@ModelBase.register("InternVisionModel")
class InternVisionModel(MmprojModel):
def set_gguf_parameters(self):
+ assert self.hparams_vision is not None
+ if isinstance(self.hparams_vision['image_size'], list):
+ self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
+ if isinstance(self.hparams_vision['patch_size'], list):
+ self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
super().set_gguf_parameters()
+
hparams = self.hparams
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
return gguf.GGMLQuantizationType.F32
return False
+ def _mapping_interns1_name(self, name):
+ names_map = {
+ "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
+ "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
+ "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
+ "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
+ "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
+ "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
+ }
+ if name in names_map:
+ name = names_map[name]
+ return name
+
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
- if name.startswith("vision_model") or name.startswith("mlp"):
+ vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
+ # deal with intern-s1 special case
+ name = self._mapping_interns1_name(name)
+ if any([name.startswith(prefix) for prefix in vision_prefix]):
# process visual tensors
# correct name
if name.startswith("vision_model"):
name = "vision_tower." + name
- if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
+ if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
name += ".weight"
# split QKV tensors if needed
if ".qkv." in name:
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
+ name = name.replace("language_model.", "") # InternVL
+ if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
+ # skip visual tensors
+ return []
if name.find("experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
class Qwen3MoeModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3MOE
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ hparams = ModelBase.load_hparams(self.dir_model)
+ self.origin_hf_arch = hparams.get('architectures', [None])[0]
+
+ def set_vocab(self):
+ # deal with intern-s1
+ if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
+ self._set_vocab_interns1()
+ return
+
+ try:
+ self._set_vocab_sentencepiece()
+ except FileNotFoundError:
+ self._set_vocab_gpt2()
+
+ def _set_vocab_interns1(self):
+ tokens: list[str] = []
+ toktypes: list[int] = []
+
+ from transformers import AutoTokenizer
+ tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
+ vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
+ vocab_size = self.hparams.get("vocab_size", len(vocab))
+ assert max(vocab.values()) < vocab_size
+
+ tokpre = self.get_vocab_base_pre(tokenizer)
+
+ reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
+ added_vocab = tokenizer.get_added_vocab()
+
+ added_tokens_decoder = tokenizer.added_tokens_decoder
+
+ for i in range(vocab_size):
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.UNUSED)
+ else:
+ token: str = reverse_vocab[i]
+ if token in added_vocab:
+ # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
+ # To avoid unexpected issues - we make sure to normalize non-normalized tokens
+ if not added_tokens_decoder[i].normalized:
+ previous_token = token
+ token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
+ if previous_token != token:
+ logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
+
+ if added_tokens_decoder[i].special or self.does_token_look_special(token):
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ toktypes.append(gguf.TokenType.NORMAL)
+ tokens.append(token)
+
+ self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
+ special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
+ additional_special_tokens = []
+ if special_tokens_map_file.is_file():
+ with open(special_tokens_map_file, encoding = 'utf-8') as f:
+ additional_special_tokens = json.load(f).get('additional_special_tokens', [])
+ tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
+ if tokenizer_cfg_file.is_file():
+ with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
+ added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
+ token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
+ for token in additional_special_tokens:
+ if token in token2ids_map:
+ special_vocab._set_special_token(token, token2ids_map[token])
+ special_vocab._set_special_token('eos', 151645)
+ special_vocab._set_special_token("bos", 151643)
+ special_vocab.add_to_gguf(self.gguf_writer)
+
@ModelBase.register("GPT2LMHeadModel")
class GPT2Model(TextModel):
MODEL_TENSOR.V_ENC_EMBD_CLS: (
"vision_tower.vision_model.embeddings.class_embedding",
+ "model.vision_tower.embeddings.cls_token", # Intern-S1
"vision_model.class_embedding", # llama 4
),
MODEL_TENSOR.V_ENC_EMBD_PATCH: (
"vision_tower.vision_model.embeddings.patch_embedding",
+ "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
"vpm.embeddings.patch_embedding",
"model.vision_model.embeddings.patch_embedding", # SmolVLM
"vision_tower.patch_conv", # pixtral
MODEL_TENSOR.V_ENC_EMBD_POS: (
"vision_tower.vision_model.embeddings.position_embedding",
+ "model.vision_tower.embeddings.position_embeddings", # Intern-S1
"vpm.embeddings.position_embedding",
"model.vision_model.embeddings.position_embedding", # SmolVLM
"vision_model.positional_embedding_vlm", # llama 4
MODEL_TENSOR.V_ENC_ATTN_Q: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
+ "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
"vpm.encoder.layers.{bid}.self_attn.q_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
+ "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
),
MODEL_TENSOR.V_ENC_ATTN_K: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
+ "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
"vpm.encoder.layers.{bid}.self_attn.k_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
+ "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
),
MODEL_TENSOR.V_ENC_ATTN_V: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
+ "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
"vpm.encoder.layers.{bid}.self_attn.v_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
MODEL_TENSOR.V_ENC_INPUT_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
"vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
+ "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
"vpm.encoder.layers.{bid}.layer_norm1",
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
MODEL_TENSOR.V_ENC_ATTN_O: (
"vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
"vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
+ "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
"vpm.encoder.layers.{bid}.self_attn.out_proj",
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
"vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
"vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
"vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
+ "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
"vpm.encoder.layers.{bid}.layer_norm2",
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
"vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
MODEL_TENSOR.V_ENC_FFN_UP: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
+ "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
"vpm.encoder.layers.{bid}.mlp.fc1",
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
MODEL_TENSOR.V_ENC_FFN_DOWN: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
+ "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
"vpm.encoder.layers.{bid}.mlp.fc2",
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
MODEL_TENSOR.V_LAYER_SCALE_1: (
"vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
+ "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
),
MODEL_TENSOR.V_LAYER_SCALE_2: (
"vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
+ "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
),
MODEL_TENSOR.V_PRE_NORM: (