#include "ggml-impl.h"
#include "ggml-cpu-quants.h"
#include "ggml-threading.h"
-#include "ggml-cpu/unary-ops.h"
-#include "ggml-cpu/binary-ops.h"
+#include "unary-ops.h"
+#include "binary-ops.h"
+#include "vec.h"
+#include "ops.h"
#include "ggml.h"
#if defined(_MSC_VER) || defined(__MINGW32__)
#define UNUSED GGML_UNUSED
#define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
-#if defined(GGML_USE_ACCELERATE)
-#include <Accelerate/Accelerate.h>
-#endif
-
-// floating point type used to accumulate sums
-typedef double ggml_float;
-
-#define GGML_GELU_FP16
-#define GGML_GELU_QUICK_FP16
-
-#define GGML_SOFT_MAX_UNROLL 4
-#define GGML_VEC_DOT_UNROLL 2
-#define GGML_VEC_MAD_UNROLL 32
-
-//
-// global data
-//
-
-// precomputed gelu table for f16 (128 KB)
-static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
-
-// precomputed quick gelu table for f16 (128 KB)
-static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
-
#if defined(__ARM_ARCH)
struct ggml_arm_arch_features_type {
int has_neon;
#include <TargetConditionals.h>
#endif
-//
-// cache line
-//
-
-#if defined(__cpp_lib_hardware_interference_size)
-#define CACHE_LINE_SIZE hardware_destructive_interference_size
-#else
-#if defined(__POWER9_VECTOR__)
-#define CACHE_LINE_SIZE 128
-#elif defined(__VXE__) || defined(__VXE2__)
-#define CACHE_LINE_SIZE 256
-#else
-#define CACHE_LINE_SIZE 64
-#endif
-#endif
-
-static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
-
-
-static void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
-static void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
-static void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc);
-
static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = {
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
return &type_traits_cpu[type];
}
-//
-// simd mappings
-//
-
-// we define a common set of C macros which map to specific intrinsics based on the current architecture
-// we then implement the fundamental computation operations below using only these macros
-// adding support for new architectures requires to define the corresponding SIMD macros
-//
-// GGML_F32_STEP / GGML_F16_STEP
-// number of elements to process in a single step
-//
-// GGML_F32_EPR / GGML_F16_EPR
-// number of elements to fit in a single register
-//
-
-#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
-
-#define GGML_SIMD
-
-// F32 NEON
-
-#define GGML_F32_STEP 16
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 float32x4_t
-#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
-#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
-#define GGML_F32x4_LOAD vld1q_f32
-#define GGML_F32x4_STORE vst1q_f32
-#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
-#define GGML_F32x4_ADD vaddq_f32
-#define GGML_F32x4_MUL vmulq_f32
-#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
- } \
- (res) = (ggml_float) GGML_F32x4_REDUCE_ONE((x)[0]); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 NEON
-
-#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
-
- #define GGML_F16x8 float16x8_t
- #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
- #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
- #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
- #define GGML_F16x8_STORE vst1q_f16
- #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
- #define GGML_F16x8_ADD vaddq_f16
- #define GGML_F16x8_MUL vmulq_f16
- #define GGML_F16x8_REDUCE(res, x) \
- do { \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
- } \
- const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
- const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
- (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
- } while (0)
-
- #define GGML_F16_VEC GGML_F16x8
- #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
- #define GGML_F16_VEC_FMA GGML_F16x8_FMA
- #define GGML_F16_VEC_ADD GGML_F16x8_ADD
- #define GGML_F16_VEC_MUL GGML_F16x8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
-#else
- // if FP16 vector arithmetic is not supported, we use FP32 instead
- // and take advantage of the vcvt_ functions to convert to/from FP16
-
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
-
- #define GGML_F32Cx4 float32x4_t
- #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
- #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
- #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32Cx4_ADD vaddq_f32
- #define GGML_F32Cx4_MUL vmulq_f32
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
-
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
-#endif
-
-#elif defined(__AVX512F__)
-
-#define GGML_SIMD
-
-// F32 AVX512
-
-#define GGML_F32_STEP 64
-#define GGML_F32_EPR 16
-
-#define GGML_F32x16 __m512
-#define GGML_F32x16_ZERO _mm512_setzero_ps()
-#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
-#define GGML_F32x16_LOAD _mm512_loadu_ps
-#define GGML_F32x16_STORE _mm512_storeu_ps
-// _mm512_fmadd_ps is defined in AVX512F so no guard is required
-#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
-#define GGML_F32x16_ADD _mm512_add_ps
-#define GGML_F32x16_MUL _mm512_mul_ps
-#define GGML_F32x16_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
-} while (0)
-
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x16
-#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x16_STORE
-#define GGML_F32_VEC_FMA GGML_F32x16_FMA
-#define GGML_F32_VEC_ADD GGML_F32x16_ADD
-#define GGML_F32_VEC_MUL GGML_F32x16_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
-
-// F16 AVX512
-
-// F16 AVX
-
-#define GGML_F16_STEP 64
-#define GGML_F16_EPR 16
-
-// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
-
-#define GGML_F32Cx16 __m512
-#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
-#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
-
-// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
-// so F16C guard isn't required
-#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
-#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
-
-#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
-#define GGML_F32Cx16_ADD _mm512_add_ps
-#define GGML_F32Cx16_MUL _mm512_mul_ps
-#define GGML_F32Cx16_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm512_add_ps(x[i], x[offset+i]); \
- } \
- res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
-} while (0)
-
-#define GGML_F16_VEC GGML_F32Cx16
-#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
-
-#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
-#elif defined(__AVX__)
-
-#define GGML_SIMD
-
-// F32 AVX
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 8
-
-#define GGML_F32x8 __m256
-#define GGML_F32x8_ZERO _mm256_setzero_ps()
-#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
-#define GGML_F32x8_LOAD _mm256_loadu_ps
-#define GGML_F32x8_STORE _mm256_storeu_ps
-#if defined(__FMA__)
- #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
-#else
- #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
-#endif
-#define GGML_F32x8_ADD _mm256_add_ps
-#define GGML_F32x8_MUL _mm256_mul_ps
-#define GGML_F32x8_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
- _mm256_extractf128_ps(x[0], 1)); \
- const __m128 t1 = _mm_hadd_ps(t0, t0); \
- res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
-} while (0)
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x8
-#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x8_STORE
-#define GGML_F32_VEC_FMA GGML_F32x8_FMA
-#define GGML_F32_VEC_ADD GGML_F32x8_ADD
-#define GGML_F32_VEC_MUL GGML_F32x8_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
-
-// F16 AVX
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 8
-
-// F16 arithmetic is not supported by AVX, so we use F32 instead
-
-#define GGML_F32Cx8 __m256
-#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
-#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
-
-#if defined(__F16C__)
-// the _mm256_cvt intrinsics require F16C
-#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
-#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
-#else
-static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
- float tmp[8];
-
- for (int i = 0; i < 8; i++) {
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- }
-
- return _mm256_loadu_ps(tmp);
-}
-static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
- float arr[8];
-
- _mm256_storeu_ps(arr, y);
-
- for (int i = 0; i < 8; i++)
- x[i] = GGML_FP32_TO_FP16(arr[i]);
-}
-#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
-#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
-#endif
-
-#define GGML_F32Cx8_FMA GGML_F32x8_FMA
-#define GGML_F32Cx8_ADD _mm256_add_ps
-#define GGML_F32Cx8_MUL _mm256_mul_ps
-#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx8
-#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
-
-#elif defined(__POWER9_VECTOR__)
-
-#define GGML_SIMD
-
-// F32 POWER9
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 vector float
-#define GGML_F32x4_ZERO 0.0f
-#define GGML_F32x4_SET1 vec_splats
-#define GGML_F32x4_LOAD(p) vec_xl(0, p)
-#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
-#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
-#define GGML_F32x4_ADD vec_add
-#define GGML_F32x4_MUL vec_mul
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- res = vec_extract(x[0], 0) + \
- vec_extract(x[0], 1) + \
- vec_extract(x[0], 2) + \
- vec_extract(x[0], 3); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 POWER9
-#define GGML_F16_STEP GGML_F32_STEP
-#define GGML_F16_EPR GGML_F32_EPR
-#define GGML_F16_VEC GGML_F32x4
-#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F16_VEC_FMA GGML_F32x4_FMA
-#define GGML_F16_VEC_ADD GGML_F32x4_ADD
-#define GGML_F16_VEC_MUL GGML_F32x4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
-// Use vec_xl, not vec_ld, in case the load address is not aligned.
-#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
- vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
- vec_extract_fp32_from_shortl(vec_xl(0, p))
-#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
-#define GGML_F16_VEC_STORE(p, r, i) \
- if (i & 0x1) \
- vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
- r[i - GGML_ENDIAN_BYTE(0)]), \
- 0, p - GGML_F16_EPR)
-
-#elif defined(__wasm_simd128__)
-
-#define GGML_SIMD
-
-// F32 WASM
-
-#define GGML_F32_STEP 16
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 v128_t
-#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
-#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
-#define GGML_F32x4_LOAD wasm_v128_load
-#define GGML_F32x4_STORE wasm_v128_store
-#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
-#define GGML_F32x4_ADD wasm_f32x4_add
-#define GGML_F32x4_MUL wasm_f32x4_mul
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 WASM
-
-#define GGML_F16_STEP 16
-#define GGML_F16_EPR 4
-
-inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
- float tmp[4];
-
- tmp[0] = GGML_FP16_TO_FP32(p[0]);
- tmp[1] = GGML_FP16_TO_FP32(p[1]);
- tmp[2] = GGML_FP16_TO_FP32(p[2]);
- tmp[3] = GGML_FP16_TO_FP32(p[3]);
-
- return wasm_v128_load(tmp);
-}
-
-inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
- float tmp[4];
-
- wasm_v128_store(tmp, x);
-
- p[0] = GGML_FP32_TO_FP16(tmp[0]);
- p[1] = GGML_FP32_TO_FP16(tmp[1]);
- p[2] = GGML_FP32_TO_FP16(tmp[2]);
- p[3] = GGML_FP32_TO_FP16(tmp[3]);
-}
-
-#define GGML_F16x4 v128_t
-#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
-#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
-#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
-#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
-#define GGML_F16x4_FMA GGML_F32x4_FMA
-#define GGML_F16x4_ADD wasm_f32x4_add
-#define GGML_F16x4_MUL wasm_f32x4_mul
-#define GGML_F16x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = (ggml_float) (wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3)); \
-}
-
-#define GGML_F16_VEC GGML_F16x4
-#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F16x4_FMA
-#define GGML_F16_VEC_ADD GGML_F16x4_ADD
-#define GGML_F16_VEC_MUL GGML_F16x4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
-
-#elif defined(__SSE3__)
-
-#define GGML_SIMD
-
-// F32 SSE
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 __m128
-#define GGML_F32x4_ZERO _mm_setzero_ps()
-#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
-#define GGML_F32x4_LOAD _mm_loadu_ps
-#define GGML_F32x4_STORE _mm_storeu_ps
-#if defined(__FMA__)
- // TODO: Does this work?
- #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
-#else
- #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
-#endif
-#define GGML_F32x4_ADD _mm_add_ps
-#define GGML_F32x4_MUL _mm_mul_ps
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
- res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
-}
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 SSE
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 4
-
-static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
- float tmp[4];
-
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
-
- return _mm_loadu_ps(tmp);
-}
-
-static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
- float arr[4];
-
- _mm_storeu_ps(arr, y);
-
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
-}
-
-#define GGML_F32Cx4 __m128
-#define GGML_F32Cx4_ZERO _mm_setzero_ps()
-#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
-#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
-#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
-#define GGML_F32Cx4_FMA GGML_F32x4_FMA
-#define GGML_F32Cx4_ADD _mm_add_ps
-#define GGML_F32Cx4_MUL _mm_mul_ps
-#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx4
-#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
-
-#elif defined(__loongarch_asx)
-
-#define GGML_SIMD
-
-// F32 LASX
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 8
-
-#define GGML_F32x8 __m256
-#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
-#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
-#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
-#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
-#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
-#define GGML_F32x8_ADD __lasx_xvfadd_s
-#define GGML_F32x8_MUL __lasx_xvfmul_s
-#define GGML_F32x8_REDUCE(res, x) \
-do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
- } \
- float *tmp_p = (float *)&x[0]; \
- res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
-} while (0)
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC GGML_F32x8
-#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x8_STORE
-#define GGML_F32_VEC_FMA GGML_F32x8_FMA
-#define GGML_F32_VEC_ADD GGML_F32x8_ADD
-#define GGML_F32_VEC_MUL GGML_F32x8_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
-
-// F16 LASX
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 8
-
-// F16 arithmetic is not supported by LASX, so we use F32 instead
-
-#define GGML_F32Cx8 __m256
-#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
-#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
-
-static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
- __m256i a;
- memcpy(&a, x, sizeof(ggml_fp16_t) * 8);
- a = __lasx_xvpermi_d(a, 0 | (1 << 4));
- return __lasx_xvfcvtl_s_h(a);
-}
-
-static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
- __m256i a = __lasx_xvfcvt_h_s(y, y);
- a = __lasx_xvpermi_d(a, 0 | (2 << 2));
- memcpy(x, &a, sizeof(ggml_fp16_t) * 8);
-}
-#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
-#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
-
-#define GGML_F32Cx8_FMA GGML_F32x8_FMA
-#define GGML_F32Cx8_ADD __lasx_xvfadd_s
-#define GGML_F32Cx8_MUL __lasx_xvfmul_s
-#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx8
-#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
-
-#elif defined(__loongarch_sx)
-
-#define GGML_SIMD
-
-// F32 LSX
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 __m128
-#define GGML_F32x4_ZERO __lsx_vldi(0)
-#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
-#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
-#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
-#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
-#define GGML_F32x4_ADD __lsx_vfadd_s
-#define GGML_F32x4_MUL __lsx_vfmul_s
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
- } \
- __m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
- tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
- tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
- const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
- tmp = __lsx_vsrli_d((__m128i) t0, 32); \
- tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
- tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
- res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 LSX
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR 4
-
-static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
- float tmp[4];
-
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
-
- return __lsx_vld(tmp, 0);
-}
-
-static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
- float arr[4];
-
- __lsx_vst(y, arr, 0);
-
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
-}
-
-#define GGML_F32Cx4 __m128
-#define GGML_F32Cx4_ZERO __lsx_vldi(0)
-#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
-#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
-#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
-#define GGML_F32Cx4_FMA GGML_F32x4_FMA
-#define GGML_F32Cx4_ADD __lsx_vfadd_s
-#define GGML_F32Cx4_MUL __lsx_vfmul_s
-#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
-
-#define GGML_F16_VEC GGML_F32Cx4
-#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
-#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
-#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
-#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
-
-#elif defined(__VXE__) || defined(__VXE2__)
-
-#define GGML_SIMD
-
-// F32 s390x
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR 4
-
-#define GGML_F32x4 __vector float
-#define GGML_F32x4_ZERO vec_splats(0.0f)
-#define GGML_F32x4_SET1 vec_splats
-#define GGML_F32x4_LOAD(p) vec_xl(0, p)
-#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
-#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
-#define GGML_F32x4_ADD vec_add
-#define GGML_F32x4_MUL vec_mul
-#define GGML_F32x4_REDUCE(res, x) \
-{ \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset + i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset + i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset + i]); \
- } \
- res = vec_extract(x[0], 0) + \
- vec_extract(x[0], 1) + \
- vec_extract(x[0], 2) + \
- vec_extract(x[0], 3); \
-}
-
-#define GGML_F32_VEC GGML_F32x4
-#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 s390x
-#define GGML_F16_STEP GGML_F32_STEP
-#define GGML_F16_EPR GGML_F32_EPR
-
-static inline __vector float __lzs_f16cx4_load(const ggml_fp16_t * x) {
- float tmp[4];
-
- for (int i = 0; i < 4; i++) {
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- }
-
- return vec_xl(0, tmp);
-}
-
-static inline void __lzs_f16cx4_store(ggml_fp16_t * x, __vector float y) {
- float arr[4];
-
- vec_xst(y, 0, arr);
-
- for (int i = 0; i < 4; i++) {
- x[i] = GGML_FP32_TO_FP16(arr[i]);
- }
-}
-
-#define GGML_F16_VEC GGML_F32x4
-#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
-#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
-#define GGML_F16_VEC_LOAD(p, i) __lzs_f16cx4_load(p)
-#define GGML_F16_VEC_STORE(p, r, i) __lzs_f16cx4_store(p, r[i])
-#define GGML_F16_VEC_FMA GGML_F32x4_FMA
-#define GGML_F16_VEC_ADD GGML_F32x4_ADD
-#define GGML_F16_VEC_MUL GGML_F32x4_MUL
-#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
-
-#endif
-
-// GGML_F32_ARR / GGML_F16_ARR
-// number of registers to use per step
-#ifdef GGML_SIMD
-#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
-#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
-#endif
-
//
// Threading defs
//
int ith;
};
-//
-// fundamental operations
-//
-
-inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
-
-inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
-inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
- for (int i = 0; i < n; ++i) {
- z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) + GGML_FP16_TO_FP32(y[i]));
- }
-}
-inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
-inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
-inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
-inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
-inline static void ggml_vec_sub_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
- for (int i = 0; i < n; ++i) {
- z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) - GGML_FP16_TO_FP32(y[i]));
- }
-}
-inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
-inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
-inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
-inline static void ggml_vec_neg_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(-GGML_FP16_TO_FP32(x[i]));
- }
-}
-
-inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
-inline static void ggml_vec_mul_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
- for (int i = 0; i < n; ++i) {
- z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) * GGML_FP16_TO_FP32(y[i]));
- }
+// Helpers for polling loops
+#if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
+static inline void ggml_thread_cpu_relax(void) {
+ __asm__ volatile("yield" ::: "memory");
}
-inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
-inline static void ggml_vec_div_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
- for (int i = 0; i < n; ++i) {
- z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) / GGML_FP16_TO_FP32(y[i]));
- }
+#elif defined(__x86_64__)
+static inline void ggml_thread_cpu_relax(void) {
+ _mm_pause();
}
-
-static void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
-
-#if defined(GGML_SIMD)
- float sumf = 0.0f;
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
-
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
-
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
-
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
-
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += x[i]*y[i];
- }
#else
- // scalar
- ggml_float sumf = 0.0;
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(x[i]*y[i]);
- }
+static inline void ggml_thread_cpu_relax(void) {;}
#endif
- *s = sumf;
-}
+//
+// NUMA support
+//
-static void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
- int i = 0;
- ggml_float sumf = 0;
+#define GGML_NUMA_MAX_NODES 8
+#define GGML_NUMA_MAX_CPUS 512
-#if defined(__AVX512BF16__)
- __m512 c1 = _mm512_setzero_ps();
- __m512 c2 = _mm512_setzero_ps();
- for (; i + 64 <= n; i += 64) {
- c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
- m512bh(_mm512_loadu_si512((y + i))));
- c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
- m512bh(_mm512_loadu_si512((y + i + 32))));
- }
- sumf += (ggml_float)_mm512_reduce_add_ps(c1);
- sumf += (ggml_float)_mm512_reduce_add_ps(c2);
-
-#elif defined(__AVX512F__)
-#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
- __m512 c1 = _mm512_setzero_ps();
- __m512 c2 = _mm512_setzero_ps();
- for (; i + 32 <= n; i += 32) {
- c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
- c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
- }
- sumf += (ggml_float)_mm512_reduce_add_ps(c1);
- sumf += (ggml_float)_mm512_reduce_add_ps(c2);
+struct ggml_numa_node {
+ uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
+ uint32_t n_cpus;
+};
-#undef LOAD
-#elif defined(__AVX2__) || defined(__AVX__)
-#if defined(__AVX2__)
-#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
+struct ggml_numa_nodes {
+ enum ggml_numa_strategy numa_strategy;
+ struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
+ uint32_t n_nodes;
+ uint32_t total_cpus; // hardware threads on system
+ uint32_t current_node; // node on which main process is execting
+#if defined(__gnu_linux__)
+ cpu_set_t cpuset; // cpuset from numactl
#else
-#define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
-#endif
- __m256 c1 = _mm256_setzero_ps();
- __m256 c2 = _mm256_setzero_ps();
- __m256 c3 = _mm256_setzero_ps();
- __m256 c4 = _mm256_setzero_ps();
- for (; i + 32 <= n; i += 32) {
- c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
- c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
- c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
- c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
- }
- __m128 g;
- c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
- _mm256_add_ps(c2, c4));
- g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
- _mm256_castps256_ps128(c1));
- g = _mm_add_ps(g, _mm_movehl_ps(g, g));
- g = _mm_add_ss(g, _mm_movehdup_ps(g));
- sumf += (ggml_float)_mm_cvtss_f32(g);
-
-#undef LOAD
+ uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
#endif
+};
- for (; i < n; ++i) {
- sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
- GGML_BF16_TO_FP32(y[i]));
- }
- *s = sumf;
-}
+//
+// ggml state
+//
-static void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
+struct ggml_state {
+ struct ggml_numa_nodes numa;
+};
- ggml_float sumf = 0.0;
+static struct ggml_state g_state = {0};
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
+void ggml_barrier(struct ggml_threadpool * tp) {
+ int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
+ if (n_threads == 1) {
+ return;
+ }
- GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
+#ifdef GGML_USE_OPENMP
+ #pragma omp barrier
+#else
+ int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
+ // enter barrier (full seq-cst fence)
+ int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
+ if (n_barrier == (n_threads - 1)) {
+ // last thread
+ atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
- sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
- }
+ // exit barrier (fill seq-cst fence)
+ atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
+ return;
}
- // reduce sum0..sum3 to sum0
- GGML_F16_VEC_REDUCE(sumf, sum);
-
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
-#else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
+ // wait for other threads
+ while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
+ ggml_thread_cpu_relax();
}
-#endif
- *s = sumf;
+ // exit barrier (full seq-cst fence)
+ // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
+ #ifdef GGML_TSAN_ENABLED
+ atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
+ #else
+ atomic_thread_fence(memory_order_seq_cst);
+ #endif
+#endif
}
-// compute GGML_VEC_DOT_UNROLL dot products at once
-// xs - x row stride in bytes
-inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GGML_RESTRICT s, void * GGML_RESTRICT xv, ggml_fp16_t * GGML_RESTRICT y) {
- ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
+#if defined(__gnu_linux__)
+static cpu_set_t ggml_get_numa_affinity(void) {
+ cpu_set_t cpuset;
+ pthread_t thread;
+ thread = pthread_self();
+ CPU_ZERO(&cpuset);
+ pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
+ return cpuset;
+}
+#else
+static uint32_t ggml_get_numa_affinity(void) {
+ return 0; // no NUMA support
+}
+#endif
- ggml_fp16_t * GGML_RESTRICT x[GGML_VEC_DOT_UNROLL];
+void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
+ if (g_state.numa.n_nodes > 0) {
+ fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
+ return;
}
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
-
- GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
-
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
+#if defined(__gnu_linux__)
+ struct stat st;
+ char path[256];
+ int rv;
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
+ // set numa scheme
+ g_state.numa.numa_strategy = numa_flag;
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
+ GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
- sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
- }
- }
- }
+ g_state.numa.cpuset = ggml_get_numa_affinity();
- // reduce sum0..sum3 to sum0
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
- }
-
- // leftovers
- for (int i = np; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
-#else
- for (int i = 0; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
-#endif
-
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- s[i] = sumf[i];
- }
-}
-
-inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
-
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
-
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
+ // enumerate nodes
+ while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
+ rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
+ GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
+ if (stat(path, &st) != 0) { break; }
+ ++g_state.numa.n_nodes;
}
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] += x[i]*v;
- }
-#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] += x[i]*v;
+ // enumerate CPUs
+ while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
+ rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
+ GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
+ if (stat(path, &st) != 0) { break; }
+ ++g_state.numa.total_cpus;
}
-#endif
-}
-inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
-
- GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
-
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
-
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
-
- GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
- }
- }
+ GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
- }
+ // figure out which node we're on
+ uint current_cpu;
+ int getcpu_ret = 0;
+#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__)
+ getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node);
#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
- }
+ // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
+# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
+# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
+# endif
+ getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node);
#endif
-}
-
-// xs and vs are byte strides of x and v
-inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * GGML_RESTRICT y, const float * GGML_RESTRICT xv, const float * GGML_RESTRICT vv) {
-
- const float * GGML_RESTRICT x[GGML_VEC_MAD_UNROLL];
- const float * GGML_RESTRICT v[GGML_VEC_MAD_UNROLL];
-
- for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
- x[i] = (const float *) ((const char *) xv + i*xs);
- v[i] = (const float *) ((const char *) vv + i*vs);
- }
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
-
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- vx[k] = GGML_F32_VEC_SET1(v[k][0]);
+ if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
+ g_state.numa.n_nodes = 0;
+ return;
}
- GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
+ GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
+ for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
+ struct ggml_numa_node * node = &g_state.numa.nodes[n];
+ GGML_PRINT_DEBUG("CPUs on node %u:", n);
+ node->n_cpus = 0;
+ for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
+ rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
+ GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
+ if (stat(path, &st) == 0) {
+ node->cpus[node->n_cpus++] = c;
+ GGML_PRINT_DEBUG(" %u", c);
}
-
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
+ GGML_PRINT_DEBUG("\n");
}
- // leftovers
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- for (int i = np; i < n; ++i) {
- y[i] += x[k][i]*v[k][0];
+ if (ggml_is_numa()) {
+ FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
+ if (fptr != NULL) {
+ char buf[42];
+ if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
+ GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
+ }
+ fclose(fptr);
}
}
#else
- // scalar
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- for (int i = 0; i < n; ++i) {
- y[i] += x[k][i]*v[k][0];
- }
- }
+ UNUSED(numa_flag);
+ // TODO
#endif
}
-//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
-inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
-#if defined(GGML_USE_ACCELERATE)
- vDSP_vsmul(y, 1, &v, y, 1, n);
-#elif defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
-
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
-
- GGML_F32_VEC ay[GGML_F32_ARR];
-
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
+bool ggml_is_numa(void) {
+ return g_state.numa.n_nodes > 1;
+}
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
+#if defined(__ARM_ARCH)
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] *= v;
- }
-#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] *= v;
- }
+#if defined(__linux__) && defined(__aarch64__)
+#include <sys/auxv.h>
+#elif defined(__APPLE__)
+#include <sys/sysctl.h>
#endif
-}
-inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
-#if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
+#if !defined(HWCAP2_I8MM)
+#define HWCAP2_I8MM (1 << 13)
+#endif
- GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
+#if !defined(HWCAP2_SME)
+#define HWCAP2_SME (1 << 23)
+#endif
- GGML_F16_VEC ay[GGML_F16_ARR];
+static void ggml_init_arm_arch_features(void) {
+#if defined(__linux__) && defined(__aarch64__)
+ uint32_t hwcap = getauxval(AT_HWCAP);
+ uint32_t hwcap2 = getauxval(AT_HWCAP2);
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
+ ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
+ ggml_arm_arch_features.has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
+ ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
+ ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
+ ggml_arm_arch_features.has_sme = !!(hwcap2 & HWCAP2_SME);
- GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
- }
+#if defined(__ARM_FEATURE_SVE)
+ ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
+#endif
+#elif defined(__APPLE__)
+ int oldp = 0;
+ size_t size = sizeof(oldp);
+ if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
+ oldp = 0;
}
+ ggml_arm_arch_features.has_neon = oldp;
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
- }
-#else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
+ if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
+ oldp = 0;
}
-#endif
-}
+ ggml_arm_arch_features.has_dotprod = oldp;
-inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
-inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
-inline static void ggml_vec_sqr_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- float v = GGML_FP16_TO_FP32(x[i]);
- y[i] = GGML_FP32_TO_FP16(v*v);
- }
-}
-inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
-inline static void ggml_vec_sqrt_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(sqrtf(GGML_FP16_TO_FP32(x[i])));
- }
-}
-inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
-inline static void ggml_vec_log_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(logf(GGML_FP16_TO_FP32(x[i])));
- }
-}
-inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
-inline static void ggml_vec_sin_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(sinf(GGML_FP16_TO_FP32(x[i])));
- }
-}
-inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
-inline static void ggml_vec_cos_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(cosf(GGML_FP16_TO_FP32(x[i])));
- }
-}
-inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
-inline static void ggml_vec_abs_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(fabsf(GGML_FP16_TO_FP32(x[i])));
- }
-}
-inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
-inline static void ggml_vec_sgn_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- float v = GGML_FP16_TO_FP32(x[i]);
- y[i] = GGML_FP32_TO_FP16((v > 0.f) ? 1.f : ((v < 0.f) ? -1.f : 0.f));
- }
-}
-inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
-inline static void ggml_vec_step_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16((GGML_FP16_TO_FP32(x[i]) > 0.f) ? 1.f : 0.f);
- }
-}
-inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
-inline static void ggml_vec_tanh_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(tanhf(GGML_FP16_TO_FP32(x[i])));
- }
-}
-inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
-inline static void ggml_vec_elu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(expm1f(GGML_FP16_TO_FP32(x[i])));
- }
-}
-inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
-inline static void ggml_vec_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- float v = GGML_FP16_TO_FP32(x[i]);
- y[i] = GGML_FP32_TO_FP16((v > 0.f) ? v : 0.f);
- }
-}
-inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
-inline static void ggml_vec_leaky_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const float ns) {
- for (int i = 0; i < n; ++i) {
- float v = GGML_FP16_TO_FP32(x[i]);
- y[i] = GGML_FP32_TO_FP16(((v > 0.f) ? v : 0.f) + ns * ((v < 0.0f) ? v : 0.f));
- }
-}
-inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
-inline static void ggml_vec_sigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(1.f / (1.f + expf(-GGML_FP16_TO_FP32(x[i]))));
- }
-}
-// TODO: optimize performance
-inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
-inline static void ggml_vec_hardswish_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- float v = GGML_FP16_TO_FP32(x[i]);
- y[i] = GGML_FP32_TO_FP16(v * fminf(1.0f, fmaxf(0.0f, (v + 3.0f) / 6.0f)));
- }
-}
-inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
-inline static void ggml_vec_hardsigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(fminf(1.0f, fmaxf(0.0f, (GGML_FP16_TO_FP32(x[i]) + 3.0f) / 6.0f)));
- }
-}
-inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
-inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = GGML_FP32_TO_FP16(expf(GGML_FP16_TO_FP32(x[i])));
+ if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
+ oldp = 0;
}
-}
-
-static const float GELU_COEF_A = 0.044715f;
-static const float GELU_QUICK_COEF = -1.702f;
-static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
-
-inline static float ggml_gelu_f32(float x) {
- return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
-}
+ ggml_arm_arch_features.has_i8mm = oldp;
-inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- const uint16_t * i16 = (const uint16_t *) x;
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_table_gelu_f16[i16[i]];
+ if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) != 0) {
+ oldp = 0;
}
-}
+ ggml_arm_arch_features.has_sme = oldp;
-#ifdef GGML_GELU_FP16
-inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- if (x[i] <= -10.0f) {
- y[i] = 0.0f;
- } else if (x[i] >= 10.0f) {
- y[i] = x[i];
- } else {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
- }
- }
-}
+ ggml_arm_arch_features.has_sve = 0;
+ ggml_arm_arch_features.sve_cnt = 0;
#else
-inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_f32(x[i]);
- }
-}
+// Run-time CPU feature detection not implemented for this platform, fallback to compile time
+#if defined(__ARM_NEON)
+ ggml_arm_arch_features.has_neon = 1;
+#else
+ ggml_arm_arch_features.has_neon = 0;
#endif
-inline static float ggml_gelu_quick_f32(float x) {
- return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
-}
-
-//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
-// const uint16_t * i16 = (const uint16_t *) x;
-// for (int i = 0; i < n; ++i) {
-// y[i] = ggml_table_gelu_quick_f16[i16[i]];
-// }
-//}
-
-#ifdef GGML_GELU_QUICK_FP16
-inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
- }
-}
+#if defined(__ARM_FEATURE_MATMUL_INT8)
+ ggml_arm_arch_features.has_i8mm = 1;
#else
-inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_quick_f32(x[i]);
- }
-}
+ ggml_arm_arch_features.has_i8mm = 0;
#endif
-inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- float v = GGML_FP16_TO_FP32(x[i]);
- y[i] = GGML_FP32_TO_FP16(v*(1.0f/(1.0f+expf(GELU_QUICK_COEF*v))));
- }
-}
-
-// Sigmoid Linear Unit (SiLU) function
-inline static float ggml_silu_f32(float x) {
- return x/(1.0f + expf(-x));
-}
-inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
- float v = GGML_FP16_TO_FP32(x);
- return GGML_FP32_TO_FP16(v/(1.0f + expf(-v)));
-}
-
-#if __FINITE_MATH_ONLY__
-#error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
-#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
+#if defined(__ARM_FEATURE_SVE)
+ ggml_arm_arch_features.has_sve = 1;
+ ggml_arm_arch_features.sve_cnt = 16;
+#else
+ ggml_arm_arch_features.has_sve = 0;
+ ggml_arm_arch_features.sve_cnt = 0;
#endif
-#if defined(__ARM_NEON) && defined(__aarch64__)
-
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static float32x4_t ggml_v_expf(float32x4_t x) {
- const float32x4_t r = vdupq_n_f32(0x1.8p23f);
- const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
- const float32x4_t n = vsubq_f32(z, r);
- const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
- vdupq_n_f32(0x1.7f7d1cp-20f));
- const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
- const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
- const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
- const float32x4_t u = vmulq_f32(b, b);
- const float32x4_t j = vfmaq_f32(
- vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
- vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
- vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
- if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
- return vfmaq_f32(k, j, k);
- const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
- const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
- const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
- return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
- vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
-}
-
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static float32x4_t ggml_v_silu(float32x4_t x) {
- const float32x4_t one = vdupq_n_f32(1.0f);
- const float32x4_t zero = vdupq_n_f32(0.0f);
- const float32x4_t neg_x = vsubq_f32(zero, x);
- const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
- const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
- return vdivq_f32(x, one_plus_exp_neg_x);
+#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_SME2)
+ ggml_arm_arch_features.has_sme = 1;
+#else
+ ggml_arm_arch_features.has_sme = 0;
+#endif
+#endif
}
+#endif
-#elif defined(__AVX512F__) && defined(__AVX512DQ__)
-
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static __m512 ggml_v_expf(__m512 x) {
- const __m512 r = _mm512_set1_ps(0x1.8p23f);
- const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
- const __m512 n = _mm512_sub_ps(z, r);
- const __m512 b =
- _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
- _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
- const __mmask16 d =
- _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
- const __m512 u = _mm512_mul_ps(b, b);
- const __m512 j = _mm512_fmadd_ps(
