]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : support upcoming Qwen2 (#5037)
authorShijie <redacted>
Fri, 19 Jan 2024 11:53:13 +0000 (19:53 +0800)
committerGitHub <redacted>
Fri, 19 Jan 2024 11:53:13 +0000 (13:53 +0200)
convert-hf-to-gguf.py
gguf-py/gguf/constants.py
llama.cpp

index d2d6948d83f0f12e6b79e85798077f20e112b0f1..5cb3e63fb334aba25dcddac289b5f024cb952f7b 100755 (executable)
@@ -189,6 +189,8 @@ class Model:
             return StableLMModel
         if model_architecture == "QWenLMHeadModel":
             return QwenModel
+        if model_architecture == "Qwen2ForCausalLM":
+            return Model
         if model_architecture == "MixtralForCausalLM":
             return MixtralModel
         if model_architecture == "GPT2LMHeadModel":
@@ -236,6 +238,8 @@ class Model:
             return gguf.MODEL_ARCH.STABLELM
         if arch == "QWenLMHeadModel":
             return gguf.MODEL_ARCH.QWEN
+        if arch == "Qwen2ForCausalLM":
+            return gguf.MODEL_ARCH.QWEN2
         if arch == "MixtralForCausalLM":
             return gguf.MODEL_ARCH.LLAMA
         if arch == "GPT2LMHeadModel":
index 95c58b4192a8d2efa4858833af9fdbd0e862cb0a..2d9c33c7d38548da0eb6b26cf1371aed384ec97d 100644 (file)
@@ -97,6 +97,7 @@ class MODEL_ARCH(IntEnum):
     BLOOM     = auto()
     STABLELM  = auto()
     QWEN      = auto()
+    QWEN2     = auto()
     PHI2      = auto()
     PLAMO     = auto()
     CODESHELL = auto()
@@ -146,6 +147,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.BLOOM:          "bloom",
     MODEL_ARCH.STABLELM:       "stablelm",
     MODEL_ARCH.QWEN:           "qwen",
+    MODEL_ARCH.QWEN2:          "qwen2",
     MODEL_ARCH.PHI2:           "phi2",
     MODEL_ARCH.PLAMO:          "plamo",
     MODEL_ARCH.CODESHELL:      "codeshell",
@@ -358,6 +360,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.QWEN2: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+    ],
     MODEL_ARCH.PLAMO: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index 1cee5a7911eac00debc1e9f2b22eafc82cd5dccb..90579ac85dabd5fe6410eef408b9f593aa977307 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -192,6 +192,7 @@ enum llm_arch {
     LLM_ARCH_BLOOM,
     LLM_ARCH_STABLELM,
     LLM_ARCH_QWEN,
+    LLM_ARCH_QWEN2,
     LLM_ARCH_PHI2,
     LLM_ARCH_PLAMO,
     LLM_ARCH_CODESHELL,
@@ -212,6 +213,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
     { LLM_ARCH_BLOOM,           "bloom"     },
     { LLM_ARCH_STABLELM,        "stablelm"  },
     { LLM_ARCH_QWEN,            "qwen"      },
+    { LLM_ARCH_QWEN2,           "qwen2"     },
     { LLM_ARCH_PHI2,            "phi2"      },
     { LLM_ARCH_PLAMO,           "plamo"     },
     { LLM_ARCH_CODESHELL,       "codeshell" },
@@ -568,6 +570,23 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_QWEN2,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_PHI2,
         {
@@ -2869,6 +2888,17 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_QWEN2:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    case 24: model.type = e_model::MODEL_1B; break;
+                    case 32: model.type = e_model::MODEL_7B; break;
+                    case 40: model.type = e_model::MODEL_13B; break;
+                    case 80: model.type = e_model::MODEL_70B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_PHI2:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -3704,6 +3734,41 @@ static bool llm_load_tensors(
                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2});
                     }
                 } break;
+            case LLM_ARCH_QWEN2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        // optional bias tensors
+                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
+                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
+                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
             case LLM_ARCH_PHI2:
                 {
                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -5698,6 +5763,128 @@ struct llm_build_context {
 
         return gf;
     }
+
+    struct ggml_cgraph * build_qwen2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
+        cb(inpL, "inp_embd", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+        cb(inp_pos, "inp_pos", -1);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
+        cb(KQ_mask, "KQ_mask", -1);
+
+        // shift the entire K-cache if needed
+        if (do_rope_shift) {
+            llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
+        }
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                cb(Vcur, "Vcur", il);
+
+                // these nodes are added to the graph together so that they are not reordered
+                // by doing so, the number of splits in the graph is reduced
+                ggml_build_forward_expand(gf, Qcur);
+                ggml_build_forward_expand(gf, Kcur);
+                ggml_build_forward_expand(gf, Vcur);
+
+                Qcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
+                    hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+                    hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
+
+                cur = llm_build_kqv(ctx0, model, hparams, kv_self,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+                cb(cur, "kqv_out", il);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, cur,
+                    model.layers[il].ffn_up,   NULL,
+                    model.layers[il].ffn_gate, NULL,
+                    model.layers[il].ffn_down, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
     struct ggml_cgraph * build_phi2() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 
@@ -6324,6 +6511,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_qwen();
             } break;
+        case LLM_ARCH_QWEN2:
+            {
+                result = llm.build_qwen2();
+            } break;
         case LLM_ARCH_PHI2:
             {
                 result = llm.build_phi2();