (int i = 0; i < 4; i++) {
-            input_ne[i] = input_ne_ub[i];
-            input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
-
-            output_ne[i] = output_ne_ub[i];
-        }
-
-        output_stride[0] = 1;
-        for (int i = 1; i < 4; i++) {
-            output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
-        }
-
-        scale_ne = input_ne;
-        scale_stride[0] = 1;
-        scale_stride[1] = input_ne[0] / QK8_0;
-        for (int i = 2; i < 4; i++) {
-            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
-        }
-
-        // split input tensor by rows.
-        uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
-        dr = nr / op_block_num;
-
-        uint64_t tails = nr % op_block_num;
-        if (op_block_idx < tails) {
-            dr += 1;
-            ir = dr * op_block_idx;
-        } else {
-            ir = dr * op_block_idx + tails;
-        }
-
-        group_size_in_row = scale_stride[1];
-        int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
-                              output_ne[3] * sizeof(uint8_t);
-
-        input_gm.SetGlobalBuffer((__gm__ half *)input);
-        output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
-        scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir *
-                                                 group_size_in_row *
-                                                 sizeof(half)));
-
-        pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half));
-        pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
-        pipe.InitBuffer(work_queue, 1, 32);
-        pipe.InitBuffer(max_queue, 1, 32);
-        pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
-        pipe.InitBuffer(scale_queue, 1, 32);
-        pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float));
-    }
-
-    __aicore__ inline void copy_in(uint32_t offset) {
-        LocalTensor<half> input_local = input_queue.AllocTensor<half>();
-        DataCopy(input_local, input_gm[offset], QK8_0);
-        input_queue.EnQue(input_local);
-    }
-
-    __aicore__ inline void copy_out(uint32_t offset) {
-        LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
-        DataCopy(output_gm[offset], output_local, QK8_0);
-        output_queue.FreeTensor(output_local);
-    }
-
-    __aicore__ inline half calculate_group(int64_t row, int64_t group) {
-        const int64_t i3 = row / (input_ne[1] * input_ne[2]);
-        const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
-        const int64_t i1 =
-            row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
-
-        const int64_t input_offset = i1 * input_stride[1] +
-                                     i2 * input_stride[2] +
-                                     i3 * input_stride[3] + QK8_0 * group;
-
-        const int64_t output_offset = i1 * output_stride[1] +
-                                      i2 * output_stride[2] +
-                                      i3 * output_stride[3] + QK8_0 * group;
-
-        copy_in(input_offset);
-        LocalTensor<half> input_local = input_queue.DeQue<half>();
-        LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
-        LocalTensor<float> work_local = work_queue.AllocTensor<float>();
-        LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
-        LocalTensor<float> max_local = max_queue.AllocTensor<float>();
-        LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
-
-        Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
-        Abs(abs_local, cast_local, QK8_0);
-        ReduceMax(max_local, abs_local, work_local, QK8_0);
-
-        pipe_barrier(PIPE_ALL);
-        float d = max_local.GetValue(0);
-        d = d / ((1 << 7) - 1);
-        if (d != 0) {
-            Muls(cast_local, cast_local, 1.0f / d, QK8_0);
-        }
-
-        Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
-        Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
-        Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0);
-        output_queue.EnQue(output_local);
-        copy_out(output_offset);
-
-        input_queue.FreeTensor(input_local);
-        work_queue.FreeTensor(work_local);
-        abs_queue.FreeTensor(abs_local);
-        max_queue.FreeTensor(max_local);
-        cast_queue.FreeTensor(cast_local);
-        return (half)d;
-    }
-
-    __aicore__ inline void calculate() {
-        LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
-        uint32_t scale_local_offset = 0;
-        uint32_t scale_global_offset = 0;
-        for (int64_t i = ir; i < ir + dr; i++) {
-            for (int64_t j = 0; j < group_size_in_row; j++) {
-                half scale = calculate_group(i, j);
-                scale_local.SetValue(scale_local_offset++, scale);
-                if (scale_local_offset == 16) {
-                    scale_local_offset = 0;
-                    // TODO: OPTIMIZE ME
-                    pipe_barrier(PIPE_ALL);
-                    DataCopy(scale_gm[scale_global_offset], scale_local, 16);
-                    pipe_barrier(PIPE_ALL);
-                    scale_global_offset += 16;
-                }
-            }
-        }
-
-        if (scale_local_offset != 0) {
-            pipe_barrier(PIPE_ALL);
-            DataCopyExtParams dataCopyParams;
-            dataCopyParams.blockCount = 1;
-            dataCopyParams.blockLen = scale_local_offset * sizeof(half);
