--- /dev/null
+#include "ggml/ggml.h"
+
+#include "common.h"
+
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <ctime>
+#include <fstream>
+#include <string>
+#include <vector>
+#include <algorithm>
+
+#if defined(_MSC_VER)
+#pragma warning(disable: 4244 4267) // possible loss of data
+#endif
+
+struct mnist_model {
+ struct ggml_tensor * conv2d_1_kernel;
+ struct ggml_tensor * conv2d_1_bias;
+ struct ggml_tensor * conv2d_2_kernel;
+ struct ggml_tensor * conv2d_2_bias;
+ struct ggml_tensor * dense_weight;
+ struct ggml_tensor * dense_bias;
+ struct ggml_context * ctx;
+};
+
+bool mnist_model_load(const std::string & fname, mnist_model & model) {
+ struct gguf_init_params params = {
+ /*.no_alloc =*/ false,
+ /*.ctx =*/ &model.ctx,
+ };
+ gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
+ if (!ctx) {
+ fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
+ return false;
+ }
+ model.conv2d_1_kernel = ggml_get_tensor(model.ctx, "kernel1");
+ model.conv2d_1_bias = ggml_get_tensor(model.ctx, "bias1");
+ model.conv2d_2_kernel = ggml_get_tensor(model.ctx, "kernel2");
+ model.conv2d_2_bias = ggml_get_tensor(model.ctx, "bias2");
+ model.dense_weight = ggml_get_tensor(model.ctx, "dense_w");
+ model.dense_bias = ggml_get_tensor(model.ctx, "dense_b");
+ return true;
+}
+
+int mnist_eval(
+ const mnist_model & model,
+ const int n_threads,
+ std::vector<float> digit,
+ const char * fname_cgraph
+ )
+{
+ static size_t buf_size = 100000 * sizeof(float) * 4;
+ static void * buf = malloc(buf_size);
+
+ struct ggml_init_params params = {
+ /*.mem_size =*/ buf_size,
+ /*.mem_buffer =*/ buf,
+ /*.no_alloc =*/ false,
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+ struct ggml_cgraph gf = {};
+
+ struct ggml_tensor * input = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, 28, 28, 1, 1);
+ memcpy(input->data, digit.data(), ggml_nbytes(input));
+ ggml_set_name(input, "input");
+ ggml_tensor * cur = ggml_conv_2d(ctx0, model.conv2d_1_kernel, input, 1, 1, 0, 0, 1, 1);
+ cur = ggml_add(ctx0, cur, model.conv2d_1_bias);
+ cur = ggml_relu(ctx0, cur);
+ // Output shape after Conv2D: (26 26 32 1)
+ cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
+ // Output shape after MaxPooling2D: (13 13 32 1)
+ cur = ggml_conv_2d(ctx0, model.conv2d_2_kernel, cur, 1, 1, 0, 0, 1, 1);
+ cur = ggml_add(ctx0, cur, model.conv2d_2_bias);
+ cur = ggml_relu(ctx0, cur);
+ // Output shape after Conv2D: (11 11 64 1)
+ cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
+ // Output shape after MaxPooling2D: (5 5 64 1)
+ cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
+ // Output shape after permute: (64 5 5 1)
+ cur = ggml_reshape_2d(ctx0, cur, 1600, 1);
+ // Final Dense layer
+ cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.dense_weight, cur), model.dense_bias);
+ ggml_tensor * probs = ggml_soft_max(ctx0, cur);
+ ggml_set_name(probs, "probs");
+
+ ggml_build_forward_expand(&gf, probs);
+ ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
+
+ //ggml_graph_print(&gf);
+ ggml_graph_dump_dot(&gf, NULL, "mnist-cnn.dot");
+
+ if (fname_cgraph) {
+ // export the compute graph for later use
+ // see the "mnist-cpu" example
+ ggml_graph_export(&gf, fname_cgraph);
+
+ fprintf(stderr, "%s: exported compute graph to '%s'\n", __func__, fname_cgraph);
+ }
+
+ const float * probs_data = ggml_get_data_f32(probs);
+ const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data;
+ ggml_free(ctx0);
+ return prediction;
+}
+
+int main(int argc, char ** argv) {
+ srand(time(NULL));
+ ggml_time_init();
+
+ if (argc != 3) {
+ fprintf(stderr, "Usage: %s models/mnist/mnist-cnn.gguf models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
+ exit(0);
+ }
+
+ uint8_t buf[784];
+ mnist_model model;
+ std::vector<float> digit;
+
+ // load the model
+ {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!mnist_model_load(argv[1], model)) {
+ fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, argv[1]);
+ return 1;
+ }
+
+ const int64_t t_load_us = ggml_time_us() - t_start_us;
+
+ fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f);
+ }
+
+ // read a random digit from the test set