- _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
- _mm512_set1_ps(0x1.573e2ep-5f)),
- u,
- _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
- _mm512_set1_ps(0x1.fffdb6p-2f))),
- u,
- _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
- const __m512 res = _mm512_scalef_ps(j, n);
- if (_mm512_kortestz(d, d))
- return res;
- const __m512 zero = _mm512_setzero_ps();
- const __m512 alt = _mm512_mask_blend_ps(
- _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
- return _mm512_mask_blend_ps(d, res, alt);
-}
+struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
+ GGML_ASSERT(!ggml_get_no_alloc(ctx));
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static __m512 ggml_v_silu(__m512 x) {
- const __m512 one = _mm512_set1_ps(1);
- const __m512 zero = _mm512_setzero_ps();
- const __m512 neg_x = _mm512_sub_ps(zero, x);
- const __m512 exp_neg_x = ggml_v_expf(neg_x);
- const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
- return _mm512_div_ps(x, one_plus_exp_neg_x);
-}
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
-#elif defined(__AVX2__) && defined(__FMA__)
-
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static __m256 ggml_v_expf(__m256 x) {
- const __m256 r = _mm256_set1_ps(0x1.8p23f);
- const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
- const __m256 n = _mm256_sub_ps(z, r);
- const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
- _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
- const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
- const __m256 k = _mm256_castsi256_ps(
- _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
- const __m256i c = _mm256_castps_si256(
- _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
- _mm256_set1_ps(126), _CMP_GT_OQ));
- const __m256 u = _mm256_mul_ps(b, b);
- const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
- _mm256_set1_ps(0x1.573e2ep-5f)), u,
- _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
- _mm256_set1_ps(0x1.fffdb6p-2f))),
- u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
- if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
- return _mm256_fmadd_ps(j, k, k);
- const __m256i g = _mm256_and_si256(
- _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
- _mm256_set1_epi32(0x82000000u));
- const __m256 s1 =
- _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
- const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
- const __m256i d = _mm256_castps_si256(
- _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
- _mm256_set1_ps(192), _CMP_GT_OQ));
- return _mm256_or_ps(
- _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
- _mm256_andnot_ps(
- _mm256_castsi256_ps(d),
- _mm256_or_ps(
- _mm256_and_ps(_mm256_castsi256_ps(c),
- _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
- _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
-}
+ ggml_set_i32(result, value);
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static __m256 ggml_v_silu(__m256 x) {
- const __m256 one = _mm256_set1_ps(1);
- const __m256 zero = _mm256_setzero_ps();
- const __m256 neg_x = _mm256_sub_ps(zero, x);
- const __m256 exp_neg_x = ggml_v_expf(neg_x);
- const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
- return _mm256_div_ps(x, one_plus_exp_neg_x);
+ return result;
}
-#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
+struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
+ GGML_ASSERT(!ggml_get_no_alloc(ctx));
-#if defined(__FMA__)
-#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
-#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
-#else
-#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
-#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
-#endif
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
-// adapted from arm limited optimized routine
-// the maximum error is 1.45358 plus 0.5 ulps
-// numbers above 88.38 will flush to infinity
-// numbers beneath -103.97 will flush to zero
-inline static __m128 ggml_v_expf(__m128 x) {
- const __m128 r = _mm_set1_ps(0x1.8p23f);
- const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
- const __m128 n = _mm_sub_ps(z, r);
- const __m128 b =
- NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
- const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
- const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
- const __m128i c =
- _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
- const __m128 u = _mm_mul_ps(b, b);
- const __m128 j =
- MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
- MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
- u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
- if (!_mm_movemask_epi8(c))
- return MADD128(j, k, k);
- const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
- _mm_set1_epi32(0x82000000u));
- const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
- const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
- const __m128i d =
- _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
- return _mm_or_ps(
- _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
- _mm_andnot_ps(_mm_castsi128_ps(d),
- _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
- _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
-}
+ ggml_set_f32(result, value);
-// computes silu x/(1+exp(-x)) in single precision vector
-inline static __m128 ggml_v_silu(__m128 x) {
- const __m128 one = _mm_set1_ps(1);
- const __m128 zero = _mm_setzero_ps();
- const __m128 neg_x = _mm_sub_ps(zero, x);
- const __m128 exp_neg_x = ggml_v_expf(neg_x);
- const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
- return _mm_div_ps(x, one_plus_exp_neg_x);
+ return result;
}
-#endif // __ARM_NEON / __AVX2__ / __SSE2__
-
-static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- int i = 0;
-#if defined(__AVX512F__) && defined(__AVX512DQ__)
- for (; i + 15 < n; i += 16) {
- _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
- }
-#elif defined(__AVX2__) && defined(__FMA__)
- for (; i + 7 < n; i += 8) {
- _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
- }
-#elif defined(__SSE2__)
- for (; i + 3 < n; i += 4) {
- _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
- }
-#elif defined(__ARM_NEON) && defined(__aarch64__)
- for (; i + 3 < n; i += 4) {
- vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
- }
-#endif
- for (; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]);
- }
-}
+struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
+ const int n = ggml_nrows(tensor);
+ const int nc = tensor->ne[0];
+ const size_t n1 = tensor->nb[1];
-inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_silu_f16(x[i]);
- }
-}
+ char * const data = tensor->data;
-static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
- int i = 0;
- ggml_float sum = 0;
-#if defined(__AVX512F__) && defined(__AVX512DQ__)
- for (; i + 15 < n; i += 16) {
- __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
- _mm512_set1_ps(max)));
- _mm512_storeu_ps(y + i, val);
- sum += (ggml_float)_mm512_reduce_add_ps(val);
- }
-#elif defined(__AVX2__) && defined(__FMA__)
- for (; i + 7 < n; i += 8) {
- __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
- _mm256_set1_ps(max)));
- _mm256_storeu_ps(y + i, val);
- __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
- _mm256_castps256_ps128(val));
- val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
- val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
- sum += (ggml_float)_mm_cvtss_f32(val2);
- }
-#elif defined(__SSE2__)
- for (; i + 3 < n; i += 4) {
- __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
- _mm_set1_ps(max)));
- _mm_storeu_ps(y + i, val);
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
- val = _mm_add_ps(val, _mm_movehl_ps(val, val));
- val = _mm_add_ss(val, _mm_movehdup_ps(val));
-#else
- __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
- val = _mm_add_ps(val, tmp);
- tmp = _mm_movehl_ps(tmp, val);
- val = _mm_add_ss(val, tmp);
-#endif
- sum += (ggml_float)_mm_cvtss_f32(val);
- }
-#elif defined(__ARM_NEON) && defined(__aarch64__)
- for (; i + 3 < n; i += 4) {
- float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
- vdupq_n_f32(max)));
- vst1q_f32(y + i, val);
- sum += (ggml_float)vaddvq_f32(val);
- }
-#endif
- for (; i < n; ++i) {
- float val = expf(x[i] - max);
- sum += (ggml_float)val;
- y[i] = val;
- }
- return sum;
-}
-
-static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
- // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
-
- int i = 0;
- ggml_float sum = 0;
- for (; i < n; ++i) {
- float val = x[i] - max;
- y[i] = val;
- sum += (ggml_float)expf(val);
- }
- return sum = (ggml_float)logf(sum);
-}
-
-inline static float ggml_silu_backward_f32(float x, float dy) {
- const float s = 1.0f/(1.0f + expf(-x));
- return dy*s*(1.0f + x*(1.0f - s));
-}
-
-inline static ggml_fp16_t ggml_silu_backward_f16(ggml_fp16_t x, ggml_fp16_t dy) {
- const float v = GGML_FP16_TO_FP32(x);
- const float s = 1.0f/(1.0f + expf(-v));
- return GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(dy)*s*(1.0f + v*(1.0f - s)));
-}
-
-inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
- }
-}
-
-inline static void ggml_vec_silu_backward_f16(const int n, ggml_fp16_t * dx, const ggml_fp16_t * x, const ggml_fp16_t * dy) {
- for (int i = 0; i < n; ++i) {
- dx[i] = ggml_silu_backward_f16(x[i], dy[i]);
- }
-}
-
-inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
-#ifndef GGML_USE_ACCELERATE
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
-#else
- vDSP_sve(x, 1, s, n);
-#endif
-}
-
-inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
-}
-
-inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
- float sum = 0.0f;
- for (int i = 0; i < n; ++i) {
- sum += GGML_FP16_TO_FP32(x[i]);
- }
- *s = sum;
-}
-
-inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
- float sum = 0.0f;
- for (int i = 0; i < n; ++i) {
- sum += GGML_BF16_TO_FP32(x[i]);
- }
- *s = sum;
-}
-
-inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
-#ifndef GGML_USE_ACCELERATE
- float max = -INFINITY;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- }
- *s = max;
-#else
- vDSP_maxv(x, 1, s, n);
-#endif
-}
-
-inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
- ggml_vec_norm_f32(n, s, x);
- *s = 1.f/(*s);
-}
-
-inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
- float max = -INFINITY;
- int idx = 0;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- if (max == x[i]) { idx = i; }
- }
- *s = idx;
-}
-
-// Helpers for polling loops
-#if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
-static inline void ggml_thread_cpu_relax(void) {
- __asm__ volatile("yield" ::: "memory");
-}
-#elif defined(__x86_64__)
-static inline void ggml_thread_cpu_relax(void) {
- _mm_pause();
-}
-#else
-static inline void ggml_thread_cpu_relax(void) {;}
-#endif
-
-//
-// NUMA support
-//
-
-#define GGML_NUMA_MAX_NODES 8
-#define GGML_NUMA_MAX_CPUS 512
-
-struct ggml_numa_node {
- uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
- uint32_t n_cpus;
-};
-
-struct ggml_numa_nodes {
- enum ggml_numa_strategy numa_strategy;
- struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
- uint32_t n_nodes;
- uint32_t total_cpus; // hardware threads on system
- uint32_t current_node; // node on which main process is execting
-#if defined(__gnu_linux__)
- cpu_set_t cpuset; // cpuset from numactl
-#else
- uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
-#endif
-};
-
-//
-// ggml state
-//
-
-struct ggml_state {
- struct ggml_numa_nodes numa;
-};
-
-static struct ggml_state g_state = {0};
-
-void ggml_barrier(struct ggml_threadpool * tp) {
- int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
- if (n_threads == 1) {
- return;
- }
-
-#ifdef GGML_USE_OPENMP
- #pragma omp barrier
-#else
- int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
-
- // enter barrier (full seq-cst fence)
- int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
-
- if (n_barrier == (n_threads - 1)) {
- // last thread
- atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
-
- // exit barrier (fill seq-cst fence)
- atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
- return;
- }
-
- // wait for other threads
- while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
- ggml_thread_cpu_relax();
- }
-
- // exit barrier (full seq-cst fence)
- // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
- #ifdef GGML_TSAN_ENABLED
- atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
- #else
- atomic_thread_fence(memory_order_seq_cst);
- #endif
-#endif
-}
-
-#if defined(__gnu_linux__)
-static cpu_set_t ggml_get_numa_affinity(void) {
- cpu_set_t cpuset;
- pthread_t thread;
- thread = pthread_self();
- CPU_ZERO(&cpuset);
- pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
- return cpuset;
-}
-#else
-static uint32_t ggml_get_numa_affinity(void) {
- return 0; // no NUMA support
-}
-#endif
-
-void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
- if (g_state.numa.n_nodes > 0) {
- fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
-
- return;
- }
-
-#if defined(__gnu_linux__)
- struct stat st;
- char path[256];
- int rv;
-
- // set numa scheme
- g_state.numa.numa_strategy = numa_flag;
-
- GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
-
- g_state.numa.cpuset = ggml_get_numa_affinity();
-
- // enumerate nodes
- while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.n_nodes;
- }
-
- // enumerate CPUs
- while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.total_cpus;
- }
-
- GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
-
- // figure out which node we're on
- uint current_cpu;
- int getcpu_ret = 0;
-#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__)
- getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node);
-#else
- // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
-# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
-# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
-# endif
- getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node);
-#endif
-
- if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
- g_state.numa.n_nodes = 0;
- return;
- }
-
- GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
-
- for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
- struct ggml_numa_node * node = &g_state.numa.nodes[n];
- GGML_PRINT_DEBUG("CPUs on node %u:", n);
- node->n_cpus = 0;
- for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) == 0) {
- node->cpus[node->n_cpus++] = c;
- GGML_PRINT_DEBUG(" %u", c);
- }
- }
- GGML_PRINT_DEBUG("\n");
- }
-
- if (ggml_is_numa()) {
- FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
- if (fptr != NULL) {
- char buf[42];
- if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
- GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
- }
- fclose(fptr);
- }
- }
-#else
- UNUSED(numa_flag);
- // TODO
-#endif
-}
-
-bool ggml_is_numa(void) {
- return g_state.numa.n_nodes > 1;
-}
-
-#if defined(__ARM_ARCH)
-
-#if defined(__linux__) && defined(__aarch64__)
-#include <sys/auxv.h>
-#elif defined(__APPLE__)
-#include <sys/sysctl.h>
-#endif
-
-#if !defined(HWCAP2_I8MM)
-#define HWCAP2_I8MM (1 << 13)
-#endif
-
-#if !defined(HWCAP2_SME)
-#define HWCAP2_SME (1 << 23)
-#endif
-
-static void ggml_init_arm_arch_features(void) {
-#if defined(__linux__) && defined(__aarch64__)
- uint32_t hwcap = getauxval(AT_HWCAP);
- uint32_t hwcap2 = getauxval(AT_HWCAP2);
-
- ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
- ggml_arm_arch_features.has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
- ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
- ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
- ggml_arm_arch_features.has_sme = !!(hwcap2 & HWCAP2_SME);
-
-#if defined(__ARM_FEATURE_SVE)
- ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
-#endif
-#elif defined(__APPLE__)
- int oldp = 0;
- size_t size = sizeof(oldp);
- if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_neon = oldp;
-
- if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_dotprod = oldp;
-
- if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_i8mm = oldp;
-
- if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_sme = oldp;
-
- ggml_arm_arch_features.has_sve = 0;
- ggml_arm_arch_features.sve_cnt = 0;
-#else
-// Run-time CPU feature detection not implemented for this platform, fallback to compile time
-#if defined(__ARM_NEON)
- ggml_arm_arch_features.has_neon = 1;
-#else
- ggml_arm_arch_features.has_neon = 0;
-#endif
-
-#if defined(__ARM_FEATURE_MATMUL_INT8)
- ggml_arm_arch_features.has_i8mm = 1;
-#else
- ggml_arm_arch_features.has_i8mm = 0;
-#endif
-
-#if defined(__ARM_FEATURE_SVE)
- ggml_arm_arch_features.has_sve = 1;
- ggml_arm_arch_features.sve_cnt = 16;
-#else
- ggml_arm_arch_features.has_sve = 0;
- ggml_arm_arch_features.sve_cnt = 0;
-#endif
-
-#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_SME2)
- ggml_arm_arch_features.has_sme = 1;
-#else
- ggml_arm_arch_features.has_sme = 0;
-#endif
-#endif
-}
-#endif
-
-struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
- GGML_ASSERT(!ggml_get_no_alloc(ctx));
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
-
- ggml_set_i32(result, value);
-
- return result;
-}
-
-struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
- GGML_ASSERT(!ggml_get_no_alloc(ctx));
-
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
-
- ggml_set_f32(result, value);
-
- return result;
-}
-
-struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
-
- char * const data = tensor->data;
-
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_BF16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-
- return tensor;
-}
-
-struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
-
- char * const data = tensor->data;
-
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_BF16:
- {
- assert(tensor->nb[0] == sizeof(ggml_bf16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-
- return tensor;
-}
-
-int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_BF16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
- return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
- ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_BF16:
- return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ABORT("fatal error");
- }
-}
-
-void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_BF16:
- {
- return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_BF16:
- return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ABORT("fatal error");
- }
-}
-
-void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-// ggml_compute_forward_dup
-
-static void ggml_compute_forward_dup_same_cont(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(src0->type == dst->type);
-
- const size_t nb0 = ggml_type_size(src0->type);
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- // parallelize by blocks
- const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
- const int dr = (nk + nth - 1) / nth;
- const int k0 = dr * ith;
- const int k1 = MIN(k0 + dr, nk);
-
- if (k0 < k1) {
- memcpy(
- ((char *) dst->data + k0*nb0),
- ((char *) src0->data + k0*nb0),
- (k1 - k0) * nb0);
- }
-}
-
-static void ggml_compute_forward_dup_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
-
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_fp16_t)) {
- if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- }
-
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- return;
- }
-
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
-
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
-}
-
-static void ggml_compute_forward_dup_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
-
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_bf16_t)) {
- if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
- }
-
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- return;
- }
-
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- if (dst->type == GGML_TYPE_BF16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
-
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
-}
-
-static void ggml_compute_forward_dup_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- if (ggml_is_contiguous(dst)) {
- // TODO: simplify
- if (nb00 == sizeof(float)) {
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
-
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- quantize_row_q(src0_ptr, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
-
- return;
- }
-
- // dst counters
-
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, sizeof(float));
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
-
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
-}
-
-// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
-static void ggml_compute_forward_dup_bytes(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(src0->type == dst->type);
-
- GGML_TENSOR_UNARY_OP_LOCALS;
-
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
- ggml_compute_forward_dup_same_cont(params, dst);
- return;
- }
-
- const size_t type_size = ggml_type_size(src0->type);
-
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
-
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- if (src0->type == dst->type &&
- ggml_are_same_shape(src0, dst) &&
- nb00 == type_size && nb0 == type_size) {
- // copy by rows
- const size_t rs = ggml_row_size(src0->type, ne00);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
-
- if (ggml_is_contiguous(dst)) {
- size_t id = 0;
- char * dst_ptr = (char *) dst->data;
- const size_t rs = ne00 * type_size;
-
- if (nb00 == type_size) {
- // src0 is contigous on first dimension, copy by rows
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, type_size);
-
- id += type_size;
- }
- }
- id += rs * (ne01 - ir1);
- }
- }
- }
-
- return;
- }
-
- // dst counters
- int64_t k10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
-
- // number of blocks in a row
- const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
- const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- k10 += nk00 * ir0;
- while (k10 >= nk0) {
- k10 -= nk0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t k00 = 0; k00 < nk00; k00++) {
- const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
-
- memcpy(dst_ptr, src0_ptr, type_size);
-
- if (++k10 == nk0) {
- k10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- k10 += nk00 * (ne01 - ir1);
- while (k10 >= nk0) {
- k10 -= nk0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_dup_q(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
-
- size_t qk = ggml_blck_size(type);
- const int64_t nr = ggml_nelements(src1) / qk;
-
- // destination must be contiguous in the first dimension
- GGML_ASSERT(nb10 == ggml_type_size(dst->type));
- // must either have first dimension large enough to hold a row, or fully contiguous
- GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t ir = ir0; ir < ir1; ++ir) {
-
- uint32_t i = ir * qk;
-
- const int64_t i03 = i/(ne00 * ne01 * ne02);
- const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
-
- const int64_t i13 = i/(ne10 * ne11 * ne12);
- const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
-
- dequantize_row_q(
- (const void *) ((char *) src0->data + x_offset),
- (float *) ((char *) dst->data + dst_offset), qk);
- }
-}
-
-static void ggml_compute_forward_dup(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (src0->type == dst->type) {
- ggml_compute_forward_dup_bytes(params, dst);
- return;
- }
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_dup_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_dup_bf16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_dup_f32(params, dst);
- } break;
- default:
- {
- if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
- ggml_compute_forward_dup_q(params, dst);
- break;
- }
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_add
-
-static void ggml_compute_forward_add_q_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const enum ggml_type type = src0->type;
- const enum ggml_type dtype = dst->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == sizeof(float));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- // src1 and dst are same shape as src0 => same indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = i01;
-
- const int i3 = i03;
- const int i2 = i02;
- const int i1 = i01;
-
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
- void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- assert(ne00 % 32 == 0);
-
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne00);
- // add src1
- ggml_vec_acc_f32(ne00, wdata, src1_row);
- // quantize row to dst
- if (quantize_row_q != NULL) {
- quantize_row_q(wdata, dst_row, ne00);
- } else {
- memcpy(dst_row, wdata, ne0*nb0);
- }
- }
-}
-
-static void ggml_compute_forward_add(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_add_non_quantized(params, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_add_q_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_add1
-
-static void ggml_compute_forward_add1_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-#ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_add1_f32);
-
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data), 0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
-#else
- ggml_vec_add1_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- *(float *) src1->data);
-#endif
- }
-}
-
-static void ggml_compute_forward_add1_f16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- // scalar to add
- const float v = *(float *) src1->data;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1_f16_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- // scalar to add
- const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1_q_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- // scalar to add
- const float v = *(float *) src1->data;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
-
- // we don't support permuted src0
- GGML_ASSERT(nb00 == ggml_type_size(type));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
- void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
-
- assert(ne0 % 32 == 0);
-
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne0);
- // add src1
- ggml_vec_acc1_f32(ne0, wdata, v);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne0);
- }
-}
-
-static void ggml_compute_forward_add1_bf16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- // scalar to add
- const float v = *(float *) src1->data;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1_bf16_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
-
- // scalar to add
- const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src0);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_BF16);
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
-
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
- }
- }
-}
-
-static void ggml_compute_forward_add1(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add1_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add1_f16_f16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_f16_f32(params, dst);
- }
- else {
- GGML_ABORT("fatal error");
- }
- } break;
- case GGML_TYPE_BF16:
- {
- if (src1->type == GGML_TYPE_BF16) {
- ggml_compute_forward_add1_bf16_bf16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_bf16_f32(params, dst);
- }
- else {
- GGML_ABORT("fatal error");
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_add1_q_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_acc
-
-static void ggml_compute_forward_acc_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-
- // view src0 and dst with these strides and data offset inbytes during acc
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
-
- if (!inplace) {
- if (params->ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
-
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
-
- // src0 and dst as viewed during acc
- const size_t nb0 = ggml_element_size(src0);
-
- const size_t nb00 = nb0;
- const size_t nb01 = nb1;
- const size_t nb02 = nb2;
- const size_t nb03 = nb3;
-
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
-
- GGML_ASSERT(nb10 == sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
-
-#ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
-#else
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
-#endif
- }
-}
-
-static void ggml_compute_forward_acc(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_acc_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_sum
-
-static void ggml_compute_forward_sum_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(float));
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
-
- ggml_float sum = 0;
- ggml_float row_sum = 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32_ggf(ne00,
- &row_sum,
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- sum += row_sum;
- }
- }
- }
- ((float *) dst->data)[0] = sum;
-}
-
-static void ggml_compute_forward_sum_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(ggml_is_scalar(dst));
-
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
-
- float sum = 0;
- float row_sum = 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f16_ggf(ne00,
- &row_sum,
- (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
-}
-
-static void ggml_compute_forward_sum_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(ggml_is_scalar(dst));
-
- assert(src0->nb[0] == sizeof(ggml_bf16_t));
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
-
- float sum = 0;
- float row_sum = 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_bf16_ggf(ne00,
- &row_sum,
- (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
-}
-
-static void ggml_compute_forward_sum(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_sum_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_sum_bf16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_sum_rows
-
-static void ggml_compute_forward_sum_rows_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(dst->nb[0] == sizeof(float));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(ne0 == 1);
- GGML_ASSERT(ne1 == ne01);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
-
- for (int64_t i3 = 0; i3 < ne03; i3++) {
- for (int64_t i2 = 0; i2 < ne02; i2++) {
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
- float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
- float row_sum = 0;
- ggml_vec_sum_f32(ne00, &row_sum, src_row);
- dst_row[0] = row_sum;
- }
- }
- }
-}
-
-static void ggml_compute_forward_sum_rows(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_rows_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_mean
-
-static void ggml_compute_forward_mean_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(src0->nb[0] == sizeof(float));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- assert(ne0 == 1);
- assert(ne1 == ne01);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
-
- UNUSED(ne0);
- UNUSED(ne1);
- UNUSED(ne2);
- UNUSED(ne3);
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
-
- *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
- }
- }
- }
-}
-
-static void ggml_compute_forward_mean(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mean_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_argmax
-
-static void ggml_compute_forward_argmax_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(src0->nb[0] == sizeof(float));
- assert(dst->nb[0] == sizeof(float));
-
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
-
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
-
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src = (float *) ((char *) src0->data + i1*nb01);
- int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
- int v = 0;
- ggml_vec_argmax_f32(ne00, &v, src);
- dst_[0] = v;
- }
-}
-
-static void ggml_compute_forward_argmax(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argmax_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_count_equal
-
-static void ggml_compute_forward_count_equal_i32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- GGML_ASSERT(src0->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- GGML_ASSERT(ggml_is_scalar(dst));
- GGML_ASSERT(dst->type == GGML_TYPE_I64);
-
- const int64_t nr = ggml_nrows(src0);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- int64_t * sums = (int64_t *) params->wdata;
- int64_t sum_thread = 0;
-
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- const int64_t i03 = ir / (ne02*ne01);
- const int64_t i02 = (ir - i03*ne03) / ne01;
- const int64_t i01 = ir - i03*ne03 - i02*ne02;
-
- const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
- const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
-
- for (int64_t i00 = 0; i00 < ne00; ++i00) {
- const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
- const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
-
- sum_thread += val0 == val1;
- }
- }
- if (ith != 0) {
- sums[ith] = sum_thread;
- }
- ggml_barrier(params->threadpool);
-
- if (ith != 0) {
- return;
- }
-
- for (int ith_other = 1; ith_other < nth; ++ith_other) {
- sum_thread += sums[ith_other];
- }
- *((int64_t *) dst->data) = sum_thread;
-}
-
-static void ggml_compute_forward_count_equal(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_count_equal_i32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_repeat
-
-static void ggml_compute_forward_repeat_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- GGML_ASSERT(ggml_can_repeat(src0, dst));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
-
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_cpy_f32(ne00,
- (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
- (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_repeat_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- GGML_ASSERT(ggml_can_repeat(src0, dst));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
-
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
- ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
- // ggml_vec_cpy_f16(ne00, y, x)
- for (int i = 0; i < ne00; ++i) {
- y[i] = x[i];
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_repeat(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_I16:
- {
- ggml_compute_forward_repeat_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_repeat_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_repeat_back
-
-static void ggml_compute_forward_repeat_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- GGML_ASSERT(ggml_can_repeat(dst, src0));
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne00/ne0);
- const int nr1 = (int)(ne01/ne1);
- const int nr2 = (int)(ne02/ne2);
- const int nr3 = (int)(ne03/ne3);
-
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- if (ggml_is_contiguous(dst)) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- } else {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- ggml_vec_set_f32(ne0,
- (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
- 0);
- }
- }
- }
- }
-
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_acc_f32(ne0,
- (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
- (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_repeat_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_concat
-
-static void ggml_compute_forward_concat_any(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- const size_t len = ggml_type_size(src0->type);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
-
- GGML_ASSERT(dim >= 0 && dim < 4);
-
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
-
- const char * x;
-
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
- } else {
- x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
- }
-
- char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
-
- memcpy(y, x, len);
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_concat_i8(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
-
- GGML_ASSERT(dim >= 0 && dim < 4);
-
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
-
- const int8_t * x;
-
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
- } else {
- x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
- }
-
- int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
-
- *y = *x;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_concat_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
-
- GGML_ASSERT(dim >= 0 && dim < 4);
-
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
-
- const ggml_fp16_t * x;
-
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
- } else {
- x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
- }
-
- ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
-
- *y = *x;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_concat_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
-
- GGML_ASSERT(dim >= 0 && dim < 4);
-
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
-
- const float * x;
-
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
- } else {
- x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
- }
-
- float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
-
- *y = *x;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_concat(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_I16:
- {
- ggml_compute_forward_concat_f16(params, dst);
- } break;
- case GGML_TYPE_I8:
- {
- ggml_compute_forward_concat_i8(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_concat_f32(params, dst);
- } break;
- default:
- {
- ggml_compute_forward_concat_any(params, dst);
- }
- }
-}
-
-// ggml_compute_forward_gelu
-
-static void ggml_compute_forward_gelu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_gelu_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_gelu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_gelu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_gelu_quick
-
-static void ggml_compute_forward_gelu_quick_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_quick_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_gelu_quick_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_quick_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_gelu_quick(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_quick_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_gelu_quick_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_silu
-
-static void ggml_compute_forward_silu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_silu_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_silu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_silu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-// ggml_compute_forward_leaky_relu
-
-static void ggml_compute_forward_leaky_relu_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
-
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
-
- for (int i = 0; i < n; i++) {
- ggml_vec_leaky_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
- }
-}
-
-static void ggml_compute_forward_leaky_relu_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
-
- assert(dst->nb[0] == sizeof(ggml_fp16_t));
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
-
- for (int i = 0; i < n; i++) {
- ggml_vec_leaky_relu_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
- }
-}
-
-static void ggml_compute_forward_leaky_relu(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_leaky_relu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_leaky_relu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_silu_back
-
-static void ggml_compute_forward_silu_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * grad = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- assert(ggml_is_contiguous_1(grad));
- assert(ggml_is_contiguous_1(src1));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src1, dst));
- assert(ggml_are_same_shape(src1, grad));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src1->ne[0];
- const int nr = ggml_nrows(src1);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src1->data + i1*(src1->nb[1])),
- (float *) ((char *) grad->data + i1*(grad->nb[1])));
-
-#ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_silu_back_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * grad = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- assert(ggml_is_contiguous_1(grad));
- assert(ggml_is_contiguous_1(src1));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src1, dst));
- assert(ggml_are_same_shape(src1, grad));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src1->ne[0];
- const int nr = ggml_nrows(src1);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
- (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
-
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
-}
-
-static void ggml_compute_forward_silu_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_back_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_silu_back_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_norm
-
-static void ggml_compute_forward_norm_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- GGML_ASSERT(eps >= 0.0f);
-
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
-
- float mean = sum/ne00;
-
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
- ggml_float sum2 = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v*v);
- }
-
- float variance = sum2/ne00;
- const float scale = 1.0f/sqrtf(variance + eps);
-
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
-}
-
-static void ggml_compute_forward_norm(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_group_rms_norm
-
-static void ggml_compute_forward_rms_norm_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- GGML_ASSERT(eps >= 0.0f);
-
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
-
- const float mean = sum/ne00;
-
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
- memcpy(y, x, ne00 * sizeof(float));
- // for (int i00 = 0; i00 < ne00; i00++) {
- // y[i00] = x[i00];
- // }
-
- const float scale = 1.0f/sqrtf(mean + eps);
-
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
-}
-
-static void ggml_compute_forward_rms_norm(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-static void ggml_compute_forward_rms_norm_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
- const struct ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- // src1 is same shape as src0 => same indices
- const int64_t i11 = i01;
- const int64_t i12 = i02;
- const int64_t i13 = i03;
-
- const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
-
- ggml_float sum_xx = 0.0;
- ggml_float sum_xdz = 0.0;
-
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum_xx += (ggml_float)(x[i00] * x[i00]);
- sum_xdz += (ggml_float)(x[i00] * dz[i00]);
- }
-
- //const float mean = (float)(sum_xx)/ne00;
- const float mean_eps = (float)(sum_xx)/ne00 + eps;
- const float sum_eps = (float)(sum_xx) + eps*ne00;
- //const float mean_xdz = (float)(sum_xdz)/ne00;
- // we could cache rms from forward pass to improve performance.
- // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
- //const float rms = sqrtf(mean_eps);
- const float rrms = 1.0f / sqrtf(mean_eps);
- //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
-
- {
- // z = rms_norm(x)
- //
- // rms_norm(src1) =
- // scale(
- // src1,
- // div(
- // 1,
- // sqrt(
- // add(
- // scale(
- // sum(
- // sqr(
- // src1)),
- // (1.0/N)),
- // eps))));
-
- // postorder:
- // ## op args grad
- // 00 param src1 grad[#00]
- // 01 const 1
- // 02 sqr (#00) grad[#02]
- // 03 sum (#02) grad[#03]
- // 04 const 1/N
- // 05 scale (#03, #04) grad[#05]
- // 06 const eps
- // 07 add (#05, #06) grad[#07]
- // 08 sqrt (#07) grad[#08]
- // 09 div (#01,#08) grad[#09]
- // 10 scale (#00,#09) grad[#10]
- //
- // backward pass, given grad[#10]
- // #10: scale
- // grad[#00] += scale(grad[#10],#09)
- // grad[#09] += sum(mul(grad[#10],#00))
- // #09: div
- // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
- // #08: sqrt
- // grad[#07] += mul(grad[#08], div(0.5, #08))
- // #07: add
- // grad[#05] += grad[#07]
- // #05: scale
- // grad[#03] += scale(grad[#05],#04)
- // #03: sum
- // grad[#02] += repeat(grad[#03], #02)
- // #02:
- // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
- //
- // substitute and simplify:
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#02] = repeat(grad[#03], #02)
- // grad[#02] = repeat(scale(grad[#05],#04), #02)
- // grad[#02] = repeat(scale(grad[#07],#04), #02)
- // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
- // a = b*c + d*e
- // a = b*c*f/f + d*e*f/f
- // a = (b*c*f + d*e*f)*(1/f)
- // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
- // a = (b + d*e/c)*c
- // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
- // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
- // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
- // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
- // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
- // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
- // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- }
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // post-order:
- // dx := x
- // dx := scale(dx,-mean_xdz/mean_eps)
- // dx := add(dx, dz)
- // dx := scale(dx, rrms)
- float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
- // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
- ggml_vec_cpy_f32 (ne00, dx, x);
- // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
- ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
- ggml_vec_acc_f32 (ne00, dx, dz);
- ggml_vec_scale_f32(ne00, dx, rrms);
- }
- }
- }
-}
-
-static void ggml_compute_forward_rms_norm_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_group_norm
-
-static void ggml_compute_forward_group_norm_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- // TODO: optimize
-
- float eps;
- memcpy(&eps, dst->op_params + 1, sizeof(float));
-
- int n_channels = src0->ne[2];
- int n_groups = dst->op_params[0];
- int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
- for (int i = ith; i < n_groups; i += nth) {
- int start = i * n_channels_per_group;
- int end = start + n_channels_per_group;
- if (end > n_channels) {
- end = n_channels;
- }
- int step = end - start;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- ggml_float sum = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
-
- ggml_float sumr = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sumr += (ggml_float)x[i00];
- }
- sum += sumr;
- }
- }
- const float mean = sum / (ne00 * ne01 * step);
-
- ggml_float sum2 = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
-
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
-
- ggml_float sumr = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sumr += (ggml_float)(v * v);
- }
- sum2 += sumr;
- }
- }
- const float variance = sum2 / (ne00 * ne01 * step);
- const float scale = 1.0f / sqrtf(variance + eps);
-
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_group_norm(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_group_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_l2_norm
-
-static void ggml_compute_forward_l2_norm_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
-
- GGML_ASSERT(eps >= 0.0f);
-
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
-
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
- memcpy(y, x, ne00 * sizeof(float));
-
- const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
-
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
-}
-
-static void ggml_compute_forward_l2_norm(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_l2_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_mul_mat
-
-static void ggml_compute_forward_mul_mat_one_chunk(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const enum ggml_type type,
- const int64_t num_rows_per_vec_dot,
- const int64_t ir0_start,
- const int64_t ir0_end,
- const int64_t ir1_start,
- const int64_t ir1_end) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const bool src1_cont = ggml_is_contiguous(src1);
-
- ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
-
- // broadcast factors
- const int64_t r2 = ne12 / ne02;
- const int64_t r3 = ne13 / ne03;
-
- //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
-
- // threads with no work simply yield (not sure if it helps)
- if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
- return;
- }
-
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- assert(ne12 % ne02 == 0);
- assert(ne13 % ne03 == 0);
-
- // block-tiling attempt
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
-
- const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
-
- // attempt to reduce false-sharing (does not seem to make a difference)
- // 16 * 2, accounting for mmla kernels
- float tmp[32];
-
- for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
- for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
- const int64_t i13 = (ir1 / (ne12 * ne1));
- const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
- const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
-
- // broadcast src0 into src1
- const int64_t i03 = i13 / r3;
- const int64_t i02 = i12 / r2;
-
- const int64_t i1 = i11;
- const int64_t i2 = i12;
- const int64_t i3 = i13;
-
- const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
-
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char*)wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
- : (i11 * nb11 + i12 * nb12 + i13 * nb13));
- float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
-
- //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
- // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
- //}
-
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
- vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
- }
-
- for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
- memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- enum ggml_type const vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
- ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
- int64_t const vec_dot_num_rows = type_traits_cpu[src0->type].nrows;
-
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(src0->type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
- // TODO: extract to "extra_op"
-#if GGML_USE_LLAMAFILE
- // broadcast factors
- const int64_t r2 = ne12 / ne02;
- const int64_t r3 = ne13 / ne03;
-
- const bool src1_cont = ggml_is_contiguous(src1);
-
- if (src1_cont) {
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!llamafile_sgemm(params,
- ne01, ne11, ne00/ggml_blck_size(src0->type),
- (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
- nb01/ggml_type_size(src0->type),
- (const char *)src1->data + i12*nb12 + i13*nb13,
- nb11/ggml_type_size(src1->type),
- (char *)dst->data + i12*nb2 + i13*nb3,
- nb1/ggml_type_size(dst->type),
- src0->type,
- src1->type,
- dst->type))
- goto UseGgmlGemm1;
- return;
- }
-UseGgmlGemm1:;
-#endif
-
- if (src1->type != vec_dot_type) {
- char * wdata = params->wdata;
-
- const size_t nbw0 = ggml_type_size(vec_dot_type);
- const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
- const size_t nbw2 = nbw1*ne11;
- const size_t nbw3 = nbw2*ne12;
-
- assert(params->wsize >= ne13*nbw3);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- #if 0
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
- ne10);
- }
- }
- }
- #else
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- size_t bs = ggml_blck_size(vec_dot_type);
- int64_t ne10_block_start = (ith * ne10/bs) / nth;
- int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
- (ne10_block_end - ne10_block_start) * bs);
- }
- }
- }
- #endif
- }
-
- if (ith == 0) {
- // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
- atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed);
- }
-
- ggml_barrier(params->threadpool);
-
-#if GGML_USE_LLAMAFILE
- if (src1->type != vec_dot_type) {
- const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!llamafile_sgemm(params,
- ne01, ne11, ne00/ggml_blck_size(src0->type),
- (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
- nb01/ggml_type_size(src0->type),
- (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
- row_size/ggml_type_size(vec_dot_type),
- (char *)dst->data + i12*nb2 + i13*nb3,
- nb1/ggml_type_size(dst->type),
- src0->type,
- vec_dot_type,
- dst->type))
- goto UseGgmlGemm2;
- return;
- }
-UseGgmlGemm2:;
-#endif
-
- // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
- const int64_t nr0 = ne0;
-
- // This is the size of the rest of the dimensions of the result
- const int64_t nr1 = ne1 * ne2 * ne3;
-
- // Now select a reasonable chunk size.
- int chunk_size = 16;
-
- // We need to step up the size if it's small
- if (nr0 == 1 || nr1 == 1) {
- chunk_size = 64;
- }
-
- // distribute the work across the inner or outer loop based on which one is larger
- // The number of chunks in the 0/1 dim.
- // CEIL(nr0/chunk_size)
- int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
- int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
-
- // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
- // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggml-org/llama.cpp/pull/6915
- // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
- if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
- // distribute the thread work across the inner or outer loop based on which one is larger
- nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
- nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
- }
-
- // The number of elements in each chunk
- const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
- const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
-
- // The first chunk comes from our thread_id, the rest will get auto-assigned.
- int current_chunk = ith;
-
- while (current_chunk < nchunk0 * nchunk1) {
- const int64_t ith0 = current_chunk % nchunk0;
- const int64_t ith1 = current_chunk / nchunk0;
-
- const int64_t ir0_start = dr0 * ith0;
- const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
-
- const int64_t ir1_start = dr1 * ith1;
- const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
-
- // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
- int64_t num_rows_per_vec_dot = vec_dot_num_rows;
-
- // these checks are needed to avoid crossing dim1 boundaries
- // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
- if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
- num_rows_per_vec_dot = 1;
- }
- ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
-
- if (nth >= nchunk0 * nchunk1) {
- break;
- }
-
- current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed);
- }
-}
-
-// ggml_compute_forward_mul_mat_id
-
-#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)]
-
-struct mmid_row_mapping {
- int32_t i1;
- int32_t i2;
-};
-
-static void ggml_compute_forward_mul_mat_id_one_chunk(
- struct ggml_tensor * dst,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * ids,
- const int64_t cur_a,
- const int64_t ir0_start,
- const int64_t ir0_end,
- const int64_t ir1_start,
- const int64_t ir1_end,
- const char * src0_cur,
- const struct mmid_row_mapping * matrix_rows,
- const size_t row_size,
- const bool src1_cont,
- const void * wdata) {
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const enum ggml_type type = src0->type;
-
- ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
-
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
-
- float tmp[16];
-
- for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
- for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) {
- const int64_t _i12 = ir1; // logical row index for this expert
-
- struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
- const int id = row_mapping.i1; // selected expert index
-
- const int64_t i11 = id % ne11;
- const int64_t i12 = row_mapping.i2; // row index in src1
-
- const int64_t i1 = id; // selected expert index
- const int64_t i2 = i12; // row
-
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char *) wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12*ne11)*row_size
- : (i11*nb11 + i12*nb12));
-
- float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
-
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
- vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
- }
-
- memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float));
- }
- }
- }
-}
-
-static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
-
- void * ptr = *p;
- ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
- *p = (void *) ((char *) ptr + size);
- return ptr;
-}
-
-static void ggml_compute_forward_mul_mat_id(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * ids = dst->src[2];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const enum ggml_type type = src0->type;
-
- const bool src1_cont = ggml_is_contiguous(src1);
-
- enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
- ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- // row groups
- const int n_ids = ids->ne[0]; // n_expert_used
- const int n_as = ne02; // n_expert
-
- void * wdata_cur = params->wdata;
-
- if (src1->type != vec_dot_type) {
- incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
- }
-
- int64_t * matrix_row_counts = // [n_as]
- incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t));
-
- struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]]
- incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t));
-
- char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as]
- incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE);
-
- GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata));
-
- if (src1->type != vec_dot_type) {
- char * wdata = params->wdata;
-
- const size_t nbw0 = ggml_type_size(vec_dot_type);
- const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
- const size_t nbw2 = nbw1*ne11;
- const size_t nbw3 = nbw2*ne12;
-
- assert(params->wsize >= ne13*nbw3);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-#if 0
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = ith; i12 < ne12; i12 += nth) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
- ne10);
- }
- }
- }
-#else
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- size_t bs = ggml_blck_size(vec_dot_type);
- int64_t ne10_block_start = (ith * ne10/bs) / nth;
- int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
- (ne10_block_end - ne10_block_start) * bs);
- }
- }
- }
-#endif
- }
-
- if (ith == 0) {
- // initialize matrix_row_counts
- memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
-
- // group rows by src0 matrix
- for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
- for (int id = 0; id < n_ids; ++id) {
- const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
-
- assert(i02 >= 0 && i02 < n_as);
-
- MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
- matrix_row_counts[i02] += 1;
- }
- }
- }
-
- // reset current_chunk
- for (int cur_a = ith; cur_a < n_as; cur_a += nth) {
- atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
- *current_chunk_ctr = nth;
- }
-
- ggml_barrier(params->threadpool);
-
- for (int cur_a = 0; cur_a < n_as; ++cur_a) {
- const int64_t cne1 = matrix_row_counts[cur_a];
-
- if (cne1 == 0) {
- continue;
- }
-
- const char * src0_cur = (const char *) src0->data + cur_a * nb02;
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
-
- const int64_t nr0 = ne01;
- const int64_t nr1 = cne1;
-
- int chunk_size = 16;
- if (nr0 == 1 || nr1 == 1) {
- chunk_size = 64;
- }
-
-#if defined(__aarch64__)
- // disable for ARM
- const bool disable_chunking = true;
-#else
- // disable for NUMA
- const bool disable_chunking = ggml_is_numa();
-#endif // defined(__aarch64__)
-
- int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
- int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
-
- if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) {
- nchunk0 = nr0 > nr1 ? nth : 1;
- nchunk1 = nr0 > nr1 ? 1 : nth;
- }
-
- const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
- const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
-
- int current_chunk = ith;
-
- atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
-
- while (current_chunk < nchunk0 * nchunk1) {
- const int64_t ith0 = current_chunk % nchunk0;
- const int64_t ith1 = current_chunk / nchunk0;
-
- const int64_t ir0_start = dr0 * ith0;
- const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
-
- const int64_t ir1_start = dr1 * ith1;
- const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
-
- ggml_compute_forward_mul_mat_id_one_chunk(
- dst, src0, src1, ids, cur_a,
- ir0_start, ir0_end, ir1_start, ir1_end,
- src0_cur, matrix_rows, row_size, src1_cont, wdata
- );
-
- if (nth >= nchunk0 * nchunk1) {
- break;
- }
-
- current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed);
- }
- }
-}
-
-// ggml_compute_forward_out_prod
-
-static void ggml_compute_forward_out_prod_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
-
- GGML_ASSERT(ne2 % ne02 == 0);
- GGML_ASSERT(ne3 % ne03 == 0);
-
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == sizeof(float));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
- if (ith == 0) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- }
- ggml_barrier(params->threadpool);
-
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
-
- // parallelize by last three dimensions
-
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
-
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
-
- // block-tiling attempt
- const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
- const int64_t blck_1 = 16;
-
- // dps == dst per src0, used for group query attention
- const int64_t dps2 = ne2 / ne02;
- const int64_t dps3 = ne3 / ne03;
-
- for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
- const int64_t bir1 = MIN(bir + blck_1, ir1);
- for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
- const int64_t bne01 = MIN(bi01 + blck_0, ne01);
- for (int64_t ir = bir; ir < bir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- const int64_t i02 = i2 / dps2;
- const int64_t i03 = i3 / dps3;
-
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
-
-#if GGML_VEC_MAD_UNROLL > 2
- const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
- for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
- }
- for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
-#else
- for (int64_t i01 = bi01; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
-#endif
- }
- }
- }
-}
-
-static void ggml_compute_forward_out_prod_q_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
-
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
-
- // we don't support permuted src0 dim0
- GGML_ASSERT(nb00 == ggml_type_size(type));
-
- // dst dim0 cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
-
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
- if (ith == 0) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- }
- ggml_barrier(params->threadpool);
-
- // parallelize by last three dimensions
-
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
-
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
-
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
-
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
-
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- const int64_t i02 = i2;
- const int64_t i03 = i3;
-
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
-
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- const int64_t i11 = i01;
-
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
-
- dequantize_row_q(s0, wdata, ne0);
- ggml_vec_mad_f32(ne0, d, wdata, *s1);
- }
- }
-}
-
-static void ggml_compute_forward_out_prod(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_out_prod_q_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ABORT("fatal error"); // todo
- // ggml_compute_forward_out_prod_f16_f32(params, dst);
- }
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_out_prod_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_scale
-
-static void ggml_compute_forward_scale_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
- // scale factor
- float v;
- memcpy(&v, dst->op_params, sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- const size_t nb01 = src0->nb[1];
-
- const size_t nb1 = dst->nb[1];
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- if (dst->data != src0->data) {
- // src0 is same shape as dst => same indices
- memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
- }
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
- }
-}
-
-static void ggml_compute_forward_scale(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_scale_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_set
-
-static void ggml_compute_forward_set_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
-
- if (!inplace) {
- if (params->ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
-
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
-
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
-
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
-
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
-
- GGML_ASSERT(nb10 == sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
-
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
-}
-
-static void ggml_compute_forward_set_i32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
-
- if (!inplace) {
- if (params->ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
-
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
-
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
-
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
-
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
-
- GGML_ASSERT(nb10 == sizeof(int32_t));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
-
- ggml_vec_cpy_i32(nc,
- (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
-}
-
-static void ggml_compute_forward_set(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_set_f32(params, dst);
- } break;
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_set_i32(params, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_cpy
-
-static void ggml_compute_forward_cpy(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, dst);
-}
-
-// ggml_compute_forward_cont
-
-static void ggml_compute_forward_cont(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, dst);
-}
-
-// ggml_compute_forward_reshape
-
-static void ggml_compute_forward_reshape(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_view
-
-static void ggml_compute_forward_view(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_permute
-
-static void ggml_compute_forward_permute(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_transpose
-
-static void ggml_compute_forward_transpose(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(dst);
-}
-
-// ggml_compute_forward_get_rows
-
-static void ggml_compute_forward_get_rows_q(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == ggml_type_size(type));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
-
- dequantize_row_q(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
-}
-
-static void ggml_compute_forward_get_rows_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(ggml_fp16_t));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
-
- ggml_fp16_to_fp32_row(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
-}
-
-static void ggml_compute_forward_get_rows_bf16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(ggml_bf16_t));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
-
- ggml_bf16_to_fp32_row(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
-}
-
-static void ggml_compute_forward_get_rows_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
-
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(float));
- assert(ggml_nrows(dst) == nr);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
-
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
-
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
- }
-}
-
-static void ggml_compute_forward_get_rows(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_get_rows_q(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_get_rows_bf16(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_get_rows_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
-}
-
-// ggml_compute_forward_get_rows_back
-
-static void ggml_compute_forward_get_rows_back_f32_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- if (params->ith != 0) {
- return;
- }
-
- GGML_ASSERT(ggml_is_contiguous(dst));
-
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
-
- memset(dst->data, 0, ggml_nbytes(dst));
-
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
-
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
-
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
-
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
- }
- }
-}
-
-static void ggml_compute_forward_get_rows_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- if (params->ith != 0) {
- return;
- }
-
- GGML_ASSERT(ggml_is_contiguous(dst));
-
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
-
- memset(dst->data, 0, ggml_nbytes(dst));
-
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
-
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
-
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) src0->data + i*src0->nb[1]));
- }
-}
-
-static void ggml_compute_forward_get_rows_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_back_f32_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
-}
-
-// ggml_compute_forward_diag
-
-static void ggml_compute_forward_diag_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- // TODO: handle transposed/permuted matrices
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(ne00 == ne0);
- GGML_ASSERT(ne00 == ne1);
- GGML_ASSERT(ne01 == 1);
- GGML_ASSERT(ne02 == ne2);
- GGML_ASSERT(ne03 == ne3);
-
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
-
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = 0; i1 < ne1; i1++) {
- float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
- for (int i0 = 0; i0 < i1; i0++) {
- d[i0] = 0;
- }
- d[i1] = s[i1];
- for (int i0 = i1+1; i0 < ne0; i0++) {
- d[i0] = 0;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_diag(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_diag_mask_inf
-
-static void ggml_compute_forward_diag_mask_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const float value) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int n_past = ((int32_t *) dst->op_params)[0];
- const bool inplace = src0->data == dst->data;
-
- GGML_ASSERT(n_past >= 0);
-
- if (!inplace) {
- if (ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
-
- // TODO: handle transposed/permuted matrices
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
-
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- for (int k = 0; k < nz; k++) {
- for (int j = ith; j < nr; j += nth) {
- for (int i = n_past; i < nc; i++) {
- if (i > n_past + j) {
- *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_diag_mask_inf(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-static void ggml_compute_forward_diag_mask_zero(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, dst, 0);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_soft_max
-
-static void ggml_compute_forward_soft_max_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- assert(ggml_is_contiguous(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
-
- // TODO: handle transposed/permuted matrices
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- //const int64_t ne11 = src1 ? src1->ne[1] : 1;
-
- // TODO: is this supposed to be ceil instead of floor?
- // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
- const uint32_t n_head = ne02;
- const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
-
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- // ALiBi
- const uint32_t h = (i1/ne01)%ne02; // head
- const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
-
- float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
-
- // broadcast the mask across rows
- ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
- float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
-
- ggml_vec_cpy_f32 (nc, wp, sp);
- ggml_vec_scale_f32(nc, wp, scale);
- if (mp_f32) {
- if (use_f16) {
- for (int i = 0; i < nc; ++i) {
- wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
- }
- } else {
- for (int i = 0; i < nc; ++i) {
- wp[i] += slope*mp_f32[i];
- }
- }
- }
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(wp[i]));
- }
-#endif
-
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, wp);
-
- ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
- assert(sum > 0.0);
-
- sum = 1.0/sum;
- ggml_vec_scale_f32(nc, dp, sum);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dp[i]));
- assert(!isinf(dp[i]));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_soft_max(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-
-// ggml_compute_forward_soft_max_ext_back
-
-static void ggml_compute_forward_soft_max_ext_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src1, dst));
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
-
- GGML_ASSERT(max_bias == 0.0f);
-
- // TODO: handle transposed/permuted matrices
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
- float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
- float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(dy[i]));
- assert(!isnan(y[i]));
- }
-#endif
- // Jii = yi - yi*yi
- // Jij = -yi*yj
- // J = diag(y)-y.T*y
- // dx = J * dy
- // dxk = sum_i(Jki * dyi)
- // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*dyk
- // dxk = -yk * sum_i(yi * dyi) + yk*dyk
- // dxk = -yk * dot(y, dy) + yk*dyk
- // dxk = yk * (- dot(y, dy) + dyk)
- // dxk = yk * (dyk - dot(y, dy))
- //
- // post-order:
- // dot_y_dy := dot(y, dy)
- // dx := dy
- // dx := dx - dot_y_dy
- // dx := dx * y
-
- // linear runtime, no additional memory
- float dot_y_dy = 0;
- ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
- ggml_vec_cpy_f32 (nc, dx, dy);
- ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
- ggml_vec_mul_f32 (nc, dx, dx, y);
- ggml_vec_scale_f32(nc, dx, scale);
-
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dx[i]));
- assert(!isinf(dx[i]));
- }
-#endif
- }
-}
-
-static void ggml_compute_forward_soft_max_ext_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_ext_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_clamp
-
-static void ggml_compute_forward_clamp_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- float min;
- float max;
- memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
-
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
-
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
-
- for (int j = ith; j < n; j += nth) {
- float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
- float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
-
- for (int i = 0; i < nc; i++) {
- dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
- }
- }
-}
-
-static void ggml_compute_forward_clamp_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- float min;
- float max;
- memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
-
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
-
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- for (int j = ith; j < n; j += nth) {
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
-
- for (int i = 0; i < nc; i++) {
- float v = GGML_FP16_TO_FP32(src0_ptr[i]);
- dst_ptr[i] = GGML_FP32_TO_FP16(MAX(MIN(v, max), min));
- }
- }
-}
-
-static void ggml_compute_forward_clamp(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_clamp_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_clamp_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_I64:
- case GGML_TYPE_F64:
- case GGML_TYPE_COUNT:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_rope
-
-static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
- return 1 - MIN(1, MAX(0, y));
-}
-
-// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
-// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
-static void rope_yarn(
- float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
-
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
- }
- *cos_theta = cosf(theta) * mscale;
- *sin_theta = sinf(theta) * mscale;
-}
-
-static void ggml_rope_cache_init(
- float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
- float * cache, float sin_sign, float theta_scale) {
- // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
- float theta = theta_base;
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
- rope_yarn(
- theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
- );
- cache[i0 + 1] *= sin_sign;
-
- theta *= theta_scale;
- }
-}
-
-static void ggml_mrope_cache_init(
- float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
- float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
- float * cache, float sin_sign, float theta_scale) {
- // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
- float theta_t = theta_base_t;
- float theta_h = theta_base_h;
- float theta_w = theta_base_w;
- float theta_e = theta_base_e; // extra position id for vision encoder
- int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
- int sec_w = sections[1] + sections[0];
- int sec_e = sections[2] + sec_w;
- GGML_ASSERT(sect_dims <= ne0);
-
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
-
- int sector = (i0 / 2) % sect_dims;
- if (indep_sects) {
- // compute theta independently for each dim sections
- // (i.e. reset corresponding theta when `i0` go from one section to another)
- if (sector == 0) {
- theta_t = theta_base_t;
- }
- else if (sector == sections[0]) {
- theta_h = theta_base_h;;
- }
- else if (sector == sec_w) {
- theta_w = theta_base_w;
- }
- else if (sector == sec_e) {
- theta_e = theta_base_e;
- }
- }
-
- float theta = theta_t;
- if (sector >= sections[0] && sector < sec_w) {
- theta = theta_h;
- }
- else if (sector >= sec_w && sector < sec_w + sections[2]) {
- theta = theta_w;
- }
- else if (sector >= sec_w + sections[2]) {
- theta = theta_e;
- }
-
- rope_yarn(
- theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
- );
- cache[i0 + 1] *= sin_sign;
-
- theta_t *= theta_scale;
- theta_w *= theta_scale;
- theta_h *= theta_scale;
- theta_e *= theta_scale;
- }
-}
-
-static void ggml_compute_forward_rope_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const bool forward) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src2 = dst->src[2];
-
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- int sections[4];
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
-
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
- GGML_ASSERT(nb00 == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(dst);
-
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- // row index used to determine which thread to use
- int ir = 0;
-
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
-
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
-
- const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
-
- if (is_mrope) {
- GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
- }
-
- if (is_vision) {
- GGML_ASSERT(n_dims == ne0/2);
- }
-
- const float * freq_factors = NULL;
- if (src2 != NULL) {
- GGML_ASSERT(src2->type == GGML_TYPE_F32);
- GGML_ASSERT(src2->ne[0] >= n_dims / 2);
- freq_factors = (const float *) src2->data;
- }
-
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
-
- const int32_t * pos = (const int32_t *) src1->data;
-
- for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
- for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
-
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- if (!is_mrope) {
- const int64_t p = pos[i2];
- ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- else {
- const int64_t p_t = pos[i2];
- const int64_t p_h = pos[i2 + ne2];
- const int64_t p_w = pos[i2 + ne2 * 2];
- const int64_t p_e = pos[i2 + ne2 * 3];
- ggml_mrope_cache_init(
- p_t, p_h, p_w, p_e, sections, is_vision,
- freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
-
- for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
-
- if (is_neox || is_mrope) {
- if (is_vision){
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = src[0];
- const float x1 = src[n_dims];
-
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
-
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- const float x0 = src[0];
- const float x1 = src[1];
-
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[1] = x0*sin_theta + x1*cos_theta;
- }
- }
-
- if (is_vision) {
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = src[0];
- const float x1 = src[n_dims];
-
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
- }
- } else {
- // fill the remain channels with data from src tensor
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
- }
-}
-
-// TODO: deduplicate f16/f32 code
-static void ggml_compute_forward_rope_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const bool forward) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src2 = dst->src[2];
-
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- int sections[4];
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
-
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nr = ggml_nrows(dst);
-
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- // row index used to determine which thread to use
- int ir = 0;
-
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
-
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
-
- const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
-
- if (is_mrope) {
- GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
- }
-
- if (is_vision) {
- GGML_ASSERT(n_dims == ne0/2);
- }
-
- const float * freq_factors = NULL;
- if (src2 != NULL) {
- GGML_ASSERT(src2->type == GGML_TYPE_F32);
- GGML_ASSERT(src2->ne[0] >= n_dims / 2);
- freq_factors = (const float *) src2->data;
- }
-
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
-
- const int32_t * pos = (const int32_t *) src1->data;
-
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
-
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- if (!is_mrope) {
- const int64_t p = pos[i2];
- ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- else {
- const int64_t p_t = pos[i2];
- const int64_t p_h = pos[i2 + ne2];
- const int64_t p_w = pos[i2 + ne2 * 2];
- const int64_t p_e = pos[i2 + ne2 * 3];
- ggml_mrope_cache_init(
- p_t, p_h, p_w, p_e, sections, is_vision,
- freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
-
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
-
- if (is_neox || is_mrope) {
- if (is_vision) {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
-
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
-
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[1]);
-
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- }
-
- if (is_vision) {
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const int64_t ic = i0/2;
-
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
-
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
-
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
-
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_rope(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, dst, true);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, dst, true);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_rope_back
-
-static void ggml_compute_forward_rope_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, dst, false);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, dst, false);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_conv_transpose_1d
-
-static void ggml_compute_forward_conv_transpose_1d_f16_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00*ne01*ne02;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (ith == 0) {
- memset(params->wdata, 0, params->wsize);
-
- // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
-
- // permute source data (src1) from (L x Cin) to (Cin x L)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- ggml_fp16_t * dst_data = wdata;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
-
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
-
- // total rows in dst
- const int nr = ne1;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne02, &v, 0,
- (ggml_fp16_t *) wdata_src + i1n, 0,
- (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
-}
-
-static void ggml_compute_forward_conv_transpose_1d_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00*ne01*ne02;
-
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (ith == 0) {
- memset(params->wdata, 0, params->wsize);
-
- // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- float * const wdata = (float *) params->wdata + 0;
-
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
-
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + nk;
- float * dst_data = wdata;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = src[i10];
- }
- }
- }
-
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
-
- // total rows in dst
- const int nr = ne1;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * const wdata = (float *) params->wdata + 0;
- float * const wdata_src = wdata + nk;
-
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- float * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f32(ne02, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
-}
-
-static void ggml_compute_forward_conv_transpose_1d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_transpose_1d_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_im2col_f32
-// src0: kernel [OC, IC, KH, KW]
-// src1: image [N, IC, IH, IW]
-// dst: result [N, OH, OW, IC*KH*KW]
-static void ggml_compute_forward_im2col_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
-
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
-
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
-
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
-
- GGML_ASSERT(nb10 == sizeof(float));
-
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- float * const wdata = (float *) dst->data;
-
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
-
- // micro kernel
- float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
-
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
-
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-
-// ggml_compute_forward_im2col_f16
-// src0: kernel [OC, IC, KH, KW]
-// src1: image [N, IC, IH, IW]
-// dst: result [N, OH, OW, IC*KH*KW]
-static void ggml_compute_forward_im2col_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
-
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
-
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
-
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
-
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
-
- // micro kernel
- ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
-
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
-
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_im2col(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_im2col_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_im2col_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_im2col_back_f32
-
-static void ggml_compute_forward_im2col_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
- const struct ggml_tensor * src1 = dst->src[1]; // convolution kernel
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t N = is_2D ? ne3 : ne2;
- const int64_t IC = is_2D ? ne2 : ne1;
- const int64_t IH = is_2D ? ne1 : 1;
- const int64_t IW = ne0;
-
- const int64_t KH = is_2D ? ne11 : 1;
- const int64_t KW = ne10;
-
- const int64_t OH = is_2D ? ne02 : 1;
- const int64_t OW = ne01;
-
- int ofs0 = is_2D ? nb3 : nb2;
- int ofs1 = is_2D ? nb2 : nb1;
-
- GGML_ASSERT(nb0 == sizeof(float));
-
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- float * const wdata = (float *) dst->data;
-
- for (int64_t in = 0; in < N; in++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
- for (int64_t iih = 0; iih < IH; iih++) {
- for (int64_t iiw = 0; iiw < IW; iiw++) {
-
- // micro kernel
- float grad = 0.0f;
- for (int64_t ikh = 0; ikh < KH; ikh++) {
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- // For s0 > 1 some values were skipped over in the forward pass.
- // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
- const int64_t tmpw = (iiw + p0 - ikw*d0);
- if (tmpw % s0 != 0) {
- continue;
- }
- const int64_t iow = tmpw / s0;
-
- // Equivalent logic as above except for s1.
- int64_t ioh;
- if (is_2D) {
- const int64_t tmph = iih + p1 - ikh*d1;
-
- if (tmph % s1 != 0) {
- continue;
- }
-
- ioh = tmph / s1;
- } else {
- ioh = 0;
- }
-
- if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
- continue;
- }
-
- const float * const grad_in = (const float *) src0->data
- + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
- }
- }
- float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
- dst_data[iih*IW + iiw] = grad;
- }
- }
- }
- }
- }
-}
-
-// ggml_compute_forward_conv_transpose_2d
-
-static void ggml_compute_forward_conv_transpose_2d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00*ne01*ne02*ne03;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (ith == 0) {
- memset(params->wdata, 0, params->wsize);
-
- // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
- ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
- }
- }
- }
- }
- }
-
- // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- for (int i12 = 0; i12 < ne12; i12++) {
- for (int i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
- ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
- for (int i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- }
-
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
-
- const int32_t stride = ggml_get_op_params_i32(dst, 0);
-
- // total patches in dst
- const int np = ne2;
-
- // patches per thread
- const int dp = (np + nth - 1)/nth;
-
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
-
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
-
- for (int i2 = ip0; i2 < ip1; i2++) { // Cout
- float * dst_data = (float *)((char *) dst->data + i2*nb2);
- ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
- for (int i11 = 0; i11 < ne11; i11++) {
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i11*ne10*ne12 + i10*ne12;
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne03, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
- dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
- }
- }
- }
- }
- }
-}
-
-// ggml_compute_forward_pool_1d_sk_p0
-
-static void ggml_compute_forward_pool_1d_sk_p0(
- const struct ggml_compute_params * params,
- const enum ggml_op_pool op,
- const int k,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src = dst->src[0];
-
- assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
-
- if (params->ith != 0) {
- return;
- }
-
- const char * cdata = (const char *)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- float * drow = (float *)dst->data;
-
- const int64_t rs = dst->ne[0];
-
- while (cdata < data_end) {
- const void * srow = (const void *)cdata;
- int j = 0;
- for (int64_t i = 0; i < rs; ++i) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] = 0; break;
- case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- for (int ki = 0; ki < k; ++ki) {
- const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
- case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- ++j;
- }
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] /= k; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- }
-
- cdata += src->nb[1];
- drow += rs;
- }
-}
-
-// ggml_compute_forward_pool_1d
-
-static void ggml_compute_forward_pool_1d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int s0 = opts[2];
- const int p0 = opts[3];
- GGML_ASSERT(p0 == 0); // padding not supported
- GGML_ASSERT(k0 == s0); // only s = k supported
-
- ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
-}
-
-// ggml_compute_forward_pool_2d
-
-static void ggml_compute_forward_pool_2d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src = dst->src[0];
-
- assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
-
- if (params->ith != 0) {
- return;
- }
-
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- const char * cdata = (const char*)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
-
- const int64_t px = dst->ne[0];
- const int64_t py = dst->ne[1];
- const int64_t pa = px * py;
-
- float * dplane = (float *)dst->data;
-
- const int ka = k0 * k1;
- const int offset0 = -p0;
- const int offset1 = -p1;
-
- while (cdata < data_end) {
- for (int oy = 0; oy < py; ++oy) {
- float * const drow = dplane + oy * px;
- for (int ox = 0; ox < px; ++ox) {
- float * const out = drow + ox;
- switch (op) {
- case GGML_OP_POOL_AVG: *out = 0; break;
- case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
-
- const int ix = offset0 + ox * s0;
- const int iy = offset1 + oy * s1;
-
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
- const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= src->ne[0]) continue;
- const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
- switch (op) {
- case GGML_OP_POOL_AVG: *out += srow_j; break;
- case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- }
- }
- switch (op) {
- case GGML_OP_POOL_AVG: *out /= ka; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- }
- }
-
- cdata += src->nb[2];
- dplane += pa;
- }
-}
-
-// ggml_compute_forward_pool_2d_back
-
-static void ggml_compute_forward_pool_2d_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src = dst->src[0];
- const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
-
- assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
-
- if (params->ith != 0) {
- return;
- }
-
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
-
- char * cdata = (char *) dst->data;
- const char * cdataf = (const char *) dstf->data;
- const char * const data_end = cdata + ggml_nbytes(dst);
-
- GGML_ASSERT(params->ith == 0);
- memset(cdata, 0, ggml_nbytes(dst));
-
- const int64_t px = src->ne[0];
- const int64_t py = src->ne[1];
- const int64_t pa = px * py;
-
- const float * splane = (const float *) src->data;
-
- const int ka = k0 * k1;
- const int offset0 = -p0;
- const int offset1 = -p1;
-
- while (cdata < data_end) {
- for (int oy = 0; oy < py; ++oy) {
- const float * const srow = splane + oy * px;
- for (int ox = 0; ox < px; ++ox) {
- const float grad0 = srow[ox];
-
- const int ix = offset0 + ox * s0;
- const int iy = offset1 + oy * s1;
-
- if (op == GGML_OP_POOL_MAX) {
- float maxval = -FLT_MAX;
- int kxmax = -1;
- int kymax = -1;
-
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
- continue;
- }
- const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= dst->ne[0]) {
- continue;
- }
-
- const float val = dst->type == GGML_TYPE_F32 ?
- ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
- if (val <= maxval) {
- continue;
- }
-
- maxval = val;
- kxmax = kx;
- kymax = ky;
- }
- }
-
- if (kxmax == -1 || kymax == -1) {
- continue;
- }
-
- void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
- const int j = ix + kxmax;
- if (dst->type == GGML_TYPE_F32) {
- ((float *) drow)[j] += grad0;
- } else {
- ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
- }
- } else if (op == GGML_OP_POOL_AVG) {
- const float grad = grad0 / ka;
-
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
- continue;
- }
- void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= dst->ne[0]) {
- continue;
- }
-
- if (dst->type == GGML_TYPE_F32) {
- ((float *) drow)[j] += grad;
- } else {
- ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
- }
- }
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- }
-
- cdata += dst->nb[2];
- cdataf += dst->nb[2];
- splane += pa;
- }
-}
-
-// ggml_compute_forward_upscale
-
-static void ggml_compute_forward_upscale_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const float sf0 = (float)ne0/src0->ne[0];
- const float sf1 = (float)ne1/src0->ne[1];
- const float sf2 = (float)ne2/src0->ne[2];
- const float sf3 = (float)ne3/src0->ne[3];
-
- // TODO: optimize
-
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- const int64_t i03 = i3 / sf3;
- for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
- const int64_t i02 = i2 / sf2;
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- const int64_t i01 = i1 / sf1;
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- const int64_t i00 = i0 / sf0;
-
- const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
-
- *y = *x;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_upscale(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_upscale_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-
-// ggml_compute_forward_pad
-
-static void ggml_compute_forward_pad_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT( dst->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- float * dst_ptr = (float *) dst->data;
-
- // TODO: optimize
-
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- for (int64_t i3 = 0; i3 < ne3; ++i3) {
- const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
-
- const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- dst_ptr[dst_idx] = *src_ptr;
- } else {
- dst_ptr[dst_idx] = 0;
- }
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_pad(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_pad_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_pad_reflect_1d
-
-static void ggml_compute_forward_pad_reflect_1d(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int32_t * opts = (const int32_t *) dst->op_params;
- const int p0 = opts[0];
- const int p1 = opts[1];
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
- float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
- float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
-
- ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
-
- for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
- for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
- }
- }
- }
-}
-
-// ggml_compute_forward_arange
-
-static void ggml_compute_forward_arange_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- GGML_ASSERT(dst->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const float start = ggml_get_op_params_f32(dst, 0);
- const float stop = ggml_get_op_params_f32(dst, 1);
- const float step = ggml_get_op_params_f32(dst, 2);
-
- const int64_t steps = (int64_t) ceilf((stop - start) / step);
-
- GGML_ASSERT(ggml_nelements(dst) == steps);
-
- for (int64_t i = ith; i < steps; i+= nth) {
- float value = start + step * i;
- ((float *)dst->data)[i] = value;
- }
-}
-
-static void ggml_compute_forward_arange(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_arange_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-static void ggml_compute_forward_timestep_embedding_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_ASSERT(src0->nb[0] == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int dim = ggml_get_op_params_i32(dst, 0);
- const int max_period = ggml_get_op_params_i32(dst, 1);
-
- int half = dim / 2;
-
- for (int64_t i = 0; i < ne00; i++) {
- float * embed_data = (float *)((char *) dst->data + i*nb1);
- for (int64_t j = ith; j < half; j += nth) {
- float timestep = ((float *)src0->data)[i];
- float freq = (float)expf(-logf(max_period) * j / half);
- float arg = timestep * freq;
- embed_data[j] = cosf(arg);
- embed_data[j + half] = sinf(arg);
- }
- if (dim % 2 != 0 && ith == 0) {
- embed_data[dim] = 0.f;
- }
- }
-}
-
-static void ggml_compute_forward_timestep_embedding(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_timestep_embedding_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_argsort
-
-static void ggml_compute_forward_argsort_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- GGML_ASSERT(nb0 == sizeof(float));
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t nr = ggml_nrows(src0);
-
- enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
-
- for (int64_t i = ith; i < nr; i += nth) {
- int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
- const float * src_data = (float *)((char *) src0->data + i*nb01);
-
- for (int64_t j = 0; j < ne0; j++) {
- dst_data[j] = j;
- }
-
- // C doesn't have a functional sort, so we do a bubble sort instead
- for (int64_t j = 0; j < ne0; j++) {
- for (int64_t k = j + 1; k < ne0; k++) {
- if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
- (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
- int32_t tmp = dst_data[j];
- dst_data[j] = dst_data[k];
- dst_data[k] = tmp;
- }
- }
- }
- }
-}
-
-static void ggml_compute_forward_argsort(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argsort_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_flash_attn_ext
-
-static void ggml_compute_forward_flash_attn_ext_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * mask,
- struct ggml_tensor * dst) {
-
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t DK = nek0;
- const int64_t DV = nev0;
- const int64_t N = neq1;
-
- GGML_ASSERT(ne0 == DV);
- GGML_ASSERT(ne2 == N);
-
- // input tensor rows must be contiguous
- GGML_ASSERT(nbq0 == ggml_type_size(q->type));
- GGML_ASSERT(nbk0 == ggml_type_size(k->type));
- GGML_ASSERT(nbv0 == ggml_type_size(v->type));
-
- GGML_ASSERT(neq0 == DK);
- GGML_ASSERT(nek0 == DK);
- GGML_ASSERT(nev0 == DV);
-
- GGML_ASSERT(neq1 == N);
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- // broadcast factors
- const int64_t rk2 = neq2/nek2;
- const int64_t rk3 = neq3/nek3;
-
- const int64_t rv2 = neq2/nev2;
- const int64_t rv3 = neq3/nev3;
-
- // parallelize by q rows using ggml_vec_dot_f32
-
- // total rows in q
- const int nr = neq1*neq2*neq3;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float scale = 1.0f;
- float max_bias = 0.0f;
- float logit_softcap = 0.0f;
-
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
- memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
-
- if (logit_softcap != 0) {
- scale /= logit_softcap;
- }
-
- const uint32_t n_head = neq2;
- const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
-
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
-
- enum ggml_type const k_vec_dot_type = type_traits_cpu[k->type].vec_dot_type;
- ggml_from_float_t const q_to_vec_dot = type_traits_cpu[k_vec_dot_type].from_float;
- ggml_vec_dot_t const kq_vec_dot = type_traits_cpu[k->type].vec_dot;
- ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
-
- GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
- GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
-
- // loop over n_batch and n_head
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
-
- const uint32_t h = iq2; // head index
- const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
-
- float S = 0.0f; // sum
- float M = -INFINITY; // maximum KQ value
-
- float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
- float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
- ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
- ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
-
- if (v->type == GGML_TYPE_F16) {
- memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
- } else {
- memset(VKQ32, 0, DV*sizeof(float));
- }
-
- const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
-
- // k indices
- const int ik3 = iq3 / rk3;
- const int ik2 = iq2 / rk2;
-
- // v indices
- const int iv3 = iq3 / rv3;
- const int iv2 = iq2 / rv2;
-
- const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
- q_to_vec_dot(pq, Q_q, DK);
-
- // online softmax / attention
- // loop over n_kv and n_head_kv
- // ref: https://arxiv.org/pdf/2112.05682.pdf
- for (int64_t ic = 0; ic < nek1; ++ic) {
- const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
- if (mv == -INFINITY) {
- continue;
- }
-
- float s; // KQ value
-
- const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
- kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
-
- s = s*scale; // scale KQ value
-
- if (logit_softcap != 0.0f) {
- s = logit_softcap*tanhf(s);
- }
-
- s += mv; // apply mask
-
- const float Mold = M;
-
- float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
- float vs = 1.0f; // post-softmax KQ value, expf(s - M)
-
- const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
-
- if (v->type == GGML_TYPE_F16) {
- if (s > M) {
- // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
- M = s;
- ms = expf(Mold - M);
-
- // V = V*expf(Mold - M)
- ggml_vec_scale_f16(DV, VKQ16, ms);
- } else {
- // no new maximum, ms == 1.0f, vs != 1.0f
- vs = expf(s - M);
- }
-
- // V += v*expf(s - M)
- ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
- } else {
- if (s > M) {
- // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
- M = s;
- ms = expf(Mold - M);
-
- // V = V*expf(Mold - M)
- ggml_vec_scale_f32(DV, VKQ32, ms);
- } else {
- // no new maximum, ms == 1.0f, vs != 1.0f
- vs = expf(s - M);
- }
-
- v_to_float(v_data, V32, DV);
-
- // V += v*expf(s - M)
- ggml_vec_mad_f32(DV, VKQ32, V32, vs);
- }
-
- S = S*ms + vs; // scale and increment sum with partial sum
- }
-
- if (v->type == GGML_TYPE_F16) {
- for (int64_t d = 0; d < DV; ++d) {
- VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
- }
- }
-
- // V /= S
- const float S_inv = 1.0f/S;
- ggml_vec_scale_f32(DV, VKQ32, S_inv);
-
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
-
- // original
- //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
-
- // permute(0, 2, 1, 3)
- memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
- }
-}
-
-static void ggml_compute_forward_flash_attn_ext(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * mask,
- struct ggml_tensor * dst) {
- switch (dst->op_params[3]) {
- case GGML_PREC_DEFAULT:
- case GGML_PREC_F32:
- {
- // uses F32 accumulators
- ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_flash_attn_back
-
-static void ggml_compute_forward_flash_attn_back_f32(
- const struct ggml_compute_params * params,
- const bool masked,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * q = dst->src[0];
- const struct ggml_tensor * k = dst->src[1];
- const struct ggml_tensor * v = dst->src[2];
- const struct ggml_tensor * d = dst->src[3];
-
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
- GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
-
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- const int mxDM = MAX(D, Mup);
-
- // GGML_ASSERT(ne0 == D);
- // GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
-
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
-
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned0 == D);
-
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned1 == N);
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- if (ith == 0) {
- memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
- }
- ggml_barrier(params->threadpool);
-
- const int64_t elem_q = ggml_nelements(q);
- const int64_t elem_k = ggml_nelements(k);
-
- enum ggml_type result_type = dst->type;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
-
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
-
- void * grad_q = (char *) dst->data;
- void * grad_k = (char *) dst->data + offs_k;
- void * grad_v = (char *) dst->data + offs_v;
-
- const size_t nbgq1 = nb0*neq0;
- const size_t nbgq2 = nb0*neq0*neq1;
- const size_t nbgq3 = nb0*neq0*neq1*neq2;
-
- const size_t nbgk1 = nb0*nek0;
- const size_t nbgk2 = nb0*nek0*nek1;
- const size_t nbgk3 = nb0*nek0*nek1*neq2;
-
- const size_t nbgv1 = nb0*nev0;
- const size_t nbgv2 = nb0*nev0*nev1;
- const size_t nbgv3 = nb0*nev0*nev1*neq2;
-
- // parallelize by k rows using ggml_vec_dot_f32
-
- // total rows in k
- const int nr = nek2*nek3;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- const float scale = 1.0f/sqrtf(D);
-
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
-
- // how often k2 (and v2) is repeated in q2
- int nrep = neq2/nek2;
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int ik3 = ir/(nek2);
- const int ik2 = ir - ik3*nek2;
-
- const int iq3 = ik3;
- const int id3 = ik3;
- const int iv3 = ik3;
- const int iv2 = ik2;
-
- for (int irep = 0; irep < nrep; ++irep) {
- const int iq2 = ik2 + irep*nek2;
- const int id2 = iq2;
-
- // (ik2 + irep*nek2) % nek2 == ik2
- for (int iq1 = 0; iq1 < neq1; ++iq1) {
- const int id1 = iq1;
-
- // not sure about CACHE_LINE_SIZE_F32..
- // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
- float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
- float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
-
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
-
- const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- // k indices
- const int ik1 = ic;
-
- // S indices
- const int i1 = ik1;
-
- ggml_vec_dot_f32(neq0,
- S + i1, 0,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
- }
-
- // scale
- ggml_vec_scale_f32(masked_begin, S, scale);
-
- for (int64_t i = masked_begin; i < M; i++) {
- S[i] = -INFINITY;
- }
-
- // softmax
- // exclude known -INF S[..] values from max and loop
- // dont forget to set their SM values to zero
- {
- float max = -INFINITY;
- ggml_vec_max_f32(masked_begin, &max, S);
-
- ggml_float sum = 0.0;
- {
-#ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
- vvexpf(SM, SM, &Mup);
- ggml_vec_sum_f32(Mup, &sum, SM);
-#else
- sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
-#endif
- }
-
- assert(sum > 0.0);
-
- sum = 1.0/sum;
- ggml_vec_scale_f32(masked_begin, SM, sum);
-
- }
-
- // step-by-step explanation
- {
- // forward-process shape grads from backward process
- // parallel_for ik2,ik3:
- // for irep:
- // iq2 = ik2 + irep*nek2
- // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
- // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
- // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
- // for iq1:
- // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
- // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
- // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
- // S0 = -Inf [D,1,1,1]
- // ~S1[i] = dot(kcur[:D,i], qcur)
- // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
- // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
- // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
- // ~S5[i] = dot(vcur[:,i], S4)
- // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
- // ~dst[i,iq1,iq2,iq3] = S5[i] ^
- // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
- // dst backward-/ grad[dst] = d
- //
- // output gradients with their dependencies:
- //
- // grad[kcur] = grad[S1].T @ qcur
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S4] = grad[S5] @ vcur
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[qcur] = grad[S1] @ kcur
- // grad[vcur] = grad[S5].T @ S4
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // in post-order:
- //
- // S1 = qcur @ kcur.T
- // S2 = S1 * scale
- // S3 = diag_mask_inf(S2, P)
- // S4 = softmax(S3)
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[qcur] = grad[S1] @ kcur
- // grad[kcur] = grad[S1].T @ qcur
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // using less variables (SM=S4):
- //
- // S = diag_mask_inf(qcur @ kcur.T * scale, P)
- // SM = softmax(S)
- // S = d[:D,iq1,iq2,iq3] @ vcur
- // dot_SM_gradSM = dot(SM, S)
- // S = SM * (S - dot(SM, S))
- // S = diag_mask_zero(S, P) * scale
- //
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
-
- // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // for ic:
- // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
- // exclude known future zero S[..] values from operation
- ggml_vec_set_f32(masked_begin, S, 0);
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- S,
- (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
}
-
- // S = SM * (S - dot(SM, S))
- float dot_SM_gradSM = 0;
- ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
- ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
- ggml_vec_mul_f32 (masked_begin, S, S, SM);
-
- // S = diag_mask_zero(S, P) * scale
- // already done by above ggml_vec_set_f32
-
- // exclude known zero S[..] values from operation
- ggml_vec_scale_f32(masked_begin, S, scale);
-
- // S shape [M,1]
- // SM shape [M,1]
- // kcur shape [D,M]
- // qcur shape [D,1]
- // vcur shape [M,D]
-
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
- // for ic:
- // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
- (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
- S[ic]);
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
-
- // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
- // for ic:
- // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
- // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
- S[ic]);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
}
-
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
- // for ic:
- // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
- // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
- // exclude known zero SM[..] values from mad
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
- SM,
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
}
- }
- }
- }
-}
-
-static void ggml_compute_forward_flash_attn_back(
- const struct ggml_compute_params * params,
- const bool masked,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * q = dst->src[0];
-
- switch (q->type) {
+ } break;
case GGML_TYPE_F32:
{
- ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
+ assert(tensor->nb[0] == sizeof(float));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+ }
} break;
default:
{
GGML_ABORT("fatal error");
}
}
-}
-// ggml_compute_forward_ssm_conv
+ return tensor;
+}
-static void ggml_compute_forward_ssm_conv_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0]; // conv_x
- const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
+struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
+ const int n = ggml_nrows(tensor);
+ const int nc = tensor->ne[0];
+ const size_t n1 = tensor->nb[1];
- const int ith = params->ith;
- const int nth = params->nth;
+ char * const data = tensor->data;
- const int nc = src1->ne[0]; // d_conv
- const int ncs = src0->ne[0]; // d_conv - 1 + n_t
- const int nr = src0->ne[1]; // d_inner
- const int n_t = dst->ne[1]; // tokens per sequence
- const int n_s = dst->ne[2]; // number of sequences in the batch
-
- GGML_ASSERT( dst->ne[0] == nr);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const int ir = ir1 - ir0;
-
- for (int i3 = 0; i3 < n_s; ++i3) {
- for (int i2 = 0; i2 < n_t; ++i2) {
- // {d_conv - 1 + n_t, d_inner, n_seqs}
- // sliding window
- const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
- const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
- float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
-
- // TODO: transpose the output for smaller strides for big batches?
- // d_inner
- for (int i1 = 0; i1 < ir; ++i1) {
- // rowwise dot product
- // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
- float sumf = 0.0f;
-
- // d_conv
- for (int i0 = 0; i0 < nc; ++i0) {
- sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
- x[i1] = sumf;
- }
- }
- }
-}
-
-static void ggml_compute_forward_ssm_conv(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->src[0]->type) {
- case GGML_TYPE_F32:
+ } break;
+ case GGML_TYPE_I16:
{
- ggml_compute_forward_ssm_conv_f32(params, dst);
+ assert(tensor->nb[0] == sizeof(int16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
+ }
} break;
- default:
+ case GGML_TYPE_I32:
{
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_ssm_scan
-
-static void ggml_compute_forward_ssm_scan_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0]; // s
- const struct ggml_tensor * src1 = dst->src[1]; // x
- const struct ggml_tensor * src2 = dst->src[2]; // dt
- const struct ggml_tensor * src3 = dst->src[3]; // A
- const struct ggml_tensor * src4 = dst->src[4]; // B
- const struct ggml_tensor * src5 = dst->src[5]; // C
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int64_t nc = src0->ne[0]; // d_state
- const int64_t nr = src0->ne[1]; // d_inner
- const int64_t n_t = src1->ne[1]; // number of tokens per sequence
- const int64_t n_s = src0->ne[2]; // number of sequences in the batch
-
- GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- GGML_ASSERT(src2->nb[0] == sizeof(float));
- GGML_ASSERT(src3->nb[0] == sizeof(float));
- GGML_ASSERT(src4->nb[0] == sizeof(float));
- GGML_ASSERT(src5->nb[0] == sizeof(float));
- // required for the dot product between s and C
- GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
- // required for per-sequence offsets for states
- GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
- // required to get correct offset for state destination (i.e. src1->nb[3])
- GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const int ir = ir1 - ir0;
-
- for (int i3 = 0; i3 < n_s; ++i3) {
- for (int i2 = 0; i2 < n_t; ++i2) {
- const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
- const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
- const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
- const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
- const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
- const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
- float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
- float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
-
- // use the output as the source for the next token-wise iterations
- if (i2 > 0) { s0 = s; }
-
- // d_inner
- for (int i1 = 0; i1 < ir; ++i1) {
- // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
- float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
- float x_dt = x[i1] * dt_soft_plus;
- float sumf = 0.0f;
- // d_state
- for (int i0 = 0; i0 < nc; ++i0) {
- int i = i0 + i1*nc;
- // state = prev_state * dA + dB * x
- float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
- // y = rowwise_dotprod(state, C)
- sumf += state * C[i0];
- s[i] = state;
+ assert(tensor->nb[0] == sizeof(int32_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
- y[i1] = sumf;
- }
- }
- }
-}
-
-static void ggml_compute_forward_ssm_scan(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- switch (dst->src[0]->type) {
- case GGML_TYPE_F32:
+ } break;
+ case GGML_TYPE_F16:
{
- ggml_compute_forward_ssm_scan_f32(params, dst);
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
+ }
} break;
- default:
+ case GGML_TYPE_BF16:
{
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_win_part
-
-static void ggml_compute_forward_win_part_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- UNUSED(params);
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
-
- const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t w = ((const int32_t *)(dst->op_params))[2];
-
- assert(ne00 == ne0);
- assert(ne3 == nep0*nep1);
-
- // TODO: optimize / multi-thread
- for (int py = 0; py < nep1; ++py) {
- for (int px = 0; px < nep0; ++px) {
- const int64_t i3 = py*nep0 + px;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int64_t i02 = py*w + i2;
- const int64_t i01 = px*w + i1;
- const int64_t i00 = i0;
-
- const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
- const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
-
- if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
- ((float *) dst->data)[i] = 0.0f;
- } else {
- ((float *) dst->data)[i] = ((float *) src0->data)[j];
- }
- }
+ assert(tensor->nb[0] == sizeof(ggml_bf16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
}
- }
- }
- }
-}
-
-static void ggml_compute_forward_win_part(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
+ } break;
case GGML_TYPE_F32:
{
- ggml_compute_forward_win_part_f32(params, dst);
+ assert(tensor->nb[0] == sizeof(float));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+ }
} break;
default:
{
GGML_ABORT("fatal error");
}
}
-}
-
-// ggml_compute_forward_win_unpart
-
-static void ggml_compute_forward_win_unpart_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- UNUSED(params);
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
-
- const int32_t w = ((const int32_t *)(dst->op_params))[0];
-
- // padding
- const int px = (w - ne1%w)%w;
- //const int py = (w - ne2%w)%w;
-
- const int npx = (px + ne1)/w;
- //const int npy = (py + ne2)/w;
-
- assert(ne0 == ne00);
- // TODO: optimize / multi-thread
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int ip2 = i2/w;
- const int ip1 = i1/w;
-
- const int64_t i02 = i2%w;
- const int64_t i01 = i1%w;
- const int64_t i00 = i0;
-
- const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
- const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
-
- ((float *) dst->data)[j] = ((float *) src0->data)[i];
- }
- }
- }
+ return tensor;
}
-static void ggml_compute_forward_win_unpart(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
+int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
+ }
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ return ((int8_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ return ((int16_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ return ((int32_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
+ }
+ case GGML_TYPE_BF16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
+ }
case GGML_TYPE_F32:
{
- ggml_compute_forward_win_unpart_f32(params, dst);
- } break;
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ return ((float *)(tensor->data))[i];
+ }
default:
{
GGML_ABORT("fatal error");
}
}
-//gmml_compute_forward_unary
-
-static void ggml_compute_forward_unary(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const enum ggml_unary_op op = ggml_get_unary_op(dst);
-
- switch (op) {
- case GGML_UNARY_OP_ABS:
- {
- ggml_compute_forward_abs(params, dst);
- } break;
- case GGML_UNARY_OP_SGN:
+void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
+ return;
+ }
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
{
- ggml_compute_forward_sgn(params, dst);
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ ((int8_t *)(tensor->data))[i] = value;
} break;
- case GGML_UNARY_OP_NEG:
+ case GGML_TYPE_I16:
{
- ggml_compute_forward_neg(params, dst);
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ ((int16_t *)(tensor->data))[i] = value;
} break;
- case GGML_UNARY_OP_STEP:
+ case GGML_TYPE_I32:
{
- ggml_compute_forward_step(params, dst);
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ ((int32_t *)(tensor->data))[i] = value;
} break;
- case GGML_UNARY_OP_TANH:
+ case GGML_TYPE_F16:
{
- ggml_compute_forward_tanh(params, dst);
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
} break;
- case GGML_UNARY_OP_ELU:
+ case GGML_TYPE_BF16:
{
- ggml_compute_forward_elu(params, dst);
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
+ ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
} break;
- case GGML_UNARY_OP_RELU:
+ case GGML_TYPE_F32:
{
- ggml_compute_forward_relu(params, dst);
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ ((float *)(tensor->data))[i] = value;
} break;
- case GGML_UNARY_OP_SIGMOID:
+ default:
{
- ggml_compute_forward_sigmoid(params, dst);
- } break;
- case GGML_UNARY_OP_GELU:
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ return ((int8_t *) data)[0];
+ case GGML_TYPE_I16:
+ return ((int16_t *) data)[0];
+ case GGML_TYPE_I32:
+ return ((int32_t *) data)[0];
+ case GGML_TYPE_F16:
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
+ case GGML_TYPE_BF16:
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
+ case GGML_TYPE_F32:
+ return ((float *) data)[0];
+ default:
+ GGML_ABORT("fatal error");
+ }
+}
+
+void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
{
- ggml_compute_forward_gelu(params, dst);
+ ((int8_t *)(data))[0] = value;
} break;
- case GGML_UNARY_OP_GELU_QUICK:
+ case GGML_TYPE_I16:
{
- ggml_compute_forward_gelu_quick(params, dst);
+ ((int16_t *)(data))[0] = value;
} break;
- case GGML_UNARY_OP_SILU:
+ case GGML_TYPE_I32:
{
- ggml_compute_forward_silu(params, dst);
+ ((int32_t *)(data))[0] = value;
} break;
- case GGML_UNARY_OP_HARDSWISH:
+ case GGML_TYPE_F16:
{
- ggml_compute_forward_hardswish(params, dst);
+ ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
} break;
- case GGML_UNARY_OP_HARDSIGMOID:
+ case GGML_TYPE_BF16:
{
- ggml_compute_forward_hardsigmoid(params, dst);
+ ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
} break;
- case GGML_UNARY_OP_EXP:
+ case GGML_TYPE_F32:
{
- ggml_compute_forward_exp(params, dst);
+ ((float *)(data))[0] = value;
} break;
default:
{
}
}
-// ggml_compute_forward_get_rel_pos
-
-static void ggml_compute_forward_get_rel_pos_f16(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- UNUSED(params);
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
-
- GGML_TENSOR_UNARY_OP_LOCALS
-
- const int64_t w = ne1;
-
- ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
- ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
-
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- const int64_t pos = (w - i1 - 1) + i2;
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
- }
- }
+float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
}
-}
-
-static void ggml_compute_forward_get_rel_pos(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ return ((int8_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I16:
+ {
+ return ((int16_t *)(tensor->data))[i];
+ }
+ case GGML_TYPE_I32:
+ {
+ return ((int32_t *)(tensor->data))[i];
+ }
case GGML_TYPE_F16:
+ {
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
+ }
case GGML_TYPE_BF16:
{
- ggml_compute_forward_get_rel_pos_f16(params, dst);
- } break;
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
+ }
+ case GGML_TYPE_F32:
+ {
+ return ((float *)(tensor->data))[i];
+ }
default:
{
GGML_ABORT("fatal error");
}
}
-// ggml_compute_forward_add_rel_pos
-
-static void ggml_compute_forward_add_rel_pos_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src2 = dst->src[2];
-
- const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
- if (!inplace) {
- if (params->ith == 0) {
- memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
-
- float * src1_data = (float *) src1->data;
- float * src2_data = (float *) src2->data;
- float * dst_data = (float *) dst->data;
-
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // total patches in dst
- const int np = ne13;
-
- // patches per thread
- const int dp = (np + nth - 1)/nth;
-
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
-
- for (int64_t i13 = ip0; i13 < ip1; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t jp0 = jp1 + i10;
- const float src1_e = src1_data[jp0];
- const float src2_e = src2_data[jp0];
-
- const int64_t jdh = jp0 * ne10;
- const int64_t jdw = jdh - (ne10 - 1) * i10;
-
- for (int64_t j = 0; j < ne10; ++j) {
- dst_data[jdh + j ] += src2_e;
- dst_data[jdw + j*ne10] += src1_e;
- }
- }
- }
- }
+void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
+ if (!ggml_is_contiguous(tensor)) {
+ int64_t id[4] = { 0, 0, 0, 0 };
+ ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
+ ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
+ return;
}
-}
-
-static void ggml_compute_forward_add_rel_pos(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ ((int8_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ ((int16_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ ((int32_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
+ } break;
case GGML_TYPE_F32:
{
- ggml_compute_forward_add_rel_pos_f32(params, dst);
+ ((float *)(tensor->data))[i] = value;
} break;
default:
{
}
}
-// ggml_compute_forward_rwkv_wkv6
-
-static void ggml_compute_forward_rwkv_wkv6_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const int64_t T = dst->src[1]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t HEADS = dst->src[1]->ne[1];
- const int64_t n_seqs = dst->src[5]->ne[1];
- const int64_t head_size = C / HEADS;
-
- float * dst_data = (float *) dst->data;
- float * state = ((float *) dst->data) + C * T;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- if (ith >= HEADS) {
- return;
- }
-
- const int h_start = (HEADS * ith) / nth;
- const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
- (HEADS * (ith + 1)) / nth : HEADS;
-
- float * k = (float *) dst->src[0]->data;
- float * v = (float *) dst->src[1]->data;
- float * r = (float *) dst->src[2]->data;
- float * time_faaaa = (float *) dst->src[3]->data;
- float * time_decay = (float *) dst->src[4]->data;
-
- size_t t_stride = HEADS * head_size; // Same to C
-
- size_t h_stride = C / HEADS;
- GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
- size_t h_stride_2d = head_size * head_size;
-
- if (ith == 0) {
- memset(dst_data, 0, T * C * sizeof(float));
+float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ return ((int8_t *) data)[0];
+ case GGML_TYPE_I16:
+ return ((int16_t *) data)[0];
+ case GGML_TYPE_I32:
+ return ((int32_t *) data)[0];
+ case GGML_TYPE_F16:
+ return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
+ case GGML_TYPE_BF16:
+ return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
+ case GGML_TYPE_F32:
+ return ((float *) data)[0];
+ default:
+ GGML_ABORT("fatal error");
}
- ggml_barrier(params->threadpool);
-
-
- #if defined(__AVX__) && !defined(__AVX512F__)
- #define GGML_F32X GGML_F32x8
- #define GGML_F32X_SET1 GGML_F32x8_SET1
- #define GGML_F32X_LOAD GGML_F32x8_LOAD
- #define GGML_F32X_STORE GGML_F32x8_STORE
- #define GGML_F32X_MUL GGML_F32x8_MUL
- #define GGML_F32X_FMA GGML_F32x8_FMA
- #define WKV_VECTOR_SIZE 8
- #elif defined(__AVX512F__)
- #define GGML_F32X GGML_F32x16
- #define GGML_F32X_SET1 GGML_F32x16_SET1
- #define GGML_F32X_LOAD GGML_F32x16_LOAD
- #define GGML_F32X_STORE GGML_F32x16_STORE
- #define GGML_F32X_MUL GGML_F32x16_MUL
- #define GGML_F32X_FMA GGML_F32x16_FMA
- #define WKV_VECTOR_SIZE 16
- #elif defined(__ARM_NEON) && defined(__aarch64__)
- #define GGML_F32X GGML_F32x4
- #define GGML_F32X_SET1 GGML_F32x4_SET1
- #define GGML_F32X_LOAD GGML_F32x4_LOAD
- #define GGML_F32X_STORE GGML_F32x4_STORE
- #define GGML_F32X_MUL GGML_F32x4_MUL
- #define GGML_F32X_FMA GGML_F32x4_FMA
- #define WKV_VECTOR_SIZE 4
- #endif
-
- #ifdef WKV_VECTOR_SIZE
- const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
-
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
-
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
-
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_i_offset = h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
-
- float k_val = k[t_h_i_offset];
- float r_val = r[t_h_i_offset];
- float time_faaaa_val = time_faaaa[h_i_offset];
- float time_decay_val = time_decay[t_h_i_offset];
-
- // Broadcast scalar values to vectors
- GGML_F32X k_vec = GGML_F32X_SET1(k_val);
- GGML_F32X r_vec = GGML_F32X_SET1(r_val);
- GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
- GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
-
- for (int64_t j = 0; j < vec_count; j++) {
- size_t base_j = j * WKV_VECTOR_SIZE;
- size_t t_h_j_offset = t_h_offset + base_j;
- size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
-
- // Load x elements at once
- GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
- GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
- GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
-
- // Compute kv = v * k
- GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
-
- // Compute temp = kv * time_faaaa + prev_state
- GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
-
- // Update dst: dst += temp * r
- dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
- GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
-
- // Update state: state = prev_state * time_decay + kv
- GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
- GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
- }
-
- // Handle remaining elements, this will not be used.
- for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = kv_val * time_faaaa_val + prev_state_val;
- dst_data[t_h_j_offset] += temp_val * r_val;
- state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
- }
- }
- }
- }
-
- #else
- // basically fused operations:
- // dst = r @ (time_faaaa * (k @ v) + state),
- // state = time_decay * state + (k @ v),
- // recursive through each token
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
-
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
-
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_i_offset = h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
-
- float k_val = k[t_h_i_offset];
- float r_val = r[t_h_i_offset];
- float time_faaaa_val = time_faaaa[h_i_offset];
- // RWKV v6: different time_decay for each token.