-            DataCopyPad(scale_gm[scale_global_offset], scale_local,
-                        dataCopyParams);
-            pipe_barrier(PIPE_ALL);
-        }
-    }
-
-   private:
-    int64_t input_ne[4];
-    size_t input_stride[4];
-
-    int64_t *scale_ne;
-    size_t scale_stride[4];
-
-    int64_t output_ne[4];
-    size_t output_stride[4];
-
-    int64_t group_size_in_row;
-
-    int64_t ir;
-    int64_t dr;
-
-    TPipe pipe;
-    GlobalTensor<half> input_gm;
-    GlobalTensor<half> scale_gm;
-    GlobalTensor<int8_t> output_gm;
-    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
-    TQue<QuePosition::VECIN, 1> work_queue;
-    TQue<QuePosition::VECOUT, 1> max_queue;
-    TQue<QuePosition::VECIN, 1> abs_queue;
-    TQue<QuePosition::VECOUT, 1> scale_queue;
-    TQue<QuePosition::VECOUT, 1> cast_queue;
-
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
-    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-
-    QUANTIZE_F16_Q8_0 op;
-    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
-    op.calculate();
-}
-
-#endif // #ifdef ASCEND_310P
diff --git a/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp b/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp
deleted file mode 100644 (file)
index 05b0bc1..0000000
+++ /dev/null
@@ -1,216 +0,0 @@
-#include "kernel_operator.h"
-
-using namespace AscendC;
-#ifdef ASCEND_310P // 310P not support f32->8bit quantization
-    extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
-        GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-        GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-        // let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
-        printf("Ascend310P not support f32->8bit quantization.\n");
-    }
-#else
-
-#define BUFFER_NUM 2
-#define QK8_0 32
-
-class QUANTIZE_F32_Q8_0 {
-   public:
-    __aicore__ inline QUANTIZE_F32_Q8_0() {}
-    __aicore__ inline void init(GM_ADDR input, GM_ADDR output,
-                                int64_t *input_ne_ub, size_t *input_nb_ub,
-                                int64_t *output_ne_ub) {
-        int64_t op_block_num = GetBlockNum();
-        int64_t op_block_idx = GetBlockIdx();
-
-        for (int i = 0; i < 4; i++) {
-            input_ne[i] = input_ne_ub[i];
-            input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
-
-            output_ne[i] = output_ne_ub[i];
-        }
-
-        output_stride[0] = 1;
-        for (int i = 1; i < 4; i++) {
-            output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
-        }
-
-        scale_ne = input_ne;
-        scale_stride[0] = 1;
-        scale_stride[1] = input_ne[0] / QK8_0;
-        for (int i = 2; i < 4; i++) {
-            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
-        }
-
-        // split input tensor by rows.
-        uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
-        dr = nr / op_block_num;
-
-        uint64_t tails = nr % op_block_num;
-        if (op_block_idx < tails) {
-            dr += 1;
-            ir = dr * op_block_idx;
-        } else {
-            ir = dr * op_block_idx + tails;
-        }
-
-        group_size_in_row = scale_stride[1];
-        int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
-                              output_ne[3] * sizeof(uint8_t);
-
-        input_gm.SetGlobalBuffer((__gm__ float *)input);
-        output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
-        scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size +
-                                                 ir * group_size_in_row *
-                                                 sizeof(half)));
-
-        pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float));
-        pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
-        pipe.InitBuffer(work_queue, 1, 32);
-        pipe.InitBuffer(max_queue, 1, 32);
-        pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
-        pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half));
-        pipe.InitBuffer(scale_queue, 1, 32);
-    }
-
-    __aicore__ inline void copy_in(uint32_t offset) {
-        LocalTensor<float> input_local = input_queue.AllocTensor<float>();
-        DataCopy(input_local, input_gm[offset], QK8_0);
-        input_queue.EnQue(input_local);
-    }
-
-    __aicore__ inline void copy_out(uint32_t offset) {
-        LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
-        DataCopy(output_gm[offset], output_local, QK8_0);
-        output_queue.FreeTensor(output_local);
-    }
-
-    __aicore__ inline half calculate_group(int64_t row, int64_t group) {
-        const int64_t i3 = row / (input_ne[1] * input_ne[2]);
-        const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
-        const int64_t i1 =
-            row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
-
-        const int64_t input_offset = i1 * input_stride[1] +
-                                     i2 * input_stride[2] +
-                                     i3 * input_stride[3] + QK8_0 * group;
-
-        const int64_t output_offset = i1 * output_stride[1] +
-                                      i2 * output_stride[2] +
-                                      i3 * output_stride[3] + QK8_0 * group;
-
-        copy_in(input_offset);
-        LocalTensor<float> input_local = input_queue.DeQue<float>();
-        LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