+ {
+ std::ifstream fin(argv[2], std::ios::binary);
+ if (!fin) {
+ fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
+ return 1;
+ }
+
+ // seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
+ fin.seekg(16 + 784 * (rand() % 10000));
+ fin.read((char *) &buf, sizeof(buf));
+ }
+
+ // render the digit in ASCII
+ {
+ digit.resize(sizeof(buf));
+
+ for (int row = 0; row < 28; row++) {
+ for (int col = 0; col < 28; col++) {
+ fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
+ digit[row*28 + col] = ((float)buf[row*28 + col] / 255.0f);
+ }
+
+ fprintf(stderr, "\n");
+ }
+
+ fprintf(stderr, "\n");
+ }
+
+ const int prediction = mnist_eval(model, 1, digit, nullptr);
+ fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction);
+ ggml_free(model.ctx);
+ return 0;
+}
--- /dev/null
+#!/usr/bin/env python3
+import sys
+import gguf
+import numpy as np
+from tensorflow import keras
+from tensorflow.keras import layers
+
+def train(model_name):
+ # Model / data parameters
+ num_classes = 10
+ input_shape = (28, 28, 1)
+
+ # Load the data and split it between train and test sets
+ (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
+
+ # Scale images to the [0, 1] range
+ x_train = x_train.astype("float32") / 255
+ x_test = x_test.astype("float32") / 255
+ # Make sure images have shape (28, 28, 1)
+ x_train = np.expand_dims(x_train, -1)
+ x_test = np.expand_dims(x_test, -1)
+ print("x_train shape:", x_train.shape)
+ print(x_train.shape[0], "train samples")
+ print(x_test.shape[0], "test samples")
+
+ # convert class vectors to binary class matrices
+ y_train = keras.utils.to_categorical(y_train, num_classes)
+ y_test = keras.utils.to_categorical(y_test, num_classes)
+
+ model = keras.Sequential(
+ [
+ keras.Input(shape=input_shape),
+ layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
+ layers.MaxPooling2D(pool_size=(2, 2)),
+ layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
+ layers.MaxPooling2D(pool_size=(2, 2)),
+ layers.Flatten(),
+ layers.Dropout(0.5),
+ layers.Dense(num_classes, activation="softmax"),
+ ]
+ )
+
+ model.summary()
+ batch_size = 128
+ epochs = 15
+ model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
+ model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
+
+ score = model.evaluate(x_test, y_test, verbose=0)
+ print("Test loss:", score[0])
+ print("Test accuracy:", score[1])
+ model.save(model_name)
+ print("Keras model saved to '" + model_name + "'")
+
+def convert(model_name):
+ model = keras.models.load_model(model_name)
+ gguf_model_name = model_name + ".gguf"
+ gguf_writer = gguf.GGUFWriter(gguf_model_name, "mnist-cnn")
+
+ kernel1 = model.layers[0].weights[0].numpy()
+ kernel1 = np.moveaxis(kernel1, [2,3], [0,1])
+ kernel1 = kernel1.astype(np.float16)
+ gguf_writer.add_tensor("kernel1", kernel1, raw_shape=(32, 1, 3, 3))
+
+ bias1 = model.layers[0].weights[1].numpy()
+ bias1 = np.repeat(bias1, 26*26)
+ gguf_writer.add_tensor("bias1", bias1, raw_shape=(1, 32, 26, 26))
+
+ kernel2 = model.layers[2].weights[0].numpy()
+ kernel2 = np.moveaxis(kernel2, [0,1,2,3], [2,3,1,0])
+ kernel2 = kernel2.astype(np.float16)
+ gguf_writer.add_tensor("kernel2", kernel2, raw_shape=(64, 32, 3, 3))
+
+ bias2 = model.layers[2].weights[1].numpy()
+ bias2 = np.repeat(bias2, 11*11)
+ gguf_writer.add_tensor("bias2", bias2, raw_shape=(1, 64, 11, 11))
+
+ dense_w = model.layers[-1].weights[0].numpy()
+ dense_w = dense_w.transpose()
+ gguf_writer.add_tensor("dense_w", dense_w, raw_shape=(10, 1600))
+
+ dense_b = model.layers[-1].weights[1].numpy()
+ gguf_writer.add_tensor("dense_b", dense_b)
+
+ gguf_writer.write_header_to_file()
+ gguf_writer.write_kv_data_to_file()
+ gguf_writer.write_tensors_to_file()
+ gguf_writer.close()
+ print("Model converted and saved to '{}'".format(gguf_model_name))
+
+if __name__ == '__main__':
+ if len(sys.argv) < 3:
+ print("Usage: %s <train|convert> <model_name>".format(sys.argv[0]))
+ sys.exit(1)
+ if sys.argv[1] == 'train':
+ train(sys.argv[2])
+ elif sys.argv[1] == 'convert':
+ convert(sys.argv[2])
+ else:
+ print("Usage: %s <train|convert> <model_name>".format(sys.argv[0]))
+ sys.exit(1)