- float time_decay_val = time_decay[t_h_i_offset];
-
- for (int64_t j = 0; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
-
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = kv_val * time_faaaa_val + prev_state_val;
- dst_data[t_h_j_offset] += temp_val * r_val;
- state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
- }
- }
- }
- }
- #endif
}
-
-static void ggml_compute_forward_rwkv_wkv6(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
+void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
+ void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ ((int8_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ ((int16_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ ((int32_t *)(data))[0] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
+ } break;
case GGML_TYPE_F32:
{
- ggml_compute_forward_rwkv_wkv6_f32(params, dst);
+ ((float *)(data))[0] = value;
} break;
default:
{
}
}
-// ggml_compute_forward_gla
+////////////////////////////////////////////////////////////////////////////////
-static void ggml_compute_forward_gla_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const int64_t T = dst->src[1]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t HEADS = dst->src[1]->ne[1];
- const int64_t n_seqs = dst->src[4]->ne[1];
- const int64_t head_size = C / HEADS;
- const float scale = ggml_get_op_params_f32(dst, 0);
+// ggml_compute_forward_mul_mat
- float * dst_data = (float *) dst->data;
- float * state = ((float *) dst->data) + C * T;
+static void ggml_compute_forward_mul_mat_one_chunk(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst,
+ const enum ggml_type type,
+ const int64_t num_rows_per_vec_dot,
+ const int64_t ir0_start,
+ const int64_t ir0_end,
+ const int64_t ir1_start,
+ const int64_t ir1_end) {
- const int ith = params->ith;
- const int nth = params->nth;
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
- if (ith >= HEADS) {
- return;
- }
+ GGML_TENSOR_BINARY_OP_LOCALS
- const int h_start = (HEADS * ith) / nth;
- const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
- (HEADS * (ith + 1)) / nth : HEADS;
+ const bool src1_cont = ggml_is_contiguous(src1);
- float * k = (float *) dst->src[0]->data;
- float * v = (float *) dst->src[1]->data;
- float * q = (float *) dst->src[2]->data;
- float * g = (float *) dst->src[3]->data;
+ ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
+ enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
- size_t t_stride = HEADS * head_size; // Same to C
+ // broadcast factors
+ const int64_t r2 = ne12 / ne02;
+ const int64_t r3 = ne13 / ne03;
- size_t h_stride = C / HEADS;
- GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
- size_t h_stride_2d = head_size * head_size;
+ //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
- if (ith == 0) {
- memset(dst_data, 0, T * C * sizeof(float));
+ // threads with no work simply yield (not sure if it helps)
+ if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
+ return;
}
- ggml_barrier(params->threadpool);
-
-
- #if defined(__AVX__) && !defined(__AVX512F__)
- #define GGML_F32X GGML_F32x8
- #define GGML_F32X_SET1 GGML_F32x8_SET1
- #define GGML_F32X_LOAD GGML_F32x8_LOAD
- #define GGML_F32X_STORE GGML_F32x8_STORE
- #define GGML_F32X_MUL GGML_F32x8_MUL
- #define GGML_F32X_FMA GGML_F32x8_FMA
- #define GLA_VECTOR_SIZE 8
- #elif defined(__AVX512F__)
- #define GGML_F32X GGML_F32x16
- #define GGML_F32X_SET1 GGML_F32x16_SET1
- #define GGML_F32X_LOAD GGML_F32x16_LOAD
- #define GGML_F32X_STORE GGML_F32x16_STORE
- #define GGML_F32X_MUL GGML_F32x16_MUL
- #define GGML_F32X_FMA GGML_F32x16_FMA
- #define GLA_VECTOR_SIZE 16
- #elif defined(__ARM_NEON) && defined(__aarch64__)
- #define GGML_F32X GGML_F32x4
- #define GGML_F32X_SET1 GGML_F32x4_SET1
- #define GGML_F32X_LOAD GGML_F32x4_LOAD
- #define GGML_F32X_STORE GGML_F32x4_STORE
- #define GGML_F32X_MUL GGML_F32x4_MUL
- #define GGML_F32X_FMA GGML_F32x4_FMA
- #define GLA_VECTOR_SIZE 4
- #endif
- #ifdef GLA_VECTOR_SIZE
- const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
-
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
+ const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
+ const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
+ assert(ne12 % ne02 == 0);
+ assert(ne13 % ne03 == 0);
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
+ // block-tiling attempt
+ const int64_t blck_0 = 16;
+ const int64_t blck_1 = 16;
- float k_val = k[t_h_i_offset];
- float q_val = q[t_h_i_offset] * scale;
- float g_val = g[t_h_i_offset];
+ const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
- // Broadcast scalar values to vectors
- GGML_F32X k_vec = GGML_F32X_SET1(k_val);
- GGML_F32X q_vec = GGML_F32X_SET1(q_val);
- GGML_F32X g_vec = GGML_F32X_SET1(g_val);
+ // attempt to reduce false-sharing (does not seem to make a difference)
+ // 16 * 2, accounting for mmla kernels
+ float tmp[32];
- for (int64_t j = 0; j < vec_count; j++) {
- size_t base_j = j * GLA_VECTOR_SIZE;
- size_t t_h_j_offset = t_h_offset + base_j;
- size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
+ for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
+ for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
+ for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
+ const int64_t i13 = (ir1 / (ne12 * ne1));
+ const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
+ const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
- // Load x elements at once
- GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
- GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
- GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
+ // broadcast src0 into src1
+ const int64_t i03 = i13 / r3;
+ const int64_t i02 = i12 / r2;
- // Compute kv = v * k
- GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
+ const int64_t i1 = i11;
+ const int64_t i2 = i12;
+ const int64_t i3 = i13;
- // Compute temp = prev_state * g + kv
- GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
+ const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
- // Update dst: dst += temp * q
- dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
- GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
+ // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
+ // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
+ // the original src1 data pointer, so we should index using the indices directly
+ // TODO: this is a bit of a hack, we should probably have a better way to handle this
+ const char * src1_col = (const char*)wdata +
+ (src1_cont || src1->type != vec_dot_type
+ ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
+ : (i11 * nb11 + i12 * nb12 + i13 * nb13));
+ float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
- // Update state
- GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
- }
+ //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
+ // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
+ //}
- // Handle remaining elements, this will not be used.
- for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = kv_val + prev_state_val * g_val;
- dst_data[t_h_j_offset] += temp_val * q_val;
- state_cur[h_2d_i_j_offset] = temp_val;
- }
+ for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
+ vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
}
- }
- }
- #else
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
-
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
-
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
-
- float k_val = k[t_h_i_offset];
- float q_val = q[t_h_i_offset] * scale;
- float g_val = g[t_h_i_offset];
-
- for (int64_t j = 0; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
-
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = prev_state_val * g_val + kv_val;
- dst_data[t_h_j_offset] += temp_val * q_val;
- state_cur[h_2d_i_j_offset] = temp_val;
- }
+ for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
+ memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
}
}
}
- #endif
+ }
}
-
-static void ggml_compute_forward_gla(
+static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gla_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_rwkv_wkv7
-
-static void ggml_compute_forward_rwkv_wkv7_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const int64_t T = dst->src[1]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t HEADS = dst->src[1]->ne[1];
- const int64_t n_seqs = dst->src[6]->ne[1];
- const int64_t head_size = C / HEADS;
-
- float * dst_data = (float *) dst->data;
- float * state = ((float *) dst->data) + C * T;
+ GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
- if (ith >= HEADS) {
- return;
- }
-
- const int h_start = (HEADS * ith) / nth;
- const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
- (HEADS * (ith + 1)) / nth : HEADS;
-
- float * r = (float *) dst->src[0]->data;
- float * w = (float *) dst->src[1]->data;
- float * k = (float *) dst->src[2]->data;
- float * v = (float *) dst->src[3]->data;
- float * a = (float *) dst->src[4]->data;
- float * b = (float *) dst->src[5]->data;
-
- int64_t t_stride = HEADS * head_size; // Same to C
-
- int64_t h_stride = C / HEADS;
- GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
- int64_t h_stride_2d = head_size * head_size;
+ enum ggml_type const vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
+ ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
+ int64_t const vec_dot_num_rows = type_traits_cpu[src0->type].nrows;
- #if defined(GGML_SIMD)
- for (int64_t t = 0; t < T; t++) {
- int64_t t_offset = t * t_stride;
- int64_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
+ GGML_ASSERT(ne0 == ne01);
+ GGML_ASSERT(ne1 == ne11);
+ GGML_ASSERT(ne2 == ne12);
+ GGML_ASSERT(ne3 == ne13);
- for (int64_t h = h_start; h < h_end; h++) {
- int64_t h_offset = h * h_stride;
- int64_t t_h_offset = t_offset + h_offset;
- int64_t h_2d_offset = h * h_stride_2d;
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == ggml_type_size(src0->type));
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- for (int64_t ii = 0; ii < head_size; ii++) {
- int64_t t_h_i_offset = t_h_offset + ii;
- int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
- GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
- float sa = 0;
- {
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
- for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
- ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
- ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
- sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
- }
- }
- GGML_F32_VEC_REDUCE(sa, sum);
- }
+ // TODO: extract to "extra_op"
+#if GGML_USE_LLAMAFILE
+ // broadcast factors
+ const int64_t r2 = ne12 / ne02;
+ const int64_t r3 = ne13 / ne03;
- GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
+ const bool src1_cont = ggml_is_contiguous(src1);
- int64_t j = 0;
- GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- for (; j < head_size; j += GGML_F32_STEP) {
- for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
- int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
- int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
+ if (src1_cont) {
+ for (int64_t i13 = 0; i13 < ne13; i13++)
+ for (int64_t i12 = 0; i12 < ne12; i12++)
+ if (!llamafile_sgemm(params,
+ ne01, ne11, ne00/ggml_blck_size(src0->type),
+ (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
+ nb01/ggml_type_size(src0->type),
+ (const char *)src1->data + i12*nb12 + i13*nb13,
+ nb11/ggml_type_size(src1->type),
+ (char *)dst->data + i12*nb2 + i13*nb3,
+ nb1/ggml_type_size(dst->type),
+ src0->type,
+ src1->type,
+ dst->type))
+ goto UseGgmlGemm1;
+ return;
+ }
+UseGgmlGemm1:;
+#endif
- GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
- GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
- GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
- GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
+ if (src1->type != vec_dot_type) {
+ char * wdata = params->wdata;
- k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
+ const size_t nbw0 = ggml_type_size(vec_dot_type);
+ const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
+ const size_t nbw2 = nbw1*ne11;
+ const size_t nbw3 = nbw2*ne12;
- GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
- // kv + s * decay + sa * b
- state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
- state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
- GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
+ assert(params->wsize >= ne13*nbw3);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
- result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
- }
- }
- GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
-
- // There shouldn't be left-overs though.
- for (; j < head_size; j++) {
- int64_t t_h_j_offset = t_h_offset + j;
- int64_t h_2d_i_j_offset = h_2d_i_offset + j;
-
- float r_val = r[t_h_j_offset];
- float w_val = w[t_h_j_offset];
- float k_val = k[t_h_j_offset];
- float b_val = b[t_h_j_offset];
- float kv_val = v[t_h_i_offset] * k_val;
-
- float prev_state_val = state_prev[h_2d_i_j_offset];
- state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
- dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
- }
+ #if 0
+ for (int64_t i13 = 0; i13 < ne13; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
+ from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
+ (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
+ ne10);
}
}
}
#else
- for (int64_t t = 0; t < T; t++) {
- int64_t t_offset = t * t_stride;
- int64_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
-
- for (int64_t h = h_start; h < h_end; h++) {
- int64_t h_offset = h * h_stride;
- int64_t t_h_offset = t_offset + h_offset;
- int64_t h_2d_offset = h * h_stride_2d;
-
- for (int64_t i = 0; i < head_size; i++) {
- int64_t t_h_i_offset = t_h_offset + i;
- int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
-
- float v_val = v[t_h_i_offset];
-
- float sa = 0, result = 0;
- for (int64_t j = 0; j < head_size; j++) {
- sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
- }
-
- for (int64_t j = 0; j < head_size; j++) {
- int64_t t_h_j_offset = t_h_offset + j;
- int64_t h_2d_i_j_offset = h_2d_i_offset + j;
-
- float r_val = r[t_h_j_offset];
- float w_val = w[t_h_j_offset];
- float k_val = k[t_h_j_offset];
- float b_val = b[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
- result += state_cur[h_2d_i_j_offset] * r_val;
- }
- dst_data[t_h_i_offset] = result;
+ for (int64_t i13 = 0; i13 < ne13; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ for (int64_t i11 = 0; i11 < ne11; ++i11) {
+ size_t bs = ggml_blck_size(vec_dot_type);
+ int64_t ne10_block_start = (ith * ne10/bs) / nth;
+ int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
+ from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
+ (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
+ (ne10_block_end - ne10_block_start) * bs);
}
}
}
#endif
-}
-
-
-static void ggml_compute_forward_rwkv_wkv7(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rwkv_wkv7_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
-}
-
-// ggml_compute_forward_map_unary
-
-static void ggml_compute_forward_map_unary_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- if (params->ith != 0) {
- return;
- }
-
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
-
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
-
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
}
-}
-static void ggml_compute_forward_map_unary(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
-
- const struct ggml_tensor * src0 = dst->src[0];
-
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_unary_f32(params, dst, fun);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
+ if (ith == 0) {
+ // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
+ atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed);
}
-}
-
-// ggml_compute_forward_map_binary
-static void ggml_compute_forward_map_binary_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
+ ggml_barrier(params->threadpool);
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
+#if GGML_USE_LLAMAFILE
+ if (src1->type != vec_dot_type) {
+ const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
+ const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- if (params->ith != 0) {
+ for (int64_t i13 = 0; i13 < ne13; i13++)
+ for (int64_t i12 = 0; i12 < ne12; i12++)
+ if (!llamafile_sgemm(params,
+ ne01, ne11, ne00/ggml_blck_size(src0->type),
+ (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
+ nb01/ggml_type_size(src0->type),
+ (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
+ row_size/ggml_type_size(vec_dot_type),
+ (char *)dst->data + i12*nb2 + i13*nb3,
+ nb1/ggml_type_size(dst->type),
+ src0->type,
+ vec_dot_type,
+ dst->type))
+ goto UseGgmlGemm2;
return;
}
+UseGgmlGemm2:;
+#endif
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(src1));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+ // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
+ const int64_t nr0 = ne0;
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
+ // This is the size of the rest of the dimensions of the result
+ const int64_t nr1 = ne1 * ne2 * ne3;
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
-}
+ // Now select a reasonable chunk size.
+ int chunk_size = 16;
-static void ggml_compute_forward_map_binary(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
+ // We need to step up the size if it's small
+ if (nr0 == 1 || nr1 == 1) {
+ chunk_size = 64;
+ }
- const struct ggml_tensor * src0 = dst->src[0];
+ // distribute the work across the inner or outer loop based on which one is larger
+ // The number of chunks in the 0/1 dim.
+ // CEIL(nr0/chunk_size)
+ int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
+ int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_binary_f32(params, dst, fun);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
+ // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
+ // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggml-org/llama.cpp/pull/6915
+ // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
+ if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
+ // distribute the thread work across the inner or outer loop based on which one is larger
+ nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
+ nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
}
-}
-// ggml_compute_forward_map_custom1
+ // The number of elements in each chunk
+ const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
+ const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
-static void ggml_compute_forward_map_custom1_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_custom1_op_f32_t fun) {
+ // The first chunk comes from our thread_id, the rest will get auto-assigned.
+ int current_chunk = ith;
- const struct ggml_tensor * a = dst->src[0];
+ while (current_chunk < nchunk0 * nchunk1) {
+ const int64_t ith0 = current_chunk % nchunk0;
+ const int64_t ith1 = current_chunk / nchunk0;
- if (params->ith != 0) {
- return;
- }
+ const int64_t ir0_start = dr0 * ith0;
+ const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
- fun(dst, a);
-}
+ const int64_t ir1_start = dr1 * ith1;
+ const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
-// ggml_compute_forward_map_custom2
+ // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
+ int64_t num_rows_per_vec_dot = vec_dot_num_rows;
-static void ggml_compute_forward_map_custom2_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_custom2_op_f32_t fun) {
+ // these checks are needed to avoid crossing dim1 boundaries
+ // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
+ if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
+ num_rows_per_vec_dot = 1;
+ }
+ ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
+ if (nth >= nchunk0 * nchunk1) {
+ break;
+ }
- if (params->ith != 0) {
- return;
+ current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed);
}
-
- fun(dst, a, b);
}
-// ggml_compute_forward_map_custom3
-
-static void ggml_compute_forward_map_custom3_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const ggml_custom3_op_f32_t fun) {
+// ggml_compute_forward_mul_mat_id
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
- const struct ggml_tensor * c = dst->src[1];
+#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)]
- if (params->ith != 0) {
- return;
- }
+struct mmid_row_mapping {
+ int32_t i1;
+ int32_t i2;
+};
- fun(dst, a, b, c);
-}
+static void ggml_compute_forward_mul_mat_id_one_chunk(
+ struct ggml_tensor * dst,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ const struct ggml_tensor * ids,
+ const int64_t cur_a,
+ const int64_t ir0_start,
+ const int64_t ir0_end,
+ const int64_t ir1_start,
+ const int64_t ir1_end,
+ const char * src0_cur,
+ const struct mmid_row_mapping * matrix_rows,
+ const size_t row_size,
+ const bool src1_cont,
+ const void * wdata) {
-// ggml_compute_forward_map_custom1
+ GGML_TENSOR_BINARY_OP_LOCALS
-static void ggml_compute_forward_map_custom1(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ const enum ggml_type type = src0->type;
- const struct ggml_tensor * a = dst->src[0];
+ ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
+ enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
- struct ggml_map_custom1_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
+ const int64_t blck_0 = 16;
+ const int64_t blck_1 = 16;
- p.fun(dst, a, params->ith, params->nth, p.userdata);
-}
+ float tmp[16];
-// ggml_compute_forward_map_custom2
+ for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
+ for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
+ for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) {
+ const int64_t _i12 = ir1; // logical row index for this expert
-static void ggml_compute_forward_map_custom2(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
+ const int id = row_mapping.i1; // selected expert index
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
+ const int64_t i11 = id % ne11;
+ const int64_t i12 = row_mapping.i2; // row index in src1
- struct ggml_map_custom2_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
+ const int64_t i1 = id; // selected expert index
+ const int64_t i2 = i12; // row
- p.fun(dst, a, b, params->ith, params->nth, p.userdata);
-}
+ // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
+ // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
+ // the original src1 data pointer, so we should index using the indices directly
+ // TODO: this is a bit of a hack, we should probably have a better way to handle this
+ const char * src1_col = (const char *) wdata +
+ (src1_cont || src1->type != vec_dot_type
+ ? (i11 + i12*ne11)*row_size
+ : (i11*nb11 + i12*nb12));
-// ggml_compute_forward_map_custom3
+ float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
-static void ggml_compute_forward_map_custom3(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
+ vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
+ }
- const struct ggml_tensor * a = dst->src[0];
- const struct ggml_tensor * b = dst->src[1];
- const struct ggml_tensor * c = dst->src[2];
+ memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float));
+ }
+ }
+ }
+}
- struct ggml_map_custom3_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
+static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
- p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
+ void * ptr = *p;
+ ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
+ *p = (void *) ((char *) ptr + size);
+ return ptr;
}
-// ggml_compute_forward_cross_entropy_loss
-
-static void ggml_compute_forward_cross_entropy_loss_f32(
+static void ggml_compute_forward_mul_mat_id(
const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
+ const struct ggml_tensor * ids = dst->src[2];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- GGML_ASSERT(ggml_is_scalar(dst));
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
-
- // TODO: handle transposed/permuted matrices
- const int64_t nc = src0->ne[0];
- const int64_t nr = ggml_nrows(src0);
+ GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
- float * sums = (float *) params->wdata;
- float * st = ((float *) params->wdata) + nth + ith*nc;
- float sum_thread = 0.0f;
-
- GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
-
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
-
- for (int64_t i1 = ir0; i1 < ir1; ++i1) {
- const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
- const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
-
-#ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
-#endif
-
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
- assert(sum_softmax >= 0.0);
+ const enum ggml_type type = src0->type;
- ggml_vec_add1_f32(nc, st, st, -sum_softmax);
- ggml_vec_mul_f32(nc, st, st, s1);
+ const bool src1_cont = ggml_is_contiguous(src1);
- float sum_st = 0.0f;
- ggml_vec_sum_f32(nc, &sum_st, st);
- sum_thread += sum_st;
+ enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
+ ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
-#ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- assert(!isnan(st[i]));
- assert(!isinf(st[i]));
- }
-#endif
- }
- sums[ith] = sum_thread;
- ggml_barrier(params->threadpool);
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- if (ith == 0) {
- float * dp = (float *) dst->data;
- ggml_vec_sum_f32(nth, dp, sums);
- dp[0] *= -1.0f / (float) nr;
- }
-}
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
-static void ggml_compute_forward_cross_entropy_loss(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ // row groups
+ const int n_ids = ids->ne[0]; // n_expert_used
+ const int n_as = ne02; // n_expert
- const struct ggml_tensor * src0 = dst->src[0];
+ void * wdata_cur = params->wdata;
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
+ if (src1->type != vec_dot_type) {
+ incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
}
-}
-
-// ggml_compute_forward_cross_entropy_loss_back
-static void ggml_compute_forward_cross_entropy_loss_back_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
-
- const struct ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
- const struct ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
- const struct ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
-
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_is_contiguous(src0f));
- GGML_ASSERT(ggml_is_contiguous(src1f));
- GGML_ASSERT(ggml_is_contiguous(grad));
- GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
+ int64_t * matrix_row_counts = // [n_as]
+ incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t));
- const int64_t ith = params->ith;
- const int64_t nth = params->nth;
+ struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]]
+ incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t));
- // TODO: handle transposed/permuted matrices
- const int64_t nc = src0f->ne[0];
- const int64_t nr = ggml_nrows(src0f);
+ char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as]
+ incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE);
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
+ GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata));
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
+ if (src1->type != vec_dot_type) {
+ char * wdata = params->wdata;
- const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
+ const size_t nbw0 = ggml_type_size(vec_dot_type);
+ const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
+ const size_t nbw2 = nbw1*ne11;
+ const size_t nbw3 = nbw2*ne12;
- for (int64_t i1 = ir0; i1 < ir1; i1++) {
- float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
- const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
- const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
+ assert(params->wsize >= ne13*nbw3);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
-#ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
+#if 0
+ for (int64_t i13 = 0; i13 < ne13; ++i13) {
+ for (int64_t i12 = ith; i12 < ne12; i12 += nth) {
+ for (int64_t i11 = 0; i11 < ne11; ++i11) {
+ from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
+ (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
+ ne10);
+ }
+ }
}
-#endif
-
- // soft_max
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
- assert(sum > 0.0);
- ggml_vec_scale_f32(nc, ds0, 1.0/sum);
-
- // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
- ggml_vec_sub_f32(nc, ds0, ds0, s1);
- ggml_vec_scale_f32(nc, ds0, d_by_nr);
-
-#ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- assert(!isnan(ds0[i]));
- assert(!isinf(ds0[i]));
+#else
+ for (int64_t i13 = 0; i13 < ne13; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ for (int64_t i11 = 0; i11 < ne11; ++i11) {
+ size_t bs = ggml_blck_size(vec_dot_type);
+ int64_t ne10_block_start = (ith * ne10/bs) / nth;
+ int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
+ from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
+ (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
+ (ne10_block_end - ne10_block_start) * bs);
+ }
+ }
}
#endif
}
-}
-static void ggml_compute_forward_cross_entropy_loss_back(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ if (ith == 0) {
+ // initialize matrix_row_counts
+ memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
- const struct ggml_tensor * src0 = dst->src[0];
+ // group rows by src0 matrix
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
+ for (int id = 0; id < n_ids; ++id) {
+ const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
+ assert(i02 >= 0 && i02 < n_as);
+
+ MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
+ matrix_row_counts[i02] += 1;
}
+ }
}
-}
-static void ggml_compute_forward_opt_step_adamw_f32(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ // reset current_chunk
+ for (int cur_a = ith; cur_a < n_as; cur_a += nth) {
+ atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
+ *current_chunk_ctr = nth;
+ }
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src0_grad = dst->src[1];
- const struct ggml_tensor * src0_grad_m = dst->src[2];
- const struct ggml_tensor * src0_grad_v = dst->src[3];
- const struct ggml_tensor * adamw_params = dst->src[4];
+ ggml_barrier(params->threadpool);
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
- GGML_ASSERT(ggml_nelements(adamw_params) == 7);
+ for (int cur_a = 0; cur_a < n_as; ++cur_a) {
+ const int64_t cne1 = matrix_row_counts[cur_a];
- const int ith = params->ith;
- const int nth = params->nth;
+ if (cne1 == 0) {
+ continue;
+ }
- const int nr = ggml_nrows(src0);
+ const char * src0_cur = (const char *) src0->data + cur_a * nb02;
+ const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
+ const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(nb00 == sizeof(float));
+ const int64_t nr0 = ne01;
+ const int64_t nr1 = cne1;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
+ int chunk_size = 16;
+ if (nr0 == 1 || nr1 == 1) {
+ chunk_size = 64;
+ }
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
+#if defined(__aarch64__)
+ // disable for ARM
+ const bool disable_chunking = true;
+#else
+ // disable for NUMA
+ const bool disable_chunking = ggml_is_numa();
+#endif // defined(__aarch64__)
- const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
- const float alpha = adamw_params_ptr[0];
- const float beta1 = adamw_params_ptr[1];
- const float beta2 = adamw_params_ptr[2];
- const float eps = adamw_params_ptr[3];
- const float wd = adamw_params_ptr[4];
- const float beta1h = adamw_params_ptr[5];
- const float beta2h = adamw_params_ptr[6];
+ int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
+ int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
- for (int ir = ir0; ir < ir1; ++ir) {
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+ if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) {
+ nchunk0 = nr0 > nr1 ? nth : 1;
+ nchunk1 = nr0 > nr1 ? 1 : nth;
+ }
- const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
+ const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
+ const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
- float * w = (float *) ((char *) src0->data + offset); // weight
- const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
- float * m = (float *) ((char *) src0_grad_m->data + offset);
- float * v = (float *) ((char *) src0_grad_v->data + offset);
+ int current_chunk = ith;
- for (int i00 = 0; i00 < ne00; ++i00) {
- m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
- v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
+ atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
- const float mh = m[i00]*beta1h;
- const float vh = sqrtf(v[i00]*beta2h) + eps;
+ while (current_chunk < nchunk0 * nchunk1) {
+ const int64_t ith0 = current_chunk % nchunk0;
+ const int64_t ith1 = current_chunk / nchunk0;
- // The weight decay is applied independently of the Adam momenta m and v.
- // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
- // See: https://arxiv.org/pdf/1711.05101v3.pdf
- w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
- }
- }
-}
+ const int64_t ir0_start = dr0 * ith0;
+ const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
-static void ggml_compute_forward_opt_step_adamw(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
+ const int64_t ir1_start = dr1 * ith1;
+ const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
- const struct ggml_tensor * src0 = dst->src[0];
+ ggml_compute_forward_mul_mat_id_one_chunk(
+ dst, src0, src1, ids, cur_a,
+ ir0_start, ir0_end, ir1_start, ir1_end,
+ src0_cur, matrix_rows, row_size, src1_cont, wdata
+ );
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_opt_step_adamw_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
+ if (nth >= nchunk0 * nchunk1) {
+ break;
}
+
+ current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed);
+ }
}
}
+
/////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
--- /dev/null
+#include "ops.h"
+
+#include "ggml-cpu.h"
+#include "ggml-impl.h"
+#include "binary-ops.h"
+#include "unary-ops.h"
+#include "vec.h"
+
+#include <float.h>
+
+#if defined(_MSC_VER)
+// disable "possible loss of data" to avoid hundreds of casts
+// we should just be careful :)
+#pragma warning(disable: 4244 4267)
+
+// disable POSIX deprecation warnings
+// these functions are never going away, anyway
+#pragma warning(disable: 4996)
+
+// unreachable code because of multiple instances of code after GGML_ABORT
+#pragma warning(disable: 4702)
+#endif
+
+// ggml_compute_forward_dup
+
+static void ggml_compute_forward_dup_same_cont(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+ GGML_ASSERT(src0->type == dst->type);
+
+ const size_t nb0 = ggml_type_size(src0->type);
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ // parallelize by blocks
+ const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
+ const int dr = (nk + nth - 1) / nth;
+ const int k0 = dr * ith;
+ const int k1 = MIN(k0 + dr, nk);
+
+ if (k0 < k1) {
+ memcpy(
+ ((char *) dst->data + k0*nb0),
+ ((char *) src0->data + k0*nb0),
+ (k1 - k0) * nb0);
+ }
+}
+
+static void ggml_compute_forward_dup_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ne00 == ne0 &&
+ nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
+ // copy by rows
+ const size_t rs = ne00*nb00;
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
+
+ if (ggml_is_contiguous(dst)) {
+ if (nb00 == sizeof(ggml_fp16_t)) {
+ if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ const size_t rs = ne00 * nb00;
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
+ ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
+ float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
+
+ size_t id = 0;
+ size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ for (int i00 = 0; i00 < ne00; i00++) {
+ src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
+ }
+
+ quantize_row_q(src0_f32, dst_ptr + id, ne00);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = *src0_ptr;
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+ }
+ return;
+ }
+
+ // dst counters
+ int64_t i10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ if (dst->type == GGML_TYPE_F16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
+
+ if (++i10 == ne00) {
+ i10 = 0;
+ if (++i11 == ne01) {
+ i11 = 0;
+ if (++i12 == ne02) {
+ i12 = 0;
+ if (++i13 == ne03) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+}
+
+static void ggml_compute_forward_dup_bf16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ne00 == ne0 &&
+ nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
+ // copy by rows
+ const size_t rs = ne00*nb00;
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
+
+ if (ggml_is_contiguous(dst)) {
+ if (nb00 == sizeof(ggml_bf16_t)) {
+ if (dst->type == GGML_TYPE_BF16) {
+ size_t id = 0;
+ const size_t rs = ne00 * nb00;
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
+ ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
+ float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
+
+ size_t id = 0;
+ size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ for (int i00 = 0; i00 < ne00; i00++) {
+ src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
+ }
+
+ quantize_row_q(src0_f32, dst_ptr + id, ne00);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_BF16) {
+ size_t id = 0;
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = *src0_ptr;
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+ }
+ return;
+ }
+
+ // dst counters
+ int64_t i10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ if (dst->type == GGML_TYPE_BF16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
+
+ if (++i10 == ne00) {
+ i10 = 0;
+ if (++i11 == ne01) {
+ i11 = 0;
+ if (++i12 == ne02) {
+ i12 = 0;
+ if (++i13 == ne03) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F32) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+}
+
+static void ggml_compute_forward_dup_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ne00 == ne0 &&
+ nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
+ // copy by rows
+ const size_t rs = ne00*nb00;
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ if (ggml_is_contiguous(dst)) {
+ // TODO: simplify
+ if (nb00 == sizeof(float)) {
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ const size_t rs = ne00 * nb00;
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
+ ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
+
+ size_t id = 0;
+ size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
+ char * dst_ptr = (char *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ quantize_row_q(src0_ptr, dst_ptr + id, ne00);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ if (dst->type == GGML_TYPE_F32) {
+ size_t id = 0;
+ float * dst_ptr = (float *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = *src0_ptr;
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ size_t id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else if (dst->type == GGML_TYPE_BF16) {
+ size_t id = 0;
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ id += ne00 * ir0;
+ for (int i01 = ir0; i01 < ir1; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
+ id++;
+ }
+ }
+ id += ne00 * (ne01 - ir1);
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+ }
+
+ return;
+ }
+
+ // dst counters
+
+ int64_t i10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ if (dst->type == GGML_TYPE_F32) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, sizeof(float));
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_BF16) {
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ i10 += ne00 * ir0;
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
+
+ if (++i10 == ne0) {
+ i10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ i10 += ne00 * (ne01 - ir1);
+ while (i10 >= ne0) {
+ i10 -= ne0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ GGML_ABORT("fatal error"); // TODO: implement
+ }
+}
+
+// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
+static void ggml_compute_forward_dup_bytes(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+ GGML_ASSERT(src0->type == dst->type);
+
+ GGML_TENSOR_UNARY_OP_LOCALS;
+
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
+ ggml_compute_forward_dup_same_cont(params, dst);
+ return;
+ }
+
+ const size_t type_size = ggml_type_size(src0->type);
+
+ const int ith = params->ith; // thread index
+ const int nth = params->nth; // number of threads
+
+ // parallelize by rows
+ const int nr = ne01;
+ // number of rows per thread
+ const int dr = (nr + nth - 1) / nth;
+ // row range for this thread
+ const int ir0 = dr * ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ if (src0->type == dst->type &&
+ ggml_are_same_shape(src0, dst) &&
+ nb00 == type_size && nb0 == type_size) {
+ // copy by rows
+ const size_t rs = ggml_row_size(src0->type, ne00);
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ memcpy(
+ ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
+ rs);
+ }
+ }
+ }
+ return;
+ }
+
+ if (ggml_is_contiguous(dst)) {
+ size_t id = 0;
+ char * dst_ptr = (char *) dst->data;
+ const size_t rs = ne00 * type_size;
+
+ if (nb00 == type_size) {
+ // src0 is contigous on first dimension, copy by rows
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, rs);
+ id += rs;
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ } else {
+ //printf("%s: this is not optimal - fix me\n", __func__);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ id += rs * ir0;
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
+ memcpy(dst_ptr + id, src0_ptr, type_size);
+
+ id += type_size;
+ }
+ }
+ id += rs * (ne01 - ir1);
+ }
+ }
+ }
+
+ return;
+ }
+
+ // dst counters
+ int64_t k10 = 0;
+ int64_t i11 = 0;
+ int64_t i12 = 0;
+ int64_t i13 = 0;
+
+ // number of blocks in a row
+ const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
+ const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ k10 += nk00 * ir0;
+ while (k10 >= nk0) {
+ k10 -= nk0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ for (int64_t i01 = ir0; i01 < ir1; i01++) {
+ for (int64_t k00 = 0; k00 < nk00; k00++) {
+ const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
+
+ memcpy(dst_ptr, src0_ptr, type_size);
+
+ if (++k10 == nk0) {
+ k10 = 0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+ k10 += nk00 * (ne01 - ir1);
+ while (k10 >= nk0) {
+ k10 -= nk0;
+ if (++i11 == ne1) {
+ i11 = 0;
+ if (++i12 == ne2) {
+ i12 = 0;
+ if (++i13 == ne3) {
+ i13 = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_dup_q(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const ggml_type type = src0->type;
+ ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
+
+ size_t qk = ggml_blck_size(type);
+ const int64_t nr = ggml_nelements(src1) / qk;
+
+ // destination must be contiguous in the first dimension
+ GGML_ASSERT(nb10 == ggml_type_size(dst->type));
+ // must either have first dimension large enough to hold a row, or fully contiguous
+ GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t ir = ir0; ir < ir1; ++ir) {
+
+ uint32_t i = ir * qk;
+
+ const int64_t i03 = i/(ne00 * ne01 * ne02);
+ const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+ const int64_t i13 = i/(ne10 * ne11 * ne12);
+ const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
+
+ dequantize_row_q(
+ (const void *) ((char *) src0->data + x_offset),
+ (float *) ((char *) dst->data + dst_offset), qk);
+ }
+}
+
+void ggml_compute_forward_dup(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (src0->type == dst->type) {
+ ggml_compute_forward_dup_bytes(params, dst);
+ return;
+ }
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_dup_f16(params, dst);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_dup_bf16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_dup_f32(params, dst);
+ } break;
+ default:
+ {
+ if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
+ ggml_compute_forward_dup_q(params, dst);
+ break;
+ }
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_add
+
+static void ggml_compute_forward_add_q_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const ggml_type type = src0->type;
+ const ggml_type dtype = dst->type;
+ ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
+ ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ GGML_ASSERT(ggml_is_quantized(src0->type));
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 indices
+ const int i03 = ir/(ne02*ne01);
+ const int i02 = (ir - i03*ne02*ne01)/ne01;
+ const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ // src1 and dst are same shape as src0 => same indices
+ const int i13 = i03;
+ const int i12 = i02;
+ const int i11 = i01;
+
+ const int i3 = i03;
+ const int i2 = i02;
+ const int i1 = i01;
+
+ void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
+ float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
+ void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ assert(ne00 % 32 == 0);
+
+ // unquantize row from src0 to temp buffer
+ dequantize_row_q(src0_row, wdata, ne00);
+ // add src1
+ ggml_vec_acc_f32(ne00, wdata, src1_row);
+ // quantize row to dst
+ if (quantize_row_q != NULL) {
+ quantize_row_q(wdata, dst_row, ne00);
+ } else {
+ memcpy(dst_row, wdata, ne0*nb0);
+ }
+ }
+}
+
+void ggml_compute_forward_add(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_add_non_quantized(params, dst);
+ } break;
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_TQ1_0:
+ case GGML_TYPE_TQ2_0:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ {
+ ggml_compute_forward_add_q_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_add1
+
+static void ggml_compute_forward_add1_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+#ifdef GGML_USE_ACCELERATE
+ GGML_UNUSED(ggml_vec_add1_f32);
+
+ vDSP_vadd(
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
+ (float *) ((char *) src1->data), 0,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
+ ne0);
+#else
+ ggml_vec_add1_f32(ne0,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
+ *(float *) src1->data);
+#endif
+ }
+}
+
+static void ggml_compute_forward_add1_f16_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = *(float *) src1->data;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+static void ggml_compute_forward_add1_f16_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F16);
+ GGML_ASSERT(dst->type == GGML_TYPE_F16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+static void ggml_compute_forward_add1_q_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = *(float *) src1->data;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const ggml_type type = src0->type;
+ ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
+ ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
+
+ // we don't support permuted src0
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ GGML_ASSERT(ggml_is_quantized(src0->type));
+ GGML_ASSERT(dst->type == src0->type);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
+ void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
+
+ assert(ne0 % 32 == 0);
+
+ // unquantize row from src0 to temp buffer
+ dequantize_row_q(src0_row, wdata, ne0);
+ // add src1
+ ggml_vec_acc1_f32(ne0, wdata, v);
+ // quantize row to dst
+ quantize_row_q(wdata, dst_row, ne0);
+ }
+}
+
+static void ggml_compute_forward_add1_bf16_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = *(float *) src1->data;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_BF16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_BF16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+static void ggml_compute_forward_add1_bf16_bf16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
+
+ // scalar to add
+ const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(src0->type == GGML_TYPE_BF16);
+ GGML_ASSERT(src1->type == GGML_TYPE_BF16);
+ GGML_ASSERT(dst->type == GGML_TYPE_BF16);
+
+ GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are same shape => same indices
+ const int i3 = ir/(ne2*ne1);
+ const int i2 = (ir - i3*ne2*ne1)/ne1;
+ const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
+ ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
+ for (int i = 0; i < ne0; i++) {
+ dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
+ }
+ }
+}
+
+void ggml_compute_forward_add1(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_add1_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ if (src1->type == GGML_TYPE_F16) {
+ ggml_compute_forward_add1_f16_f16(params, dst);
+ }
+ else if (src1->type == GGML_TYPE_F32) {
+ ggml_compute_forward_add1_f16_f32(params, dst);
+ }
+ else {
+ GGML_ABORT("fatal error");
+ }
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ if (src1->type == GGML_TYPE_BF16) {
+ ggml_compute_forward_add1_bf16_bf16(params, dst);
+ }
+ else if (src1->type == GGML_TYPE_F32) {
+ ggml_compute_forward_add1_bf16_f32(params, dst);
+ }
+ else {
+ GGML_ABORT("fatal error");
+ }
+ } break;
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_TQ1_0:
+ case GGML_TYPE_TQ2_0:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ {
+ ggml_compute_forward_add1_q_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_acc
+
+static void ggml_compute_forward_acc_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+
+ // view src0 and dst with these strides and data offset inbytes during acc
+ // nb0 is implicitly element_size because src0 and dst are contiguous
+ size_t nb1 = ((int32_t *) dst->op_params)[0];
+ size_t nb2 = ((int32_t *) dst->op_params)[1];
+ size_t nb3 = ((int32_t *) dst->op_params)[2];
+ size_t offset = ((int32_t *) dst->op_params)[3];
+ bool inplace = (bool) ((int32_t *) dst->op_params)[4];
+
+ if (!inplace) {
+ if (params->ith == 0) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+ }
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src1);
+ const int nc = src1->ne[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
+
+ // src0 and dst as viewed during acc
+ const size_t nb0 = ggml_element_size(src0);
+
+ const size_t nb00 = nb0;
+ const size_t nb01 = nb1;
+ const size_t nb02 = nb2;
+ const size_t nb03 = nb3;
+
+ GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
+ GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
+
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are viewed with shape of src1 and offset
+ // => same indices
+ const int i3 = ir/(ne12*ne11);
+ const int i2 = (ir - i3*ne12*ne11)/ne11;
+ const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
+
+#ifdef GGML_USE_ACCELERATE
+ vDSP_vadd(
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
+#else
+ ggml_vec_add_f32(nc,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
+ (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+#endif
+ }
+}
+
+void ggml_compute_forward_acc(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_acc_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_TQ1_0:
+ case GGML_TYPE_TQ2_0:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_sum
+
+static void ggml_compute_forward_sum_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_scalar(dst));
+ assert(src0->nb[0] == sizeof(float));
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
+
+ ggml_float sum = 0;
+ ggml_float row_sum = 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_f32_ggf(ne00,
+ &row_sum,
+ (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
+ sum += row_sum;
+ }
+ }
+ }
+ ((float *) dst->data)[0] = sum;
+}
+
+static void ggml_compute_forward_sum_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_scalar(dst));
+
+ assert(src0->nb[0] == sizeof(ggml_fp16_t));
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
+
+ float sum = 0;
+ float row_sum = 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_f16_ggf(ne00,
+ &row_sum,
+ (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
+ sum += row_sum;
+ }
+ }
+ }
+ ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
+}
+
+static void ggml_compute_forward_sum_bf16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_scalar(dst));
+
+ assert(src0->nb[0] == sizeof(ggml_bf16_t));
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
+
+ float sum = 0;
+ float row_sum = 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_bf16_ggf(ne00,
+ &row_sum,
+ (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
+ sum += row_sum;
+ }
+ }
+ }
+ ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
+}
+
+void ggml_compute_forward_sum(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sum_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_sum_f16(params, dst);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_sum_bf16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_sum_rows
+
+static void ggml_compute_forward_sum_rows_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT(dst->nb[0] == sizeof(float));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(ne0 == 1);
+ GGML_ASSERT(ne1 == ne01);
+ GGML_ASSERT(ne2 == ne02);
+ GGML_ASSERT(ne3 == ne03);
+
+ for (int64_t i3 = 0; i3 < ne03; i3++) {
+ for (int64_t i2 = 0; i2 < ne02; i2++) {
+ for (int64_t i1 = 0; i1 < ne01; i1++) {
+ float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
+ float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
+ float row_sum = 0;
+ ggml_vec_sum_f32(ne00, &row_sum, src_row);
+ dst_row[0] = row_sum;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_sum_rows(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_sum_rows_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_mean
+
+static void ggml_compute_forward_mean_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(src0->nb[0] == sizeof(float));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ assert(ne0 == 1);
+ assert(ne1 == ne01);
+ assert(ne2 == ne02);
+ assert(ne3 == ne03);
+
+ GGML_UNUSED(ne0);
+ GGML_UNUSED(ne1);
+ GGML_UNUSED(ne2);
+ GGML_UNUSED(ne3);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ ggml_vec_sum_f32(ne00,
+ (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
+ (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
+
+ *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_mean(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_mean_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_argmax
+
+static void ggml_compute_forward_argmax_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(src0->nb[0] == sizeof(float));
+ assert(dst->nb[0] == sizeof(float));
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+
+ const size_t nb01 = src0->nb[1];
+ const size_t nb0 = dst->nb[0];
+
+ for (int64_t i1 = 0; i1 < ne01; i1++) {
+ float * src = (float *) ((char *) src0->data + i1*nb01);
+ int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
+ int v = 0;
+ ggml_vec_argmax_f32(ne00, &v, src);
+ dst_[0] = v;
+ }
+}
+
+void ggml_compute_forward_argmax(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_argmax_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_count_equal
+
+static void ggml_compute_forward_count_equal_i32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ GGML_ASSERT(src0->type == GGML_TYPE_I32);
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
+ GGML_ASSERT(ggml_are_same_shape(src0, src1));
+ GGML_ASSERT(ggml_is_scalar(dst));
+ GGML_ASSERT(dst->type == GGML_TYPE_I64);
+
+ const int64_t nr = ggml_nrows(src0);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ int64_t * sums = (int64_t *) params->wdata;
+ int64_t sum_thread = 0;
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t ir = ir0; ir < ir1; ++ir) {
+ const int64_t i03 = ir / (ne02*ne01);
+ const int64_t i02 = (ir - i03*ne03) / ne01;
+ const int64_t i01 = ir - i03*ne03 - i02*ne02;
+
+ const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
+ const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
+
+ for (int64_t i00 = 0; i00 < ne00; ++i00) {
+ const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
+ const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
+
+ sum_thread += val0 == val1;
+ }
+ }
+ if (ith != 0) {
+ sums[ith] = sum_thread;
+ }
+ ggml_barrier(params->threadpool);
+
+ if (ith != 0) {
+ return;
+ }
+
+ for (int ith_other = 1; ith_other < nth; ++ith_other) {
+ sum_thread += sums[ith_other];
+ }
+ *((int64_t *) dst->data) = sum_thread;
+}
+
+void ggml_compute_forward_count_equal(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_count_equal_i32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_repeat
+
+static void ggml_compute_forward_repeat_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_can_repeat(src0, dst));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nr0 = (int)(ne0/ne00);
+ const int nr1 = (int)(ne1/ne01);
+ const int nr2 = (int)(ne2/ne02);
+ const int nr3 = (int)(ne3/ne03);
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // TODO: maybe this is not optimal?
+ for (int i3 = 0; i3 < nr3; i3++) {
+ for (int k3 = 0; k3 < ne03; k3++) {
+ for (int i2 = 0; i2 < nr2; i2++) {
+ for (int k2 = 0; k2 < ne02; k2++) {
+ for (int i1 = 0; i1 < nr1; i1++) {
+ for (int k1 = 0; k1 < ne01; k1++) {
+ for (int i0 = 0; i0 < nr0; i0++) {
+ ggml_vec_cpy_f32(ne00,
+ (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
+ (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_repeat_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_can_repeat(src0, dst));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nr0 = (int)(ne0/ne00);
+ const int nr1 = (int)(ne1/ne01);
+ const int nr2 = (int)(ne2/ne02);
+ const int nr3 = (int)(ne3/ne03);
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ // TODO: maybe this is not optimal?
+ for (int i3 = 0; i3 < nr3; i3++) {
+ for (int k3 = 0; k3 < ne03; k3++) {
+ for (int i2 = 0; i2 < nr2; i2++) {
+ for (int k2 = 0; k2 < ne02; k2++) {
+ for (int i1 = 0; i1 < nr1; i1++) {
+ for (int k1 = 0; k1 < ne01; k1++) {
+ for (int i0 = 0; i0 < nr0; i0++) {
+ ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
+ ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
+ // ggml_vec_cpy_f16(ne00, y, x)
+ for (int i = 0; i < ne00; ++i) {
+ y[i] = x[i];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_repeat(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_I16:
+ {
+ ggml_compute_forward_repeat_f16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_repeat_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_repeat_back
+
+static void ggml_compute_forward_repeat_back_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_can_repeat(dst, src0));
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nr0 = (int)(ne00/ne0);
+ const int nr1 = (int)(ne01/ne1);
+ const int nr2 = (int)(ne02/ne2);
+ const int nr3 = (int)(ne03/ne3);
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ if (ggml_is_contiguous(dst)) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
+ } else {
+ for (int k3 = 0; k3 < ne3; k3++) {
+ for (int k2 = 0; k2 < ne2; k2++) {
+ for (int k1 = 0; k1 < ne1; k1++) {
+ ggml_vec_set_f32(ne0,
+ (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
+ 0);
+ }
+ }
+ }
+ }
+
+ // TODO: maybe this is not optimal?
+ for (int i3 = 0; i3 < nr3; i3++) {
+ for (int k3 = 0; k3 < ne3; k3++) {
+ for (int i2 = 0; i2 < nr2; i2++) {
+ for (int k2 = 0; k2 < ne2; k2++) {
+ for (int i1 = 0; i1 < nr1; i1++) {
+ for (int k1 = 0; k1 < ne1; k1++) {
+ for (int i0 = 0; i0 < nr0; i0++) {
+ ggml_vec_acc_f32(ne0,
+ (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
+ (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_repeat_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_repeat_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_concat
+
+static void ggml_compute_forward_concat_any(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ const size_t len = ggml_type_size(src0->type);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int32_t dim = ggml_get_op_params_i32(dst, 0);
+
+ GGML_ASSERT(dim >= 0 && dim < 4);
+
+ int64_t o[4] = {0, 0, 0, 0};
+ o[dim] = src0->ne[dim];
+
+ const char * x;
+
+ // TODO: smarter multi-theading
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = ith; i2 < ne2; i2 += nth) {
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < ne0; i0++) {
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
+ } else {
+ x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
+ }
+
+ char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
+
+ memcpy(y, x, len);
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_concat_i8(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int32_t dim = ggml_get_op_params_i32(dst, 0);
+
+ GGML_ASSERT(dim >= 0 && dim < 4);
+
+ int64_t o[4] = {0, 0, 0, 0};
+ o[dim] = src0->ne[dim];
+
+ const int8_t * x;
+
+ // TODO: smarter multi-theading
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = ith; i2 < ne2; i2 += nth) {
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < ne0; i0++) {
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
+ } else {
+ x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
+ }
+
+ int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
+
+ *y = *x;
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_concat_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int32_t dim = ggml_get_op_params_i32(dst, 0);
+
+ GGML_ASSERT(dim >= 0 && dim < 4);
+
+ int64_t o[4] = {0, 0, 0, 0};
+ o[dim] = src0->ne[dim];
+
+ const ggml_fp16_t * x;
+
+ // TODO: smarter multi-theading
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = ith; i2 < ne2; i2 += nth) {
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < ne0; i0++) {
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
+ } else {
+ x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
+ }
+
+ ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
+
+ *y = *x;
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_concat_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int32_t dim = ggml_get_op_params_i32(dst, 0);
+
+ GGML_ASSERT(dim >= 0 && dim < 4);
+
+ int64_t o[4] = {0, 0, 0, 0};
+ o[dim] = src0->ne[dim];
+
+ const float * x;
+
+ // TODO: smarter multi-theading
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = ith; i2 < ne2; i2 += nth) {
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < ne0; i0++) {
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
+ } else {
+ x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
+ }
+
+ float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
+
+ *y = *x;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_concat(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_I16:
+ {
+ ggml_compute_forward_concat_f16(params, dst);
+ } break;
+ case GGML_TYPE_I8:
+ {
+ ggml_compute_forward_concat_i8(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_concat_f32(params, dst);
+ } break;
+ default:
+ {
+ ggml_compute_forward_concat_any(params, dst);
+ }
+ }
+}
+
+// ggml_compute_forward_gelu
+
+static void ggml_compute_forward_gelu_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ GGML_UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_f16(nc,
+ (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
+ (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ const float v = GGML_FP16_TO_FP32(x);
+ GGML_UNUSED(v);
+ assert(!isnan(v));
+ assert(!isinf(v));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_gelu_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_gelu_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_gelu_quick
+
+static void ggml_compute_forward_gelu_quick_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_quick_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ GGML_UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu_quick_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_gelu_quick_f16(nc,
+ (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
+ (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ const float v = GGML_FP16_TO_FP32(x);
+ GGML_UNUSED(v);
+ assert(!isnan(v));
+ assert(!isinf(v));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_gelu_quick(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_gelu_quick_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_gelu_quick_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_silu
+
+static void ggml_compute_forward_silu_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_silu_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
+ GGML_UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_silu_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_silu_f16(nc,
+ (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
+ (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
+ const float v = GGML_FP16_TO_FP32(x);
+ GGML_UNUSED(v);
+ assert(!isnan(v));
+ assert(!isinf(v));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_silu(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_silu_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_silu_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+// ggml_compute_forward_leaky_relu
+
+static void ggml_compute_forward_leaky_relu_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ float negative_slope;
+ memcpy(&negative_slope, dst->op_params, sizeof(float));
+
+ assert(dst->nb[0] == sizeof(float));
+ assert(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_leaky_relu_f32(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
+ }
+}
+
+static void ggml_compute_forward_leaky_relu_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ float negative_slope;
+ memcpy(&negative_slope, dst->op_params, sizeof(float));
+
+ assert(dst->nb[0] == sizeof(ggml_fp16_t));
+ assert(src0->nb[0] == sizeof(ggml_fp16_t));
+
+ for (int i = 0; i < n; i++) {
+ ggml_vec_leaky_relu_f16(nc,
+ (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
+ (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
+ }
+}
+
+void ggml_compute_forward_leaky_relu(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_leaky_relu_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_leaky_relu_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_silu_back
+
+static void ggml_compute_forward_silu_back_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * grad = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ assert(ggml_is_contiguous_1(grad));
+ assert(ggml_is_contiguous_1(src1));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src1, dst));
+ assert(ggml_are_same_shape(src1, grad));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src1->ne[0];
+ const int nr = ggml_nrows(src1);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_silu_backward_f32(nc,
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src1->data + i1*(src1->nb[1])),
+ (float *) ((char *) grad->data + i1*(grad->nb[1])));
+
+#ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ GGML_UNUSED(x);
+ assert(!isnan(x));
+ assert(!isinf(x));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_silu_back_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * grad = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ assert(ggml_is_contiguous_1(grad));
+ assert(ggml_is_contiguous_1(src1));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src1, dst));
+ assert(ggml_are_same_shape(src1, grad));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src1->ne[0];
+ const int nr = ggml_nrows(src1);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_silu_backward_f16(nc,
+ (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
+ (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
+ (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
+
+ #ifndef NDEBUG
+ for (int k = 0; k < nc; k++) {
+ const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
+ const float v = GGML_FP16_TO_FP32(x);
+ GGML_UNUSED(v);
+ assert(!isnan(v));
+ assert(!isinf(v));
+ }
+ #endif
+ }
+}
+
+void ggml_compute_forward_silu_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_silu_back_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_silu_back_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_norm
+
+static void ggml_compute_forward_norm_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ GGML_ASSERT(eps >= 0.0f);
+
+ // TODO: optimize
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
+ const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ ggml_float sum = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sum += (ggml_float)x[i00];
+ }
+
+ float mean = sum/ne00;
+
+ float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ ggml_float sum2 = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ float v = x[i00] - mean;
+ y[i00] = v;
+ sum2 += (ggml_float)(v*v);
+ }
+
+ float variance = sum2/ne00;
+ const float scale = 1.0f/sqrtf(variance + eps);
+
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_norm(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_norm_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_group_rms_norm
+
+static void ggml_compute_forward_rms_norm_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ GGML_ASSERT(eps >= 0.0f);
+
+ // TODO: optimize
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
+ const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ ggml_float sum = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sum += (ggml_float)(x[i00] * x[i00]);
+ }
+
+ const float mean = sum/ne00;
+
+ float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ memcpy(y, x, ne00 * sizeof(float));
+ // for (int i00 = 0; i00 < ne00; i00++) {
+ // y[i00] = x[i00];
+ // }
+
+ const float scale = 1.0f/sqrtf(mean + eps);
+
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_rms_norm(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rms_norm_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+static void ggml_compute_forward_rms_norm_back_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
+ const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT(src1->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ // TODO: optimize
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
+ // src1 is same shape as src0 => same indices
+ const int64_t i11 = i01;
+ const int64_t i12 = i02;
+ const int64_t i13 = i03;
+
+ const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+ const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
+
+ ggml_float sum_xx = 0.0;
+ ggml_float sum_xdz = 0.0;
+
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sum_xx += (ggml_float)(x[i00] * x[i00]);
+ sum_xdz += (ggml_float)(x[i00] * dz[i00]);
+ }
+
+ //const float mean = (float)(sum_xx)/ne00;
+ const float mean_eps = (float)(sum_xx)/ne00 + eps;
+ const float sum_eps = (float)(sum_xx) + eps*ne00;
+ //const float mean_xdz = (float)(sum_xdz)/ne00;
+ // we could cache rms from forward pass to improve performance.
+ // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
+ //const float rms = sqrtf(mean_eps);
+ const float rrms = 1.0f / sqrtf(mean_eps);
+ //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
+
+ {
+ // z = rms_norm(x)
+ //
+ // rms_norm(src1) =
+ // scale(
+ // src1,
+ // div(
+ // 1,
+ // sqrt(
+ // add(
+ // scale(
+ // sum(
+ // sqr(
+ // src1)),
+ // (1.0/N)),
+ // eps))));
+
+ // postorder:
+ // ## op args grad
+ // 00 param src1 grad[#00]
+ // 01 const 1
+ // 02 sqr (#00) grad[#02]
+ // 03 sum (#02) grad[#03]
+ // 04 const 1/N
+ // 05 scale (#03, #04) grad[#05]
+ // 06 const eps
+ // 07 add (#05, #06) grad[#07]
+ // 08 sqrt (#07) grad[#08]
+ // 09 div (#01,#08) grad[#09]
+ // 10 scale (#00,#09) grad[#10]
+ //
+ // backward pass, given grad[#10]
+ // #10: scale
+ // grad[#00] += scale(grad[#10],#09)
+ // grad[#09] += sum(mul(grad[#10],#00))
+ // #09: div
+ // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
+ // #08: sqrt
+ // grad[#07] += mul(grad[#08], div(0.5, #08))
+ // #07: add
+ // grad[#05] += grad[#07]
+ // #05: scale
+ // grad[#03] += scale(grad[#05],#04)
+ // #03: sum
+ // grad[#02] += repeat(grad[#03], #02)
+ // #02:
+ // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
+ //
+ // substitute and simplify:
+ // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
+ // grad[#02] = repeat(grad[#03], #02)
+ // grad[#02] = repeat(scale(grad[#05],#04), #02)
+ // grad[#02] = repeat(scale(grad[#07],#04), #02)
+ // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
+ // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
+ // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
+ // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
+ // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
+ // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
+ // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
+ // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
+ // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
+ // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
+ // a = b*c + d*e
+ // a = b*c*f/f + d*e*f/f
+ // a = (b*c*f + d*e*f)*(1/f)
+ // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
+ // a = (b + d*e/c)*c
+ // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
+ // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
+ // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
+ // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
+ // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
+ // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
+ // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
+ // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
+ // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
+ // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
+ }
+ // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
+ // post-order:
+ // dx := x
+ // dx := scale(dx,-mean_xdz/mean_eps)
+ // dx := add(dx, dz)
+ // dx := scale(dx, rrms)
+ float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
+ ggml_vec_cpy_f32 (ne00, dx, x);
+ // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
+ ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
+ ggml_vec_acc_f32 (ne00, dx, dz);
+ ggml_vec_scale_f32(ne00, dx, rrms);
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_rms_norm_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rms_norm_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_group_norm
+
+static void ggml_compute_forward_group_norm_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ // TODO: optimize
+
+ float eps;
+ memcpy(&eps, dst->op_params + 1, sizeof(float));
+
+ int n_channels = src0->ne[2];
+ int n_groups = dst->op_params[0];
+ int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
+ for (int i = ith; i < n_groups; i += nth) {
+ int start = i * n_channels_per_group;
+ int end = start + n_channels_per_group;
+ if (end > n_channels) {
+ end = n_channels;
+ }
+ int step = end - start;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ ggml_float sum = 0.0;
+ for (int64_t i02 = start; i02 < end; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
+
+ ggml_float sumr = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sumr += (ggml_float)x[i00];
+ }
+ sum += sumr;
+ }
+ }
+ const float mean = sum / (ne00 * ne01 * step);
+
+ ggml_float sum2 = 0.0;
+ for (int64_t i02 = start; i02 < end; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
+
+ float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
+
+ ggml_float sumr = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ float v = x[i00] - mean;
+ y[i00] = v;
+ sumr += (ggml_float)(v * v);
+ }
+ sum2 += sumr;
+ }
+ }
+ const float variance = sum2 / (ne00 * ne01 * step);
+ const float scale = 1.0f / sqrtf(variance + eps);
+
+ for (int64_t i02 = start; i02 < end; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_group_norm(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_group_norm_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_l2_norm
+
+static void ggml_compute_forward_l2_norm_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ GGML_ASSERT(eps >= 0.0f);
+
+ // TODO: optimize
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
+ const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
+
+ ggml_float sum = 0.0;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ sum += (ggml_float)(x[i00] * x[i00]);
+ }
+
+ float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
+
+ memcpy(y, x, ne00 * sizeof(float));
+
+ const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
+
+ ggml_vec_scale_f32(ne00, y, scale);
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_l2_norm(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_l2_norm_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_out_prod
+
+static void ggml_compute_forward_out_prod_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_ASSERT(ne0 == ne00);
+ GGML_ASSERT(ne1 == ne10);
+ GGML_ASSERT(ne2 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+
+ GGML_ASSERT(ne2 % ne02 == 0);
+ GGML_ASSERT(ne3 % ne03 == 0);
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ // GGML_ASSERT(nb0 <= nb1);
+ // GGML_ASSERT(nb1 <= nb2);
+ // GGML_ASSERT(nb2 <= nb3);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+
+ if (ith == 0) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
+ }
+ ggml_barrier(params->threadpool);
+
+ // dst[:,:,:,:] = 0
+ // for i2,i3:
+ // for i1:
+ // for i01:
+ // for i0:
+ // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
+
+ // parallelize by last three dimensions
+
+ // total rows in dst
+ const int64_t nr = ne1*ne2*ne3;
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ // block-tiling attempt
+ const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
+ const int64_t blck_1 = 16;
+
+ // dps == dst per src0, used for group query attention
+ const int64_t dps2 = ne2 / ne02;
+ const int64_t dps3 = ne3 / ne03;
+
+ for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
+ const int64_t bir1 = MIN(bir + blck_1, ir1);
+ for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
+ const int64_t bne01 = MIN(bi01 + blck_0, ne01);
+ for (int64_t ir = bir; ir < bir1; ++ir) {
+ // dst indices
+ const int64_t i3 = ir/(ne2*ne1);
+ const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
+ const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ const int64_t i02 = i2 / dps2;
+ const int64_t i03 = i3 / dps3;
+
+ //const int64_t i10 = i1;
+ const int64_t i12 = i2;
+ const int64_t i13 = i3;
+
+#if GGML_VEC_MAD_UNROLL > 2
+ const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
+ for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
+ }
+ for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_mad_f32(ne0, d, s0, *s1);
+ }
+#else
+ for (int64_t i01 = bi01; i01 < bne01; ++i01) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_mad_f32(ne0, d, s0, *s1);
+ }
+#endif
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_out_prod_q_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const ggml_type type = src0->type;
+ ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
+
+ GGML_ASSERT(ne02 == ne12);
+ GGML_ASSERT(ne03 == ne13);
+ GGML_ASSERT(ne2 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+
+ // we don't support permuted src0 dim0
+ GGML_ASSERT(nb00 == ggml_type_size(type));
+
+ // dst dim0 cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ // GGML_ASSERT(nb0 <= nb1);
+ // GGML_ASSERT(nb1 <= nb2);
+ // GGML_ASSERT(nb2 <= nb3);
+
+ GGML_ASSERT(ne0 == ne00);
+ GGML_ASSERT(ne1 == ne10);
+ GGML_ASSERT(ne2 == ne02);
+ GGML_ASSERT(ne3 == ne03);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+
+ if (ith == 0) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
+ }
+ ggml_barrier(params->threadpool);
+
+ // parallelize by last three dimensions
+
+ // total rows in dst
+ const int64_t nr = ne1*ne2*ne3;
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ // dst[:,:,:,:] = 0
+ // for i2,i3:
+ // for i1:
+ // for i01:
+ // for i0:
+ // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
+
+ float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
+
+ for (int64_t ir = ir0; ir < ir1; ++ir) {
+ // dst indices
+ const int64_t i3 = ir/(ne2*ne1);
+ const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
+ const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ const int64_t i02 = i2;
+ const int64_t i03 = i3;
+
+ //const int64_t i10 = i1;
+ const int64_t i12 = i2;
+ const int64_t i13 = i3;
+
+ for (int64_t i01 = 0; i01 < ne01; ++i01) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ dequantize_row_q(s0, wdata, ne0);
+ ggml_vec_mad_f32(ne0, d, wdata, *s1);
+ }
+ }
+}
+
+void ggml_compute_forward_out_prod(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_TQ1_0:
+ case GGML_TYPE_TQ2_0:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ {
+ ggml_compute_forward_out_prod_q_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ABORT("fatal error"); // todo
+ // ggml_compute_forward_out_prod_f16_f32(params, dst);
+ }
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_out_prod_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_scale
+
+static void ggml_compute_forward_scale_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+
+ // scale factor
+ float v;
+ memcpy(&v, dst->op_params, sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const size_t nb01 = src0->nb[1];
+
+ const size_t nb1 = dst->nb[1];
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ if (dst->data != src0->data) {
+ // src0 is same shape as dst => same indices
+ memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
+ }
+ ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
+ }
+}
+
+void ggml_compute_forward_scale(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_scale_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_set
+
+static void ggml_compute_forward_set_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+
+ // view src0 and dst with these strides and data offset inbytes during set
+ // nb0 is implicitly element_size because src0 and dst are contiguous
+ size_t nb1 = ((int32_t *) dst->op_params)[0];
+ size_t nb2 = ((int32_t *) dst->op_params)[1];
+ size_t nb3 = ((int32_t *) dst->op_params)[2];
+ size_t offset = ((int32_t *) dst->op_params)[3];
+ bool inplace = (bool) ((int32_t *) dst->op_params)[4];
+
+ if (!inplace) {
+ if (params->ith == 0) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+ }
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src1);
+ const int nc = src1->ne[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
+
+ // src0 and dst as viewed during set
+ const size_t nb0 = ggml_element_size(src0);
+
+ const int im0 = (ne10 == 0 ? 0 : ne10-1);
+ const int im1 = (ne11 == 0 ? 0 : ne11-1);
+ const int im2 = (ne12 == 0 ? 0 : ne12-1);
+ const int im3 = (ne13 == 0 ? 0 : ne13-1);
+
+ GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
+
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are viewed with shape of src1 and offset
+ // => same indices
+ const int i3 = ir/(ne12*ne11);
+ const int i2 = (ir - i3*ne12*ne11)/ne11;
+ const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
+
+ ggml_vec_cpy_f32(nc,
+ (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
+ (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+ }
+}
+
+static void ggml_compute_forward_set_i32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+
+ // view src0 and dst with these strides and data offset inbytes during set
+ // nb0 is implicitly element_size because src0 and dst are contiguous
+ size_t nb1 = ((int32_t *) dst->op_params)[0];
+ size_t nb2 = ((int32_t *) dst->op_params)[1];
+ size_t nb3 = ((int32_t *) dst->op_params)[2];
+ size_t offset = ((int32_t *) dst->op_params)[3];
+ bool inplace = (bool) ((int32_t *) dst->op_params)[4];
+
+ if (!inplace) {
+ if (params->ith == 0) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+ }
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src1);
+ const int nc = src1->ne[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
+
+ // src0 and dst as viewed during set
+ const size_t nb0 = ggml_element_size(src0);
+
+ const int im0 = (ne10 == 0 ? 0 : ne10-1);
+ const int im1 = (ne11 == 0 ? 0 : ne11-1);
+ const int im2 = (ne12 == 0 ? 0 : ne12-1);
+ const int im3 = (ne13 == 0 ? 0 : ne13-1);
+
+ GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
+
+ GGML_ASSERT(nb10 == sizeof(int32_t));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // src0 and dst are viewed with shape of src1 and offset
+ // => same indices
+ const int i3 = ir/(ne12*ne11);
+ const int i2 = (ir - i3*ne12*ne11)/ne11;
+ const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
+
+ ggml_vec_cpy_i32(nc,
+ (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
+ (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+ }
+}
+
+void ggml_compute_forward_set(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_set_f32(params, dst);
+ } break;
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_set_i32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_TQ1_0:
+ case GGML_TYPE_TQ2_0:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_cpy
+
+void ggml_compute_forward_cpy(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ ggml_compute_forward_dup(params, dst);
+}
+
+// ggml_compute_forward_cont
+
+void ggml_compute_forward_cont(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ ggml_compute_forward_dup(params, dst);
+}
+
+// ggml_compute_forward_reshape
+
+void ggml_compute_forward_reshape(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ // NOP
+ GGML_UNUSED(params);
+ GGML_UNUSED(dst);
+}
+
+// ggml_compute_forward_view
+
+void ggml_compute_forward_view(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ // NOP
+ GGML_UNUSED(params);
+ GGML_UNUSED(dst);
+}
+
+// ggml_compute_forward_permute
+
+void ggml_compute_forward_permute(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ // NOP
+ GGML_UNUSED(params);
+ GGML_UNUSED(dst);
+}
+
+// ggml_compute_forward_transpose
+
+void ggml_compute_forward_transpose(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ // NOP
+ GGML_UNUSED(params);
+ GGML_UNUSED(dst);
+}
+
+// ggml_compute_forward_get_rows
+
+static void ggml_compute_forward_get_rows_q(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ const ggml_type type = src0->type;
+ ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == ggml_type_size(type));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ GGML_ASSERT(i01 >= 0 && i01 < ne01);
+
+ dequantize_row_q(
+ (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ }
+}
+
+static void ggml_compute_forward_get_rows_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == sizeof(ggml_fp16_t));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ GGML_ASSERT(i01 >= 0 && i01 < ne01);
+
+ ggml_fp16_to_fp32_row(
+ (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ }
+}
+
+static void ggml_compute_forward_get_rows_bf16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == sizeof(ggml_bf16_t));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ GGML_ASSERT(i01 >= 0 && i01 < ne01);
+
+ ggml_bf16_to_fp32_row(
+ (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
+ }
+}
+
+static void ggml_compute_forward_get_rows_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t nc = ne00;
+ const int64_t nr = ggml_nelements(src1);
+
+ assert(ne0 == nc);
+ assert(ne02 == ne11);
+ assert(nb00 == sizeof(float));
+ assert(ggml_nrows(dst) == nr);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i = ir0; i < ir1; ++i) {
+ const int64_t i12 = i/(ne11*ne10);
+ const int64_t i11 = (i - i12*ne11*ne10)/ne10;
+ const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
+ const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
+
+ GGML_ASSERT(i01 >= 0 && i01 < ne01);
+
+ ggml_vec_cpy_f32(nc,
+ (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
+ (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
+ }
+}
+
+void ggml_compute_forward_get_rows(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_TQ1_0:
+ case GGML_TYPE_TQ2_0:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ {
+ ggml_compute_forward_get_rows_q(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_get_rows_f16(params, dst);
+ } break;
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_get_rows_bf16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ case GGML_TYPE_I32:
+ {
+ ggml_compute_forward_get_rows_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+
+ //static bool first = true;
+ //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
+ //if (first) {
+ // first = false;
+ //} else {
+ // for (int k = 0; k < dst->ne[1]; ++k) {
+ // for (int j = 0; j < dst->ne[0]/16; ++j) {
+ // for (int i = 0; i < 16; ++i) {
+ // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // exit(0);
+ //}
+}
+
+// ggml_compute_forward_get_rows_back
+
+static void ggml_compute_forward_get_rows_back_f32_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_is_contiguous(dst));
+
+ // ggml_compute_forward_dup_same_cont(params, opt0, dst);
+
+ memset(dst->data, 0, ggml_nbytes(dst));
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nelements(src1);
+
+ GGML_ASSERT( dst->ne[0] == nc);
+ GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
+
+ for (int i = 0; i < nr; ++i) {
+ const int r = ((int32_t *) src1->data)[i];
+
+ for (int j = 0; j < nc; ++j) {
+ ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
+ ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
+ }
+ }
+}
+
+static void ggml_compute_forward_get_rows_back_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ GGML_ASSERT(ggml_is_contiguous(dst));
+
+ // ggml_compute_forward_dup_same_cont(params, opt0, dst);
+
+ memset(dst->data, 0, ggml_nbytes(dst));
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nelements(src1);
+
+ GGML_ASSERT( dst->ne[0] == nc);
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ for (int i = 0; i < nr; ++i) {
+ const int r = ((int32_t *) src1->data)[i];
+
+ ggml_vec_add_f32(nc,
+ (float *) ((char *) dst->data + r*dst->nb[1]),
+ (float *) ((char *) dst->data + r*dst->nb[1]),
+ (float *) ((char *) src0->data + i*src0->nb[1]));
+ }
+}
+
+void ggml_compute_forward_get_rows_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_get_rows_back_f32_f16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_get_rows_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+
+ //static bool first = true;
+ //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
+ //if (first) {
+ // first = false;
+ //} else {
+ // for (int k = 0; k < dst->ne[1]; ++k) {
+ // for (int j = 0; j < dst->ne[0]/16; ++j) {
+ // for (int i = 0; i < 16; ++i) {
+ // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // }
+ // printf("\n");
+ // exit(0);
+ //}
+}
+
+// ggml_compute_forward_diag
+
+static void ggml_compute_forward_diag_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ // TODO: handle transposed/permuted matrices
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(ne00 == ne0);
+ GGML_ASSERT(ne00 == ne1);
+ GGML_ASSERT(ne01 == 1);
+ GGML_ASSERT(ne02 == ne2);
+ GGML_ASSERT(ne03 == ne3);
+
+ GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(nb0 == sizeof(float));
+
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = 0; i2 < ne2; i2++) {
+ for (int i1 = 0; i1 < ne1; i1++) {
+ float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
+ float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
+ for (int i0 = 0; i0 < i1; i0++) {
+ d[i0] = 0;
+ }
+ d[i1] = s[i1];
+ for (int i0 = i1+1; i0 < ne0; i0++) {
+ d[i0] = 0;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_diag(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_diag_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_diag_mask_inf
+
+static void ggml_compute_forward_diag_mask_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const float value) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int n_past = ((int32_t *) dst->op_params)[0];
+ const bool inplace = src0->data == dst->data;
+
+ GGML_ASSERT(n_past >= 0);
+
+ if (!inplace) {
+ if (ith == 0) {
+ // memcpy needs to be synchronized across threads to avoid race conditions.