-        LocalTensor<float> work_local = work_queue.AllocTensor<float>();
-        LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
-        LocalTensor<float> max_local = max_queue.AllocTensor<float>();
-        LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
-
-        Abs(abs_local, input_local, QK8_0);
-        ReduceMax(max_local, abs_local, work_local, QK8_0);
-        pipe_barrier(PIPE_ALL);
-        float d = max_local.GetValue(0);
-        d = d / ((1 << 7) - 1);
-        if (d != 0) {
-            Muls(input_local, input_local, 1.0f / d, QK8_0);
-        }
-
-        Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0);
-        Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0);
-        Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
-        output_queue.EnQue(output_local);
-        copy_out(output_offset);
-
-        input_queue.FreeTensor(input_local);
-        work_queue.FreeTensor(work_local);
-        abs_queue.FreeTensor(abs_local);
-        max_queue.FreeTensor(max_local);
-        cast_queue.FreeTensor(cast_local);
-
-        return (half)d;
-    }
-
-    __aicore__ inline void calculate() {
-        LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
-        uint32_t scale_local_offset = 0;
-        uint32_t scale_global_offset = 0;
-        for (int64_t i = ir; i < ir + dr; i++) {
-            for (int64_t j = 0; j < group_size_in_row; j++) {
-                half scale = calculate_group(i, j);
-                scale_local.SetValue(scale_local_offset++, scale);
-                if (scale_local_offset == 16) {
-                    scale_local_offset = 0;
-                    // TODO: OPTIMIZE ME
-                    pipe_barrier(PIPE_ALL);
-                    DataCopy(scale_gm[scale_global_offset], scale_local, 16);
-                    pipe_barrier(PIPE_ALL);
-                    scale_global_offset += 16;
-                }
-            }
-        }
-
-        if (scale_local_offset != 0) {
-            pipe_barrier(PIPE_ALL);
-            DataCopyExtParams dataCopyParams;
-            dataCopyParams.blockCount = 1;
-            dataCopyParams.blockLen = scale_local_offset * sizeof(half);
-            DataCopyPad(scale_gm[scale_global_offset], scale_local,
-                        dataCopyParams);
-            pipe_barrier(PIPE_ALL);
-        }
-    }
-
-   private:
-    int64_t input_ne[4];
-    size_t input_stride[4];
-
-    int64_t *scale_ne;
-    size_t scale_stride[4];
-
-    int64_t output_ne[4];
-    size_t output_stride[4];
-
-    int64_t group_size_in_row;
-
-    int64_t ir;
-    int64_t dr;
-
-    TPipe pipe;
-    GlobalTensor<float> input_gm;
-    GlobalTensor<half> scale_gm;
-    GlobalTensor<int8_t> output_gm;
-    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
-    TQue<QuePosition::VECIN, 1> work_queue;
-    TQue<QuePosition::VECOUT, 1> max_queue;
-    TQue<QuePosition::VECIN, 1> abs_queue;
-    TQue<QuePosition::VECIN, 1> cast_queue;
-    TQue<QuePosition::VECOUT, 1> scale_queue;
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
-    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-
-    QUANTIZE_F32_Q8_0 op;
-    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
-    op.calculate();
-}
-
-#endif // #ifdef ASCEND_310P
diff --git a/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp
deleted file mode 100644 (file)
index 1188937..0000000
+++ /dev/null
@@ -1,295 +0,0 @@
-#include "kernel_operator.h"
-
-using namespace AscendC;
-#ifdef ASCEND_310P // 310P not support float->4bit quantization
-    extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
-        GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-        GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-        // let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
-        printf("Ascend310P not support f32->4bit quantization.\n");
-    }
-
-    extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
-        GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-        GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-        // let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
-        printf("Ascend310P not support f16->4bit quantization.\n");
-    }
-#else
-
-#define BUFFER_NUM 2
-#define Group_Size 32
-
-template <typename SRC_T>
-class QUANTIZE_FLOAT_TO_Q4_0 {
-   public:
-    __aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
-    __aicore__ inline void init(GM_ADDR input, GM_ADDR output,
-                                int64_t *input_ne_ub, size_t *input_nb_ub,
-                                int64_t *output_ne_ub) {
-        // TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4],
-        //                         permute=[0,0,0,0]):
-        // [CPY] NMSE = 0.000008343 > 0.000001000 FAIL
-        int64_t op_block_num = GetBlockNum();
-        int64_t op_block_idx = GetBlockIdx();
-
-        // input stride of data elements
-        for (int i = 0; i < 4; i++) {
-            input_ne[i] = input_ne_ub[i];
-            input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
-            output_ne[i] = output_ne_ub[i];
-        }
-
-        // output stride of data elements
-        output_stride[0] = 1;
-        for (int i = 1; i < 4; i++) {
-            output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
-        }
-
-        // scale saved one by one after data:. [group1_scale, group2_scale, ...]
-        scale_ne = input_ne;
-        scale_stride[0] = 1;
-        scale_stride[1] = input_ne[0] / Group_Size;
-        for (int i = 2; i < 4; i++) {
-            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
-        }
-
-        // split input tensor by rows.
-        uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
-        dr = nr / op_block_num;
-
-        uint64_t tails = nr % op_block_num;
-        if (op_block_idx < tails) {
-            dr += 1;
-            ir = dr * op_block_idx;
-        } else {
-            ir = dr * op_block_idx + tails;
-        }
-
-        group_size_in_row = scale_stride[1];
-        int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
-                              output_ne[3] * sizeof(uint8_t) / 2;
-
-        input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
-        output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
-        scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
-                                                 group_size_in_row *
-                                                 sizeof(half)));
-
-        pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
-        pipe.InitBuffer(output_queue, BUFFER_NUM,
-                            Group_Size * sizeof(int8_t) / 2);
-        pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float));
-        pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float));
-        pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float));
-        pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float));
-        pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half));
-        pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t));
-        pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half));
-    }
-
-    __aicore__ inline void copy_in(uint32_t offset) {
-        LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
-        DataCopy(input_local, input_gm[offset], Group_Size);
-        input_queue.EnQue(input_local);
-    }
-
-    __aicore__ inline void copy_out(uint32_t offset) {
-        // reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
-        // and using DataCopyPad to avoid 32 bits align.
-        LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
-        LocalTensor<int8_t> output_int8_local =
-                                    output_local.ReinterpretCast<int8_t>();
-
-        DataCopyExtParams dataCopyParams;
-        dataCopyParams.blockCount = 1;
-        dataCopyParams.blockLen = Group_Size / 2  * sizeof(int8_t);
-        DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
-
-        output_queue.FreeTensor(output_local);
-    }
-
-    __aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
-                                         LocalTensor<float> input_local) {
-        DataCopy(cast_local, input_local, Group_Size);
-    }
-
-    __aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
-                                         LocalTensor<half> input_local) {
-        Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
-    }
-
-    __aicore__ inline half calculate_group(int64_t row, int64_t group) {
-        const int64_t i3 = row / (input_ne[1] * input_ne[2]);
-        const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
-        const int64_t i1 =
-            row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
-
-        const int64_t input_offset = i1 * input_stride[1] +
-                                     i2 * input_stride[2] +
-                                     i3 * input_stride[3] + Group_Size * group;
-
-        // output_offset is stride for output_gm which datatype is int8_t and
-        // divided by 2 is needed for int4b_t.
-        const int64_t output_offset = (i1 * output_stride[1] +
-                                       i2 * output_stride[2] +
-                                       i3 * output_stride[3] +
-                                       Group_Size * group) / 2;
-        copy_in(input_offset);
-
-        LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
-        LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
-        LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
-        LocalTensor<float> work_local = work_queue.AllocTensor<float>();
-        LocalTensor<float> max_local = max_queue.AllocTensor<float>();
-        LocalTensor<float> min_local = min_queue.AllocTensor<float>();
-        LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
-        LocalTensor<half> half_local = half_queue.AllocTensor<half>();
-
-        input_to_cast(cast_local, input_local);
-
-        ReduceMax(max_local, cast_local, work_local, Group_Size);
-        ReduceMin(min_local, cast_local, work_local, Group_Size);
-        const float max_value = max_local.GetValue(0);
-        const float min_value = min_local.GetValue(0);
-        float d = max_value;
-        if (min_value < 0 && (-1 * min_value) > max_value) {
-            d = min_value;
-        }
-
-        d = d / (-8);
-        if (d != 0) {
-            Muls(cast_local, cast_local, 1.0f / d, Group_Size);
-        }
-
-        // range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
-        float scalar = 8.5f;
-        Adds(cast_local, cast_local, scalar, Group_Size);
-        Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
-        scalar = 15.0f;
-        Mins(cast_local, cast_local, scalar, Group_Size);
-        scalar = -8.0f;
-        Adds(cast_local, cast_local, scalar, Group_Size);
-
-        // float->half->int4b
-        Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
-        Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
-
-        output_queue.EnQue(output_local);
-        copy_out(output_offset);
-
-        input_queue.FreeTensor(input_local);
-        work_queue.FreeTensor(work_local);
-        max_queue.FreeTensor(max_local);
-        min_queue.FreeTensor(min_local);
-        int8_queue.FreeTensor(int8_local);
-        half_queue.FreeTensor(half_local);
-        cast_queue.FreeTensor(cast_local);
-        return (half)d;
-    }
-
-    __aicore__ inline void calculate() {
-        LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
-        uint32_t scale_local_offset = 0;
-        uint32_t scale_global_offset = 0;
-        for (int64_t i = ir; i < ir + dr; i++) {
-            for (int64_t j = 0; j < group_size_in_row; j++) {
-                half scale = calculate_group(i, j);
-                scale_local.SetValue(scale_local_offset++, scale);
-                // Copy Group_Size/2 length data each time.
-                if (scale_local_offset == Group_Size / 2) {
-                    scale_local_offset = 0;
-                    // TODO: OPTIMIZE ME
-                    pipe_barrier(PIPE_ALL);
-                    DataCopy(scale_gm[scale_global_offset], scale_local,
-                                      Group_Size / 2);
-                    pipe_barrier(PIPE_ALL);
-                    scale_global_offset += Group_Size / 2;
-                }
-            }
-        }
-
-        if (scale_local_offset != 0) {
-            pipe_barrier(PIPE_ALL);
-            DataCopyExtParams dataCopyParams;
-            dataCopyParams.blockCount = 1;
-            dataCopyParams.blockLen = scale_local_offset * sizeof(half);
-            DataCopyPad(scale_gm[scale_global_offset], scale_local,
-                        dataCopyParams);
-            pipe_barrier(PIPE_ALL);
-        }
-        scale_queue.FreeTensor(scale_local);
-    }
-
-   private:
-    int64_t input_ne[4];
-    size_t input_stride[4];
-
-    int64_t *scale_ne;
-    size_t scale_stride[4];
-
-    int64_t output_ne[4];
-    size_t output_stride[4];
-
-    int64_t group_size_in_row;
-
-    int64_t ir;
-    int64_t dr;
-
-    TPipe pipe;
-    GlobalTensor<SRC_T> input_gm;
-    GlobalTensor<half> scale_gm;
-    GlobalTensor<int8_t> output_gm;
-    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
-    TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
-    TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
-};
-
-template <typename T>
-__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
-    auto gm_ptr = (__gm__ uint8_t *)gm;
-    auto ub_ptr = (uint8_t *)(ub);
-    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
-        *ub_ptr = *gm_ptr;
-    }
-}
-
-extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
-    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-
-    QUANTIZE_FLOAT_TO_Q4_0<half> op;
-    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
-    op.calculate();
-}
-
-extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
-    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
-    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
-    int64_t input_ne_ub[4];
-    size_t input_nb_ub[4];
-    int64_t output_ne_ub[4];
-
-    copy_to_ub(input_ne_gm, input_ne_ub, 32);
-    copy_to_ub(input_nb_gm, input_nb_ub, 32);
-    copy_to_ub(output_ne_gm, output_ne_ub, 32);
-
-    QUANTIZE_FLOAT_TO_Q4_0<float> op;
-    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
-    op.calculate();
-}
-
-#endif // #ifdef ASCEND_310P