+ // => do it in INIT phase
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
+ memcpy(
+ ((char *) dst->data),
+ ((char *) src0->data),
+ ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+ }
+
+ // TODO: handle transposed/permuted matrices
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+ const int nr = src0->ne[1];
+ const int nz = n/nr;
+
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ for (int k = 0; k < nz; k++) {
+ for (int j = ith; j < nr; j += nth) {
+ for (int i = n_past; i < nc; i++) {
+ if (i > n_past + j) {
+ *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_diag_mask_inf(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+void ggml_compute_forward_diag_mask_zero(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_diag_mask_f32(params, dst, 0);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_soft_max
+
+static void ggml_compute_forward_soft_max_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ assert(ggml_is_contiguous(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+
+ // TODO: handle transposed/permuted matrices
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ //const int64_t ne11 = src1 ? src1->ne[1] : 1;
+
+ // TODO: is this supposed to be ceil instead of floor?
+ // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
+ const uint32_t n_head = ne02;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
+
+ const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ // ALiBi
+ const uint32_t h = (i1/ne01)%ne02; // head
+ const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
+
+ float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
+
+ // broadcast the mask across rows
+ ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
+ float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
+
+ ggml_vec_cpy_f32 (nc, wp, sp);
+ ggml_vec_scale_f32(nc, wp, scale);
+ if (mp_f32) {
+ if (use_f16) {
+ for (int i = 0; i < nc; ++i) {
+ wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
+ }
+ } else {
+ for (int i = 0; i < nc; ++i) {
+ wp[i] += slope*mp_f32[i];
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(wp[i]));
+ }
+#endif
+
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, wp);
+
+ ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
+ assert(sum > 0.0);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(nc, dp, sum);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(dp[i]));
+ assert(!isinf(dp[i]));
+ }
+#endif
+ }
+}
+
+void ggml_compute_forward_soft_max(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_soft_max_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+
+// ggml_compute_forward_soft_max_ext_back
+
+static void ggml_compute_forward_soft_max_ext_back_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_are_same_shape(src1, dst));
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
+
+ GGML_ASSERT(max_bias == 0.0f);
+
+ // TODO: handle transposed/permuted matrices
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
+ float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(dy[i]));
+ assert(!isnan(y[i]));
+ }
+#endif
+ // Jii = yi - yi*yi
+ // Jij = -yi*yj
+ // J = diag(y)-y.T*y
+ // dx = J * dy
+ // dxk = sum_i(Jki * dyi)
+ // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
+ // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
+ // dxk = sum_i(-yk*yi * dyi) + yk*dyk
+ // dxk = -yk * sum_i(yi * dyi) + yk*dyk
+ // dxk = -yk * dot(y, dy) + yk*dyk
+ // dxk = yk * (- dot(y, dy) + dyk)
+ // dxk = yk * (dyk - dot(y, dy))
+ //
+ // post-order:
+ // dot_y_dy := dot(y, dy)
+ // dx := dy
+ // dx := dx - dot_y_dy
+ // dx := dx * y
+
+ // linear runtime, no additional memory
+ float dot_y_dy = 0;
+ ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
+ ggml_vec_cpy_f32 (nc, dx, dy);
+ ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
+ ggml_vec_mul_f32 (nc, dx, dx, y);
+ ggml_vec_scale_f32(nc, dx, scale);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(dx[i]));
+ assert(!isinf(dx[i]));
+ }
+#endif
+ }
+}
+
+void ggml_compute_forward_soft_max_ext_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_soft_max_ext_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_clamp
+
+static void ggml_compute_forward_clamp_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ float min;
+ float max;
+ memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+
+ const size_t nb0 = dst->nb[0];
+ const size_t nb1 = dst->nb[1];
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ for (int j = ith; j < n; j += nth) {
+ float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
+ float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
+
+ for (int i = 0; i < nc; i++) {
+ dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
+ }
+ }
+}
+
+static void ggml_compute_forward_clamp_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ float min;
+ float max;
+ memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+
+ const size_t nb0 = dst->nb[0];
+ const size_t nb1 = dst->nb[1];
+
+ GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+
+ for (int j = ith; j < n; j += nth) {
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
+ ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
+
+ for (int i = 0; i < nc; i++) {
+ float v = GGML_FP16_TO_FP32(src0_ptr[i]);
+ dst_ptr[i] = GGML_FP32_TO_FP16(MAX(MIN(v, max), min));
+ }
+ }
+}
+
+void ggml_compute_forward_clamp(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_clamp_f32(params, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_clamp_f16(params, dst);
+ } break;
+ case GGML_TYPE_BF16:
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_TQ1_0:
+ case GGML_TYPE_TQ2_0:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_Q8_K:
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_I64:
+ case GGML_TYPE_F64:
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_rope
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
+ return 1 - MIN(1, MAX(0, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+ float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
+ }
+ *cos_theta = cosf(theta) * mscale;
+ *sin_theta = sinf(theta) * mscale;
+}
+
+static void ggml_rope_cache_init(
+ float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
+ float * cache, float sin_sign, float theta_scale) {
+ // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
+ float theta = theta_base;
+ for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
+ const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
+ rope_yarn(
+ theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
+ );
+ cache[i0 + 1] *= sin_sign;
+
+ theta *= theta_scale;
+ }
+}
+
+static void ggml_mrope_cache_init(
+ float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
+ float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
+ float * cache, float sin_sign, float theta_scale) {
+ // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
+ float theta_t = theta_base_t;
+ float theta_h = theta_base_h;
+ float theta_w = theta_base_w;
+ float theta_e = theta_base_e; // extra position id for vision encoder
+ int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
+ int sec_w = sections[1] + sections[0];
+ int sec_e = sections[2] + sec_w;
+ GGML_ASSERT(sect_dims <= ne0);
+
+ for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
+ const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
+
+ int sector = (i0 / 2) % sect_dims;
+ if (indep_sects) {
+ // compute theta independently for each dim sections
+ // (i.e. reset corresponding theta when `i0` go from one section to another)
+ if (sector == 0) {
+ theta_t = theta_base_t;
+ }
+ else if (sector == sections[0]) {
+ theta_h = theta_base_h;;
+ }
+ else if (sector == sec_w) {
+ theta_w = theta_base_w;
+ }
+ else if (sector == sec_e) {
+ theta_e = theta_base_e;
+ }
+ }
+
+ float theta = theta_t;
+ if (sector >= sections[0] && sector < sec_w) {
+ theta = theta_h;
+ }
+ else if (sector >= sec_w && sector < sec_w + sections[2]) {
+ theta = theta_w;
+ }
+ else if (sector >= sec_w + sections[2]) {
+ theta = theta_e;
+ }
+
+ rope_yarn(
+ theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
+ );
+ cache[i0 + 1] *= sin_sign;
+
+ theta_t *= theta_scale;
+ theta_w *= theta_scale;
+ theta_h *= theta_scale;
+ theta_e *= theta_scale;
+ }
+}
+
+static void ggml_compute_forward_rope_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const bool forward) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const ggml_tensor * src2 = dst->src[2];
+
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ int sections[4];
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ //const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
+
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+ memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
+ //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(dst);
+
+ GGML_ASSERT(n_dims <= ne0);
+ GGML_ASSERT(n_dims % 2 == 0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ // row index used to determine which thread to use
+ int ir = 0;
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ float corr_dims[2];
+ ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
+
+ const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
+ const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
+ const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
+
+ if (is_mrope) {
+ GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
+ }
+
+ if (is_vision) {
+ GGML_ASSERT(n_dims == ne0/2);
+ }
+
+ const float * freq_factors = NULL;
+ if (src2 != NULL) {
+ GGML_ASSERT(src2->type == GGML_TYPE_F32);
+ GGML_ASSERT(src2->ne[0] >= n_dims / 2);
+ freq_factors = (const float *) src2->data;
+ }
+
+ // backward process uses inverse rotation by cos and sin.
+ // cos and sin build a rotation matrix, where the inverse is the transpose.
+ // this essentially just switches the sign of sin.
+ const float sin_sign = forward ? 1.0f : -1.0f;
+
+ const int32_t * pos = (const int32_t *) src1->data;
+
+ for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
+ for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
+
+ float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
+ if (!is_mrope) {
+ const int64_t p = pos[i2];
+ ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
+ }
+ else {
+ const int64_t p_t = pos[i2];
+ const int64_t p_h = pos[i2 + ne2];
+ const int64_t p_w = pos[i2 + ne2 * 2];
+ const int64_t p_e = pos[i2 + ne2 * 3];
+ ggml_mrope_cache_init(
+ p_t, p_h, p_w, p_e, sections, is_vision,
+ freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
+ }
+
+ for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
+ if (ir++ < ir0) continue;
+ if (ir > ir1) break;
+
+ if (is_neox || is_mrope) {
+ if (is_vision){
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
+ }
+ } else {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
+ }
+ }
+ } else {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[1];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[1] = x0*sin_theta + x1*cos_theta;
+ }
+ }
+
+ if (is_vision) {
+ for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
+ }
+ } else {
+ // fill the remain channels with data from src tensor
+ for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+ }
+ }
+ }
+}
+
+// TODO: deduplicate f16/f32 code
+static void ggml_compute_forward_rope_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const bool forward) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const ggml_tensor * src2 = dst->src[2];
+
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ int sections[4];
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ //const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+ memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
+
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
+ //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+
+ GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(dst);
+
+ GGML_ASSERT(n_dims <= ne0);
+ GGML_ASSERT(n_dims % 2 == 0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ // row index used to determine which thread to use
+ int ir = 0;
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ float corr_dims[2];
+ ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
+
+ const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
+ const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
+ const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
+
+ if (is_mrope) {
+ GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
+ }
+
+ if (is_vision) {
+ GGML_ASSERT(n_dims == ne0/2);
+ }
+
+ const float * freq_factors = NULL;
+ if (src2 != NULL) {
+ GGML_ASSERT(src2->type == GGML_TYPE_F32);
+ GGML_ASSERT(src2->ne[0] >= n_dims / 2);
+ freq_factors = (const float *) src2->data;
+ }
+
+ // backward process uses inverse rotation by cos and sin.
+ // cos and sin build a rotation matrix, where the inverse is the transpose.
+ // this essentially just switches the sign of sin.
+ const float sin_sign = forward ? 1.0f : -1.0f;
+
+ const int32_t * pos = (const int32_t *) src1->data;
+
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ for (int64_t i2 = 0; i2 < ne2; i2++) {
+
+ float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
+ if (!is_mrope) {
+ const int64_t p = pos[i2];
+ ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
+ }
+ else {
+ const int64_t p_t = pos[i2];
+ const int64_t p_h = pos[i2 + ne2];
+ const int64_t p_w = pos[i2 + ne2 * 2];
+ const int64_t p_e = pos[i2 + ne2 * 3];
+ ggml_mrope_cache_init(
+ p_t, p_h, p_w, p_e, sections, is_vision,
+ freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
+ }
+
+ for (int64_t i1 = 0; i1 < ne1; i1++) {
+ if (ir++ < ir0) continue;
+ if (ir > ir1) break;
+
+ if (is_neox || is_mrope) {
+ if (is_vision) {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = GGML_FP16_TO_FP32(src[0]);
+ const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
+
+ dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
+ dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
+ }
+ } else {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = GGML_FP16_TO_FP32(src[0]);
+ const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
+
+ dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
+ dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
+ }
+ }
+ } else {
+ for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const float x0 = GGML_FP16_TO_FP32(src[0]);
+ const float x1 = GGML_FP16_TO_FP32(src[1]);
+
+ dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
+ dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
+ }
+ }
+
+ if (is_vision) {
+ for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
+ const int64_t ic = i0/2;
+
+ const float cos_theta = cache[i0 + 0];
+ const float sin_theta = cache[i0 + 1];
+
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = GGML_FP16_TO_FP32(src[0]);
+ const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
+
+ dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
+ dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
+ }
+ } else {
+ for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_rope(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_rope_f16(params, dst, true);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rope_f32(params, dst, true);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_rope_back
+
+void ggml_compute_forward_rope_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_rope_f16(params, dst, false);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rope_f32(params, dst, false);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_conv_transpose_1d
+
+static void ggml_compute_forward_conv_transpose_1d_f16_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00*ne01*ne02;
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (ith == 0) {
+ memset(params->wdata, 0, params->wsize);
+
+ // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
+ ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ne02 + i02] = src[i00];
+ }
+ }
+ }
+ }
+
+ // permute source data (src1) from (L x Cin) to (Cin x L)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
+ ggml_fp16_t * dst_data = wdata;
+
+ for (int64_t i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ for (int64_t i10 = 0; i10 < ne10; i10++) {
+ dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
+ }
+ }
+ }
+
+ // need to zero dst since we are accumulating into it
+ memset(dst->data, 0, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+
+ // total rows in dst
+ const int nr = ne1;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+ ggml_fp16_t * const wdata_src = wdata + nk;
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ const int i1n = i10*ne11;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ float v = 0;
+ ggml_vec_dot_f16(ne02, &v, 0,
+ (ggml_fp16_t *) wdata_src + i1n, 0,
+ (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
+ dst_data[i10*s0 + i00] += v;
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_conv_transpose_1d_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00*ne01*ne02;
+
+ GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (ith == 0) {
+ memset(params->wdata, 0, params->wsize);
+
+ // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
+ {
+ float * const wdata = (float *) params->wdata + 0;
+
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
+ float * dst_data = wdata + i01*ne00*ne02;
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ne02 + i02] = src[i00];
+ }
+ }
+ }
+ }
+
+ // prepare source data (src1)
+ {
+ float * const wdata = (float *) params->wdata + nk;
+ float * dst_data = wdata;
+
+ for (int64_t i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ for (int64_t i10 = 0; i10 < ne10; i10++) {
+ dst_data[i10*ne11 + i11] = src[i10];
+ }
+ }
+ }
+
+ // need to zero dst since we are accumulating into it
+ memset(dst->data, 0, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+
+ // total rows in dst
+ const int nr = ne1;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float * const wdata = (float *) params->wdata + 0;
+ float * const wdata_src = wdata + nk;
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ float * wdata_kernel = wdata + i1*ne02*ne00;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ const int i1n = i10*ne11;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ float v = 0;
+ ggml_vec_dot_f32(ne02, &v, 0,
+ wdata_src + i1n, 0,
+ wdata_kernel + i00*ne02, 0, 1);
+ dst_data[i10*s0 + i00] += v;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_conv_transpose_1d(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_conv_transpose_1d_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_im2col_f32
+// src0: kernel [OC, IC, KH, KW]
+// src1: image [N, IC, IH, IW]
+// dst: result [N, OH, OW, IC*KH*KW]
+static void ggml_compute_forward_im2col_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
+ const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t N = is_2D ? ne13 : ne12;
+ const int64_t IC = is_2D ? ne12 : ne11;
+ const int64_t IH = is_2D ? ne11 : 1;
+ const int64_t IW = ne10;
+
+ const int64_t KH = is_2D ? ne01 : 1;
+ const int64_t KW = ne00;
+
+ const int64_t OH = is_2D ? ne2 : 1;
+ const int64_t OW = ne1;
+
+ int ofs0 = is_2D ? nb13 : nb12;
+ int ofs1 = is_2D ? nb12 : nb11;
+
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
+ {
+ float * const wdata = (float *) dst->data;
+
+ for (int64_t in = 0; in < N; in++) {
+ for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
+ for (int64_t iow = 0; iow < OW; iow++) {
+ for (int64_t iic = ith; iic < IC; iic += nth) {
+
+ // micro kernel
+ float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
+ const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
+
+ for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
+ for (int64_t ikw = 0; ikw < KW; ikw++) {
+ const int64_t iiw = iow*s0 + ikw*d0 - p0;
+ const int64_t iih = ioh*s1 + ikh*d1 - p1;
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
+ } else {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+// ggml_compute_forward_im2col_f16
+// src0: kernel [OC, IC, KH, KW]
+// src1: image [N, IC, IH, IW]
+// dst: result [N, OH, OW, IC*KH*KW]
+static void ggml_compute_forward_im2col_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16);
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
+ const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t N = is_2D ? ne13 : ne12;
+ const int64_t IC = is_2D ? ne12 : ne11;
+ const int64_t IH = is_2D ? ne11 : 1;
+ const int64_t IW = ne10;
+
+ const int64_t KH = is_2D ? ne01 : 1;
+ const int64_t KW = ne00;
+
+ const int64_t OH = is_2D ? ne2 : 1;
+ const int64_t OW = ne1;
+
+ int ofs0 = is_2D ? nb13 : nb12;
+ int ofs1 = is_2D ? nb12 : nb11;
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
+
+ for (int64_t in = 0; in < N; in++) {
+ for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
+ for (int64_t iow = 0; iow < OW; iow++) {
+ for (int64_t iic = ith; iic < IC; iic += nth) {
+
+ // micro kernel
+ ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
+ const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
+
+ for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
+ for (int64_t ikw = 0; ikw < KW; ikw++) {
+ const int64_t iiw = iow*s0 + ikw*d0 - p0;
+ const int64_t iih = ioh*s1 + ikh*d1 - p1;
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
+ } else {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_im2col(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ switch (dst->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_im2col_f16(params, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_im2col_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_im2col_back_f32
+
+void ggml_compute_forward_im2col_back_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
+ const ggml_tensor * src1 = dst->src[1]; // convolution kernel
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS;
+
+ const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
+ const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t N = is_2D ? ne3 : ne2;
+ const int64_t IC = is_2D ? ne2 : ne1;
+ const int64_t IH = is_2D ? ne1 : 1;
+ const int64_t IW = ne0;
+
+ const int64_t KH = is_2D ? ne11 : 1;
+ const int64_t KW = ne10;
+
+ const int64_t OH = is_2D ? ne02 : 1;
+ const int64_t OW = ne01;
+
+ int ofs0 = is_2D ? nb3 : nb2;
+ int ofs1 = is_2D ? nb2 : nb1;
+
+ GGML_ASSERT(nb0 == sizeof(float));
+
+ // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
+ {
+ float * const wdata = (float *) dst->data;
+
+ for (int64_t in = 0; in < N; in++) {
+ for (int64_t iic = ith; iic < IC; iic += nth) {
+ for (int64_t iih = 0; iih < IH; iih++) {
+ for (int64_t iiw = 0; iiw < IW; iiw++) {
+
+ // micro kernel
+ float grad = 0.0f;
+ for (int64_t ikh = 0; ikh < KH; ikh++) {
+ for (int64_t ikw = 0; ikw < KW; ikw++) {
+ // For s0 > 1 some values were skipped over in the forward pass.
+ // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
+ const int64_t tmpw = (iiw + p0 - ikw*d0);
+ if (tmpw % s0 != 0) {
+ continue;
+ }
+ const int64_t iow = tmpw / s0;
+
+ // Equivalent logic as above except for s1.
+ int64_t ioh;
+ if (is_2D) {
+ const int64_t tmph = iih + p1 - ikh*d1;
+
+ if (tmph % s1 != 0) {
+ continue;
+ }
+
+ ioh = tmph / s1;
+ } else {
+ ioh = 0;
+ }
+
+ if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
+ continue;
+ }
+
+ const float * const grad_in = (const float *) src0->data
+ + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
+ grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
+ }
+ }
+ float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
+ dst_data[iih*IW + iiw] = grad;
+ }
+ }
+ }
+ }
+ }
+}
+
+// ggml_compute_forward_conv_transpose_2d
+
+void ggml_compute_forward_conv_transpose_2d(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00*ne01*ne02*ne03;
+
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (ith == 0) {
+ memset(params->wdata, 0, params->wsize);
+
+ // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
+ ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ for (int64_t i00 = 0; i00 < ne00; i00++) {
+ dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
+ }
+ }
+ }
+ }
+ }
+
+ // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
+ for (int i12 = 0; i12 < ne12; i12++) {
+ for (int i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
+ ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
+ }
+ }
+ }
+ }
+
+ memset(dst->data, 0, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+
+ const int32_t stride = ggml_get_op_params_i32(dst, 0);
+
+ // total patches in dst
+ const int np = ne2;
+
+ // patches per thread
+ const int dp = (np + nth - 1)/nth;
+
+ // patch range for this thread
+ const int ip0 = dp*ith;
+ const int ip1 = MIN(ip0 + dp, np);
+
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+ ggml_fp16_t * const wdata_src = wdata + nk;
+
+ for (int i2 = ip0; i2 < ip1; i2++) { // Cout
+ float * dst_data = (float *)((char *) dst->data + i2*nb2);
+ ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
+ for (int i11 = 0; i11 < ne11; i11++) {
+ for (int i10 = 0; i10 < ne10; i10++) {
+ const int i1n = i11*ne10*ne12 + i10*ne12;
+ for (int i01 = 0; i01 < ne01; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ float v = 0;
+ ggml_vec_dot_f16(ne03, &v, 0,
+ wdata_src + i1n, 0,
+ wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
+ dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
+ }
+ }
+ }
+ }
+ }
+}
+
+// ggml_compute_forward_pool_1d_sk_p0
+
+static void ggml_compute_forward_pool_1d_sk_p0(
+ const ggml_compute_params * params,
+ const ggml_op_pool op,
+ const int k,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src = dst->src[0];
+
+ assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ const char * cdata = (const char *)src->data;
+ const char * const data_end = cdata + ggml_nbytes(src);
+ float * drow = (float *)dst->data;
+
+ const int64_t rs = dst->ne[0];
+
+ while (cdata < data_end) {
+ const void * srow = (const void *)cdata;
+ int j = 0;
+ for (int64_t i = 0; i < rs; ++i) {
+ switch (op) {
+ case GGML_OP_POOL_AVG: drow[i] = 0; break;
+ case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
+ case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
+ }
+ for (int ki = 0; ki < k; ++ki) {
+ const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
+ switch (op) {
+ case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
+ case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
+ case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
+ }
+ ++j;
+ }
+ switch (op) {
+ case GGML_OP_POOL_AVG: drow[i] /= k; break;
+ case GGML_OP_POOL_MAX: break;
+ case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
+ }
+ }
+
+ cdata += src->nb[1];
+ drow += rs;
+ }
+}
+
+// ggml_compute_forward_pool_1d
+
+void ggml_compute_forward_pool_1d(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+ const int k0 = opts[1];
+ const int s0 = opts[2];
+ const int p0 = opts[3];
+ GGML_ASSERT(p0 == 0); // padding not supported
+ GGML_ASSERT(k0 == s0); // only s = k supported
+
+ ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
+}
+
+// ggml_compute_forward_pool_2d
+
+void ggml_compute_forward_pool_2d(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src = dst->src[0];
+
+ assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+ const int k0 = opts[1];
+ const int k1 = opts[2];
+ const int s0 = opts[3];
+ const int s1 = opts[4];
+ const int p0 = opts[5];
+ const int p1 = opts[6];
+ const char * cdata = (const char*)src->data;
+ const char * const data_end = cdata + ggml_nbytes(src);
+
+ const int64_t px = dst->ne[0];
+ const int64_t py = dst->ne[1];
+ const int64_t pa = px * py;
+
+ float * dplane = (float *)dst->data;
+
+ const int ka = k0 * k1;
+ const int offset0 = -p0;
+ const int offset1 = -p1;
+
+ while (cdata < data_end) {
+ for (int oy = 0; oy < py; ++oy) {
+ float * const drow = dplane + oy * px;
+ for (int ox = 0; ox < px; ++ox) {
+ float * const out = drow + ox;
+ switch (op) {
+ case GGML_OP_POOL_AVG: *out = 0; break;
+ case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
+ case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
+ }
+
+ const int ix = offset0 + ox * s0;
+ const int iy = offset1 + oy * s1;
+
+ for (int ky = 0; ky < k1; ++ky) {
+ if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
+ const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
+ for (int kx = 0; kx < k0; ++kx) {
+ int j = ix + kx;
+ if (j < 0 || j >= src->ne[0]) continue;
+ const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
+ switch (op) {
+ case GGML_OP_POOL_AVG: *out += srow_j; break;
+ case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
+ case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
+ }
+ }
+ }
+ switch (op) {
+ case GGML_OP_POOL_AVG: *out /= ka; break;
+ case GGML_OP_POOL_MAX: break;
+ case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
+ }
+ }
+ }
+
+ cdata += src->nb[2];
+ dplane += pa;
+ }
+}
+
+// ggml_compute_forward_pool_2d_back
+
+void ggml_compute_forward_pool_2d_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src = dst->src[0];
+ const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
+
+ assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+ const int k0 = opts[1];
+ const int k1 = opts[2];
+ const int s0 = opts[3];
+ const int s1 = opts[4];
+ const int p0 = opts[5];
+ const int p1 = opts[6];
+
+ char * cdata = (char *) dst->data;
+ const char * cdataf = (const char *) dstf->data;
+ const char * const data_end = cdata + ggml_nbytes(dst);
+
+ GGML_ASSERT(params->ith == 0);
+ memset(cdata, 0, ggml_nbytes(dst));
+
+ const int64_t px = src->ne[0];
+ const int64_t py = src->ne[1];
+ const int64_t pa = px * py;
+
+ const float * splane = (const float *) src->data;
+
+ const int ka = k0 * k1;
+ const int offset0 = -p0;
+ const int offset1 = -p1;
+
+ while (cdata < data_end) {
+ for (int oy = 0; oy < py; ++oy) {
+ const float * const srow = splane + oy * px;
+ for (int ox = 0; ox < px; ++ox) {
+ const float grad0 = srow[ox];
+
+ const int ix = offset0 + ox * s0;
+ const int iy = offset1 + oy * s1;
+
+ if (op == GGML_OP_POOL_MAX) {
+ float maxval = -FLT_MAX;
+ int kxmax = -1;
+ int kymax = -1;
+
+ for (int ky = 0; ky < k1; ++ky) {
+ if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
+ continue;
+ }
+ const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
+ for (int kx = 0; kx < k0; ++kx) {
+ int j = ix + kx;
+ if (j < 0 || j >= dst->ne[0]) {
+ continue;
+ }
+
+ const float val = dst->type == GGML_TYPE_F32 ?
+ ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
+ if (val <= maxval) {
+ continue;
+ }
+
+ maxval = val;
+ kxmax = kx;
+ kymax = ky;
+ }
+ }
+
+ if (kxmax == -1 || kymax == -1) {
+ continue;
+ }
+
+ void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
+ const int j = ix + kxmax;
+ if (dst->type == GGML_TYPE_F32) {
+ ((float *) drow)[j] += grad0;
+ } else {
+ ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
+ }
+ } else if (op == GGML_OP_POOL_AVG) {
+ const float grad = grad0 / ka;
+
+ for (int ky = 0; ky < k1; ++ky) {
+ if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
+ continue;
+ }
+ void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
+ for (int kx = 0; kx < k0; ++kx) {
+ int j = ix + kx;
+ if (j < 0 || j >= dst->ne[0]) {
+ continue;
+ }
+
+ if (dst->type == GGML_TYPE_F32) {
+ ((float *) drow)[j] += grad;
+ } else {
+ ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
+ }
+ }
+ }
+ } else {
+ GGML_ASSERT(false);
+ }
+ }
+ }
+
+ cdata += dst->nb[2];
+ cdataf += dst->nb[2];
+ splane += pa;
+ }
+}
+
+// ggml_compute_forward_upscale
+
+static void ggml_compute_forward_upscale_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const float sf0 = (float)ne0/src0->ne[0];
+ const float sf1 = (float)ne1/src0->ne[1];
+ const float sf2 = (float)ne2/src0->ne[2];
+ const float sf3 = (float)ne3/src0->ne[3];
+
+ // TODO: optimize
+
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ const int64_t i03 = i3 / sf3;
+ for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
+ const int64_t i02 = i2 / sf2;
+ for (int64_t i1 = 0; i1 < ne1; i1++) {
+ const int64_t i01 = i1 / sf1;
+ for (int64_t i0 = 0; i0 < ne0; i0++) {
+ const int64_t i00 = i0 / sf0;
+
+ const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+ float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
+
+ *y = *x;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_upscale(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_upscale_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+
+// ggml_compute_forward_pad
+
+static void ggml_compute_forward_pad_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ float * dst_ptr = (float *) dst->data;
+
+ // TODO: optimize
+
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ for (int64_t i3 = 0; i3 < ne3; ++i3) {
+ const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
+
+ const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
+ dst_ptr[dst_idx] = *src_ptr;
+ } else {
+ dst_ptr[dst_idx] = 0;
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_pad(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_pad_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_pad_reflect_1d
+
+void ggml_compute_forward_pad_reflect_1d(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int32_t * opts = (const int32_t *) dst->op_params;
+ const int p0 = opts[0];
+ const int p1 = opts[1];
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ for (int64_t i2 = 0; i2 < ne2; i2++) {
+ for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
+ float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
+ float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
+
+ ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
+
+ for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
+ for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
+ }
+ }
+ }
+}
+
+// ggml_compute_forward_arange
+
+static void ggml_compute_forward_arange_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ GGML_ASSERT(dst->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const float start = ggml_get_op_params_f32(dst, 0);
+ const float stop = ggml_get_op_params_f32(dst, 1);
+ const float step = ggml_get_op_params_f32(dst, 2);
+
+ const int64_t steps = (int64_t) ceilf((stop - start) / step);
+
+ GGML_ASSERT(ggml_nelements(dst) == steps);
+
+ for (int64_t i = ith; i < steps; i+= nth) {
+ float value = start + step * i;
+ ((float *)dst->data)[i] = value;
+ }
+}
+
+void ggml_compute_forward_arange(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ switch (dst->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_arange_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+static void ggml_compute_forward_timestep_embedding_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int dim = ggml_get_op_params_i32(dst, 0);
+ const int max_period = ggml_get_op_params_i32(dst, 1);
+
+ int half = dim / 2;
+
+ for (int64_t i = 0; i < ne00; i++) {
+ float * embed_data = (float *)((char *) dst->data + i*nb1);
+ for (int64_t j = ith; j < half; j += nth) {
+ float timestep = ((float *)src0->data)[i];
+ float freq = (float)expf(-logf(max_period) * j / half);
+ float arg = timestep * freq;
+ embed_data[j] = cosf(arg);
+ embed_data[j + half] = sinf(arg);
+ }
+ if (dim % 2 != 0 && ith == 0) {
+ embed_data[dim] = 0.f;
+ }
+ }
+}
+
+void ggml_compute_forward_timestep_embedding(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_timestep_embedding_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_argsort
+
+static void ggml_compute_forward_argsort_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ GGML_ASSERT(nb0 == sizeof(float));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t nr = ggml_nrows(src0);
+
+ ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
+
+ for (int64_t i = ith; i < nr; i += nth) {
+ int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
+ const float * src_data = (float *)((char *) src0->data + i*nb01);
+
+ for (int64_t j = 0; j < ne0; j++) {
+ dst_data[j] = j;
+ }
+
+ // C doesn't have a functional sort, so we do a bubble sort instead
+ for (int64_t j = 0; j < ne0; j++) {
+ for (int64_t k = j + 1; k < ne0; k++) {
+ if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
+ (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
+ int32_t tmp = dst_data[j];
+ dst_data[j] = dst_data[k];
+ dst_data[k] = tmp;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_argsort(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_argsort_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_flash_attn_ext
+
+static void ggml_compute_forward_flash_attn_ext_f16(
+ const ggml_compute_params * params,
+ const ggml_tensor * q,
+ const ggml_tensor * k,
+ const ggml_tensor * v,
+ const ggml_tensor * mask,
+ ggml_tensor * dst) {
+
+ GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
+ GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
+ GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
+ GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
+ GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
+ GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t DK = nek0;
+ const int64_t DV = nev0;
+ const int64_t N = neq1;
+
+ GGML_ASSERT(ne0 == DV);
+ GGML_ASSERT(ne2 == N);
+
+ // input tensor rows must be contiguous
+ GGML_ASSERT(nbq0 == ggml_type_size(q->type));
+ GGML_ASSERT(nbk0 == ggml_type_size(k->type));
+ GGML_ASSERT(nbv0 == ggml_type_size(v->type));
+
+ GGML_ASSERT(neq0 == DK);
+ GGML_ASSERT(nek0 == DK);
+ GGML_ASSERT(nev0 == DV);
+
+ GGML_ASSERT(neq1 == N);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ // broadcast factors
+ const int64_t rk2 = neq2/nek2;
+ const int64_t rk3 = neq3/nek3;
+
+ const int64_t rv2 = neq2/nev2;
+ const int64_t rv3 = neq3/nev3;
+
+ // parallelize by q rows using ggml_vec_dot_f32
+
+ // total rows in q
+ const int nr = neq1*neq2*neq3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+ float logit_softcap = 0.0f;
+
+ memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
+ memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
+
+ if (logit_softcap != 0) {
+ scale /= logit_softcap;
+ }
+
+ const uint32_t n_head = neq2;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
+ ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
+ ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
+ ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
+
+ GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
+ GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
+
+ // loop over n_batch and n_head
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int iq3 = ir/(neq2*neq1);
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+ const uint32_t h = iq2; // head index
+ const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
+
+ float S = 0.0f; // sum
+ float M = -INFINITY; // maximum KQ value
+
+ float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
+ float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
+ ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
+ ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
+
+ if (v->type == GGML_TYPE_F16) {
+ memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
+ } else {
+ memset(VKQ32, 0, DV*sizeof(float));
+ }
+
+ const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
+
+ // k indices
+ const int ik3 = iq3 / rk3;
+ const int ik2 = iq2 / rk2;
+
+ // v indices
+ const int iv3 = iq3 / rv3;
+ const int iv2 = iq2 / rv2;
+
+ const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
+ q_to_vec_dot(pq, Q_q, DK);
+
+ // online softmax / attention
+ // loop over n_kv and n_head_kv
+ // ref: https://arxiv.org/pdf/2112.05682.pdf
+ for (int64_t ic = 0; ic < nek1; ++ic) {
+ const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
+ if (mv == -INFINITY) {
+ continue;
+ }
+
+ float s; // KQ value
+
+ const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
+ kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
+
+ s = s*scale; // scale KQ value
+
+ if (logit_softcap != 0.0f) {
+ s = logit_softcap*tanhf(s);
+ }
+
+ s += mv; // apply mask
+
+ const float Mold = M;
+
+ float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
+ float vs = 1.0f; // post-softmax KQ value, expf(s - M)
+
+ const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
+
+ if (v->type == GGML_TYPE_F16) {
+ if (s > M) {
+ // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
+ M = s;
+ ms = expf(Mold - M);
+
+ // V = V*expf(Mold - M)
+ ggml_vec_scale_f16(DV, VKQ16, ms);
+ } else {
+ // no new maximum, ms == 1.0f, vs != 1.0f
+ vs = expf(s - M);
+ }
+
+ // V += v*expf(s - M)
+ ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
+ } else {
+ if (s > M) {
+ // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
+ M = s;
+ ms = expf(Mold - M);
+
+ // V = V*expf(Mold - M)
+ ggml_vec_scale_f32(DV, VKQ32, ms);
+ } else {
+ // no new maximum, ms == 1.0f, vs != 1.0f
+ vs = expf(s - M);
+ }
+
+ v_to_float(v_data, V32, DV);
+
+ // V += v*expf(s - M)
+ ggml_vec_mad_f32(DV, VKQ32, V32, vs);
+ }
+
+ S = S*ms + vs; // scale and increment sum with partial sum
+ }
+
+ if (v->type == GGML_TYPE_F16) {
+ for (int64_t d = 0; d < DV; ++d) {
+ VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
+ }
+ }
+
+ // V /= S
+ const float S_inv = 1.0f/S;
+ ggml_vec_scale_f32(DV, VKQ32, S_inv);
+
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ // original
+ //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
+
+ // permute(0, 2, 1, 3)
+ memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
+ }
+}
+
+void ggml_compute_forward_flash_attn_ext(
+ const ggml_compute_params * params,
+ const ggml_tensor * q,
+ const ggml_tensor * k,
+ const ggml_tensor * v,
+ const ggml_tensor * mask,
+ ggml_tensor * dst) {
+ switch (dst->op_params[3]) {
+ case GGML_PREC_DEFAULT:
+ case GGML_PREC_F32:
+ {
+ // uses F32 accumulators
+ ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_flash_attn_back
+
+static void ggml_compute_forward_flash_attn_back_f32(
+ const ggml_compute_params * params,
+ const bool masked,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * q = dst->src[0];
+ const ggml_tensor * k = dst->src[1];
+ const ggml_tensor * v = dst->src[2];
+ const ggml_tensor * d = dst->src[3];
+
+ GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
+ GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
+ GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
+ GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
+ GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
+ GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
+ GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
+ GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t D = neq0;
+ const int64_t N = neq1;
+ const int64_t P = nek1 - N;
+ const int64_t M = P + N;
+
+ const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
+ const int mxDM = MAX(D, Mup);
+
+ // GGML_ASSERT(ne0 == D);
+ // GGML_ASSERT(ne1 == N);
+ GGML_ASSERT(P >= 0);
+
+ GGML_ASSERT(nbq0 == sizeof(float));
+ GGML_ASSERT(nbk0 == sizeof(float));
+ GGML_ASSERT(nbv0 == sizeof(float));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev1 == D);
+ GGML_ASSERT(ned0 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nek1 == N + P);
+ GGML_ASSERT(nev1 == D);
+ GGML_ASSERT(ned1 == N);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (ith == 0) {
+ memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
+ }
+ ggml_barrier(params->threadpool);
+
+ const int64_t elem_q = ggml_nelements(q);
+ const int64_t elem_k = ggml_nelements(k);
+
+ ggml_type result_type = dst->type;
+ GGML_ASSERT(ggml_blck_size(result_type) == 1);
+ const size_t tsize = ggml_type_size(result_type);
+
+ const size_t offs_q = 0;
+ const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
+ const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
+
+ void * grad_q = (char *) dst->data;
+ void * grad_k = (char *) dst->data + offs_k;
+ void * grad_v = (char *) dst->data + offs_v;
+
+ const size_t nbgq1 = nb0*neq0;
+ const size_t nbgq2 = nb0*neq0*neq1;
+ const size_t nbgq3 = nb0*neq0*neq1*neq2;
+
+ const size_t nbgk1 = nb0*nek0;
+ const size_t nbgk2 = nb0*nek0*nek1;
+ const size_t nbgk3 = nb0*nek0*nek1*neq2;
+
+ const size_t nbgv1 = nb0*nev0;
+ const size_t nbgv2 = nb0*nev0*nev1;
+ const size_t nbgv3 = nb0*nev0*nev1*neq2;
+
+ // parallelize by k rows using ggml_vec_dot_f32
+
+ // total rows in k
+ const int nr = nek2*nek3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float scale = 1.0f/sqrtf(D);
+
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+ // how often k2 (and v2) is repeated in q2
+ int nrep = neq2/nek2;
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int ik3 = ir/(nek2);
+ const int ik2 = ir - ik3*nek2;
+
+ const int iq3 = ik3;
+ const int id3 = ik3;
+ const int iv3 = ik3;
+ const int iv2 = ik2;
+
+ for (int irep = 0; irep < nrep; ++irep) {
+ const int iq2 = ik2 + irep*nek2;
+ const int id2 = iq2;
+
+ // (ik2 + irep*nek2) % nek2 == ik2
+ for (int iq1 = 0; iq1 < neq1; ++iq1) {
+ const int id1 = iq1;
+
+ // not sure about CACHE_LINE_SIZE_F32..
+ // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
+ float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
+ float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
+
+ for (int i = M; i < Mup; ++i) {
+ S[i] = -INFINITY;
+ }
+
+ const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
+ for (int64_t ic = 0; ic < masked_begin; ++ic) {
+ // k indices
+ const int ik1 = ic;
+
+ // S indices
+ const int i1 = ik1;
+
+ ggml_vec_dot_f32(neq0,
+ S + i1, 0,
+ (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
+ }
+
+ // scale
+ ggml_vec_scale_f32(masked_begin, S, scale);
+
+ for (int64_t i = masked_begin; i < M; i++) {
+ S[i] = -INFINITY;
+ }
+
+ // softmax
+ // exclude known -INF S[..] values from max and loop
+ // dont forget to set their SM values to zero
+ {
+ float max = -INFINITY;
+ ggml_vec_max_f32(masked_begin, &max, S);
+
+ ggml_float sum = 0.0;
+ {
+#ifdef GGML_SOFT_MAX_ACCELERATE
+ max = -max;
+ vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
+ vvexpf(SM, SM, &Mup);
+ ggml_vec_sum_f32(Mup, &sum, SM);
+#else
+ sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
+#endif
+ }
+
+ assert(sum > 0.0);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(masked_begin, SM, sum);
+
+ }
+
+ // step-by-step explanation
+ {
+ // forward-process shape grads from backward process
+ // parallel_for ik2,ik3:
+ // for irep:
+ // iq2 = ik2 + irep*nek2
+ // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
+ // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
+ // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
+ // for iq1:
+ // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
+ // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
+ // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
+ // S0 = -Inf [D,1,1,1]
+ // ~S1[i] = dot(kcur[:D,i], qcur)
+ // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
+ // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
+ // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
+ // ~S5[i] = dot(vcur[:,i], S4)
+ // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
+ // ~dst[i,iq1,iq2,iq3] = S5[i] ^
+ // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
+ // dst backward-/ grad[dst] = d
+ //
+ // output gradients with their dependencies:
+ //
+ // grad[kcur] = grad[S1].T @ qcur
+ // grad[S1] = diag_mask_zero(grad[S3], P) * scale
+ // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // grad[S4] = grad[S5] @ vcur
+ // grad[S4] = d[:D,id1,id2,id3] @ vcur
+ // grad[qcur] = grad[S1] @ kcur
+ // grad[vcur] = grad[S5].T @ S4
+ // grad[vcur] = d[:D,id1,id2,id3].T @ S4
+ //
+ // in post-order:
+ //
+ // S1 = qcur @ kcur.T
+ // S2 = S1 * scale
+ // S3 = diag_mask_inf(S2, P)
+ // S4 = softmax(S3)
+ // grad[S4] = d[:D,id1,id2,id3] @ vcur
+ // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // grad[S1] = diag_mask_zero(grad[S3], P) * scale
+ // grad[qcur] = grad[S1] @ kcur
+ // grad[kcur] = grad[S1].T @ qcur
+ // grad[vcur] = d[:D,id1,id2,id3].T @ S4
+ //
+ // using less variables (SM=S4):
+ //
+ // S = diag_mask_inf(qcur @ kcur.T * scale, P)
+ // SM = softmax(S)
+ // S = d[:D,iq1,iq2,iq3] @ vcur
+ // dot_SM_gradSM = dot(SM, S)
+ // S = SM * (S - dot(SM, S))
+ // S = diag_mask_zero(S, P) * scale
+ //
+ // grad[q][:D,iq1,iq2,iq3] += S @ kcur
+ // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
+ // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
+ }
+
+ // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
+ // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
+ // for ic:
+ // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
+ // exclude known future zero S[..] values from operation
+ ggml_vec_set_f32(masked_begin, S, 0);
+ for (int64_t ic = 0; ic < D; ++ic) {
+ ggml_vec_mad_f32(masked_begin,
+ S,
+ (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
+ *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
+ }
+
+ // S = SM * (S - dot(SM, S))
+ float dot_SM_gradSM = 0;
+ ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
+ ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
+ ggml_vec_mul_f32 (masked_begin, S, S, SM);
+
+ // S = diag_mask_zero(S, P) * scale
+ // already done by above ggml_vec_set_f32
+
+ // exclude known zero S[..] values from operation
+ ggml_vec_scale_f32(masked_begin, S, scale);
+
+ // S shape [M,1]
+ // SM shape [M,1]
+ // kcur shape [D,M]
+ // qcur shape [D,1]
+ // vcur shape [M,D]
+
+ // grad[q][:D,iq1,iq2,iq3] += S @ kcur
+ // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
+ // for ic:
+ // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
+ // exclude known zero S[..] values from loop
+ for (int64_t ic = 0; ic < masked_begin; ++ic) {
+ ggml_vec_mad_f32(D,
+ (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
+ (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
+ S[ic]);
+ }
+
+ // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
+ // for ic:
+ // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
+ // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
+ // exclude known zero S[..] values from loop
+ for (int64_t ic = 0; ic < masked_begin; ++ic) {
+ ggml_vec_mad_f32(D,
+ (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
+ S[ic]);
+ }
+
+ // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
+ // for ic:
+ // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
+ // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
+ // exclude known zero SM[..] values from mad
+ for (int64_t ic = 0; ic < D; ++ic) {
+ ggml_vec_mad_f32(masked_begin,
+ (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
+ SM,
+ *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_flash_attn_back(
+ const ggml_compute_params * params,
+ const bool masked,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * q = dst->src[0];
+
+ switch (q->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_ssm_conv
+
+static void ggml_compute_forward_ssm_conv_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0]; // conv_x
+ const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src1->ne[0]; // d_conv
+ const int ncs = src0->ne[0]; // d_conv - 1 + n_t
+ const int nr = src0->ne[1]; // d_inner
+ const int n_t = dst->ne[1]; // tokens per sequence
+ const int n_s = dst->ne[2]; // number of sequences in the batch
+
+ GGML_ASSERT( dst->ne[0] == nr);
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT(src1->nb[0] == sizeof(float));
+ GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+ const int ir = ir1 - ir0;
+
+ for (int i3 = 0; i3 < n_s; ++i3) {
+ for (int i2 = 0; i2 < n_t; ++i2) {
+ // {d_conv - 1 + n_t, d_inner, n_seqs}
+ // sliding window
+ const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
+ const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
+ float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
+
+ // TODO: transpose the output for smaller strides for big batches?
+ // d_inner
+ for (int i1 = 0; i1 < ir; ++i1) {
+ // rowwise dot product
+ // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
+ float sumf = 0.0f;
+
+ // d_conv
+ for (int i0 = 0; i0 < nc; ++i0) {
+ sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
+ }
+ x[i1] = sumf;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_ssm_conv(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ switch (dst->src[0]->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_ssm_conv_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_ssm_scan
+
+static void ggml_compute_forward_ssm_scan_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0]; // s
+ const ggml_tensor * src1 = dst->src[1]; // x
+ const ggml_tensor * src2 = dst->src[2]; // dt
+ const ggml_tensor * src3 = dst->src[3]; // A
+ const ggml_tensor * src4 = dst->src[4]; // B
+ const ggml_tensor * src5 = dst->src[5]; // C
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t nc = src0->ne[0]; // d_state
+ const int64_t nr = src0->ne[1]; // d_inner
+ const int64_t n_t = src1->ne[1]; // number of tokens per sequence
+ const int64_t n_s = src0->ne[2]; // number of sequences in the batch
+
+ GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
+ GGML_ASSERT(src1->nb[0] == sizeof(float));
+ GGML_ASSERT(src2->nb[0] == sizeof(float));
+ GGML_ASSERT(src3->nb[0] == sizeof(float));
+ GGML_ASSERT(src4->nb[0] == sizeof(float));
+ GGML_ASSERT(src5->nb[0] == sizeof(float));
+ // required for the dot product between s and C
+ GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
+ // required for per-sequence offsets for states
+ GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
+ // required to get correct offset for state destination (i.e. src1->nb[3])
+ GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+ const int ir = ir1 - ir0;
+
+ for (int i3 = 0; i3 < n_s; ++i3) {
+ for (int i2 = 0; i2 < n_t; ++i2) {
+ const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
+ const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
+ const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
+ const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
+ const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
+ const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
+ float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
+ float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
+
+ // use the output as the source for the next token-wise iterations
+ if (i2 > 0) { s0 = s; }
+
+ // d_inner
+ for (int i1 = 0; i1 < ir; ++i1) {
+ // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
+ float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
+ float x_dt = x[i1] * dt_soft_plus;
+ float sumf = 0.0f;
+ // d_state
+ for (int i0 = 0; i0 < nc; ++i0) {
+ int i = i0 + i1*nc;
+ // state = prev_state * dA + dB * x
+ float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
+ // y = rowwise_dotprod(state, C)
+ sumf += state * C[i0];
+ s[i] = state;
+ }
+ y[i1] = sumf;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_ssm_scan(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ switch (dst->src[0]->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_ssm_scan_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_win_part
+
+static void ggml_compute_forward_win_part_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ GGML_UNUSED(params);
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+
+ const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t w = ((const int32_t *)(dst->op_params))[2];
+
+ assert(ne00 == ne0);
+ assert(ne3 == nep0*nep1);
+
+ // TODO: optimize / multi-thread
+ for (int py = 0; py < nep1; ++py) {
+ for (int px = 0; px < nep0; ++px) {
+ const int64_t i3 = py*nep0 + px;
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = 0; i1 < ne1; ++i1) {
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ const int64_t i02 = py*w + i2;
+ const int64_t i01 = px*w + i1;
+ const int64_t i00 = i0;
+
+ const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
+ const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
+
+ if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
+ ((float *) dst->data)[i] = 0.0f;
+ } else {
+ ((float *) dst->data)[i] = ((float *) src0->data)[j];
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_win_part(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_win_part_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_win_unpart
+
+static void ggml_compute_forward_win_unpart_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ GGML_UNUSED(params);
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
+
+ const int32_t w = ((const int32_t *)(dst->op_params))[0];
+
+ // padding
+ const int px = (w - ne1%w)%w;
+ //const int py = (w - ne2%w)%w;
+
+ const int npx = (px + ne1)/w;
+ //const int npy = (py + ne2)/w;
+
+ assert(ne0 == ne00);
+
+ // TODO: optimize / multi-thread
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = 0; i1 < ne1; ++i1) {
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ const int ip2 = i2/w;
+ const int ip1 = i1/w;
+
+ const int64_t i02 = i2%w;
+ const int64_t i01 = i1%w;
+ const int64_t i00 = i0;
+
+ const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
+ const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
+
+ ((float *) dst->data)[j] = ((float *) src0->data)[i];
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_win_unpart(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_win_unpart_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+//gmml_compute_forward_unary
+
+void ggml_compute_forward_unary(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_unary_op op = ggml_get_unary_op(dst);
+
+ switch (op) {
+ case GGML_UNARY_OP_ABS:
+ {
+ ggml_compute_forward_abs(params, dst);
+ } break;
+ case GGML_UNARY_OP_SGN:
+ {
+ ggml_compute_forward_sgn(params, dst);
+ } break;
+ case GGML_UNARY_OP_NEG:
+ {
+ ggml_compute_forward_neg(params, dst);
+ } break;
+ case GGML_UNARY_OP_STEP:
+ {
+ ggml_compute_forward_step(params, dst);
+ } break;
+ case GGML_UNARY_OP_TANH:
+ {
+ ggml_compute_forward_tanh(params, dst);
+ } break;
+ case GGML_UNARY_OP_ELU:
+ {
+ ggml_compute_forward_elu(params, dst);
+ } break;
+ case GGML_UNARY_OP_RELU:
+ {
+ ggml_compute_forward_relu(params, dst);
+ } break;
+ case GGML_UNARY_OP_SIGMOID:
+ {
+ ggml_compute_forward_sigmoid(params, dst);
+ } break;
+ case GGML_UNARY_OP_GELU:
+ {
+ ggml_compute_forward_gelu(params, dst);
+ } break;
+ case GGML_UNARY_OP_GELU_QUICK:
+ {
+ ggml_compute_forward_gelu_quick(params, dst);
+ } break;
+ case GGML_UNARY_OP_SILU:
+ {
+ ggml_compute_forward_silu(params, dst);
+ } break;
+ case GGML_UNARY_OP_HARDSWISH:
+ {
+ ggml_compute_forward_hardswish(params, dst);
+ } break;
+ case GGML_UNARY_OP_HARDSIGMOID:
+ {
+ ggml_compute_forward_hardsigmoid(params, dst);
+ } break;
+ case GGML_UNARY_OP_EXP:
+ {
+ ggml_compute_forward_exp(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_get_rel_pos
+
+static void ggml_compute_forward_get_rel_pos_f16(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ GGML_UNUSED(params);
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+
+ const int64_t w = ne1;
+
+ ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
+ ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
+
+ for (int64_t i2 = 0; i2 < ne2; ++i2) {
+ for (int64_t i1 = 0; i1 < ne1; ++i1) {
+ const int64_t pos = (w - i1 - 1) + i2;
+ for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_get_rel_pos(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ case GGML_TYPE_BF16:
+ {
+ ggml_compute_forward_get_rel_pos_f16(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_add_rel_pos
+
+static void ggml_compute_forward_add_rel_pos_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+ const ggml_tensor * src2 = dst->src[2];
+
+ const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
+ if (!inplace) {
+ if (params->ith == 0) {
+ memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
+ }
+ ggml_barrier(params->threadpool);
+ }
+ // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
+
+ float * src1_data = (float *) src1->data;
+ float * src2_data = (float *) src2->data;
+ float * dst_data = (float *) dst->data;
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ // total patches in dst
+ const int np = ne13;
+
+ // patches per thread
+ const int dp = (np + nth - 1)/nth;
+
+ // patch range for this thread
+ const int ip0 = dp*ith;
+ const int ip1 = MIN(ip0 + dp, np);
+
+ for (int64_t i13 = ip0; i13 < ip1; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ for (int64_t i11 = 0; i11 < ne11; ++i11) {
+ const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
+ for (int64_t i10 = 0; i10 < ne10; ++i10) {
+ const int64_t jp0 = jp1 + i10;
+ const float src1_e = src1_data[jp0];
+ const float src2_e = src2_data[jp0];
+
+ const int64_t jdh = jp0 * ne10;
+ const int64_t jdw = jdh - (ne10 - 1) * i10;
+
+ for (int64_t j = 0; j < ne10; ++j) {
+ dst_data[jdh + j ] += src2_e;
+ dst_data[jdw + j*ne10] += src1_e;
+ }
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_add_rel_pos(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_add_rel_pos_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_rwkv_wkv6
+
+static void ggml_compute_forward_rwkv_wkv6_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ const int64_t T = dst->src[1]->ne[2];
+ const int64_t C = dst->ne[0];
+ const int64_t HEADS = dst->src[1]->ne[1];
+ const int64_t n_seqs = dst->src[5]->ne[1];
+ const int64_t head_size = C / HEADS;
+
+ float * dst_data = (float *) dst->data;
+ float * state = ((float *) dst->data) + C * T;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ if (ith >= HEADS) {
+ return;
+ }
+
+ const int h_start = (HEADS * ith) / nth;
+ const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
+ (HEADS * (ith + 1)) / nth : HEADS;
+
+ float * k = (float *) dst->src[0]->data;
+ float * v = (float *) dst->src[1]->data;
+ float * r = (float *) dst->src[2]->data;
+ float * time_faaaa = (float *) dst->src[3]->data;
+ float * time_decay = (float *) dst->src[4]->data;
+
+ size_t t_stride = HEADS * head_size; // Same to C
+
+ size_t h_stride = C / HEADS;
+ GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
+ size_t h_stride_2d = head_size * head_size;
+
+ if (ith == 0) {
+ memset(dst_data, 0, T * C * sizeof(float));
+ }
+ ggml_barrier(params->threadpool);
+
+
+ #if defined(__AVX__) && !defined(__AVX512F__)
+ #define GGML_F32X GGML_F32x8
+ #define GGML_F32X_SET1 GGML_F32x8_SET1
+ #define GGML_F32X_LOAD GGML_F32x8_LOAD
+ #define GGML_F32X_STORE GGML_F32x8_STORE
+ #define GGML_F32X_MUL GGML_F32x8_MUL
+ #define GGML_F32X_FMA GGML_F32x8_FMA
+ #define WKV_VECTOR_SIZE 8
+ #elif defined(__AVX512F__)
+ #define GGML_F32X GGML_F32x16
+ #define GGML_F32X_SET1 GGML_F32x16_SET1
+ #define GGML_F32X_LOAD GGML_F32x16_LOAD
+ #define GGML_F32X_STORE GGML_F32x16_STORE
+ #define GGML_F32X_MUL GGML_F32x16_MUL
+ #define GGML_F32X_FMA GGML_F32x16_FMA
+ #define WKV_VECTOR_SIZE 16
+ #elif defined(__ARM_NEON) && defined(__aarch64__)
+ #define GGML_F32X GGML_F32x4
+ #define GGML_F32X_SET1 GGML_F32x4_SET1
+ #define GGML_F32X_LOAD GGML_F32x4_LOAD
+ #define GGML_F32X_STORE GGML_F32x4_STORE
+ #define GGML_F32X_MUL GGML_F32x4_MUL
+ #define GGML_F32X_FMA GGML_F32x4_FMA
+ #define WKV_VECTOR_SIZE 4
+ #endif
+
+ #ifdef WKV_VECTOR_SIZE
+ const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
+
+ for (int64_t t = 0; t < T; t++) {
+ size_t t_offset = t * t_stride;
+ size_t state_offset = head_size * C * (t / (T / n_seqs));
+ float * state_cur = state + state_offset;
+ float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
+
+ for (int64_t h = h_start; h < h_end; h++) {
+ size_t h_offset = h * h_stride;
+ size_t t_h_offset = t_offset + h_offset;
+ size_t h_2d_offset = h * h_stride_2d;
+
+ for (int64_t i = 0; i < head_size; i++) {
+ size_t t_h_i_offset = t_h_offset + i;
+ size_t h_i_offset = h_offset + i;
+ size_t h_2d_i_offset = h_2d_offset + i * h_stride;
+
+ float k_val = k[t_h_i_offset];
+ float r_val = r[t_h_i_offset];
+ float time_faaaa_val = time_faaaa[h_i_offset];
+ float time_decay_val = time_decay[t_h_i_offset];
+
+ // Broadcast scalar values to vectors
+ GGML_F32X k_vec = GGML_F32X_SET1(k_val);
+ GGML_F32X r_vec = GGML_F32X_SET1(r_val);
+ GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
+ GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
+
+ for (int64_t j = 0; j < vec_count; j++) {
+ size_t base_j = j * WKV_VECTOR_SIZE;
+ size_t t_h_j_offset = t_h_offset + base_j;
+ size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
+
+ // Load x elements at once
+ GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
+ GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
+ GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
+
+ // Compute kv = v * k
+ GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
+
+ // Compute temp = kv * time_faaaa + prev_state
+ GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
+
+ // Update dst: dst += temp * r
+ dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
+ GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
+
+ // Update state: state = prev_state * time_decay + kv
+ GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
+ GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
+ }
+
+ // Handle remaining elements, this will not be used.
+ for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
+ size_t t_h_j_offset = t_h_offset + j;
+ size_t h_2d_i_j_offset = h_2d_i_offset + j;
+ float v_val = v[t_h_j_offset];
+ float kv_val = v_val * k_val;
+ float prev_state_val = state_prev[h_2d_i_j_offset];
+ float temp_val = kv_val * time_faaaa_val + prev_state_val;
+ dst_data[t_h_j_offset] += temp_val * r_val;
+ state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
+ }
+ }
+ }
+ }
+
+ #else
+ // basically fused operations:
+ // dst = r @ (time_faaaa * (k @ v) + state),
+ // state = time_decay * state + (k @ v),
+ // recursive through each token
+ for (int64_t t = 0; t < T; t++) {
+ size_t t_offset = t * t_stride;
+ size_t state_offset = head_size * C * (t / (T / n_seqs));
+ float * state_cur = state + state_offset;
+ float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
+
+ for (int64_t h = h_start; h < h_end; h++) {
+ size_t h_offset = h * h_stride;
+ size_t t_h_offset = t_offset + h_offset;
+ size_t h_2d_offset = h * h_stride_2d;
+
+ for (int64_t i = 0; i < head_size; i++) {
+ size_t t_h_i_offset = t_h_offset + i;
+ size_t h_i_offset = h_offset + i;
+ size_t h_2d_i_offset = h_2d_offset + i * h_stride;
+
+ float k_val = k[t_h_i_offset];
+ float r_val = r[t_h_i_offset];
+ float time_faaaa_val = time_faaaa[h_i_offset];
+ // RWKV v6: different time_decay for each token.
+ float time_decay_val = time_decay[t_h_i_offset];
+
+ for (int64_t j = 0; j < head_size; j++) {
+ size_t t_h_j_offset = t_h_offset + j;
+ size_t h_2d_i_j_offset = h_2d_i_offset + j;
+
+ float v_val = v[t_h_j_offset];
+ float kv_val = v_val * k_val;
+ float prev_state_val = state_prev[h_2d_i_j_offset];
+ float temp_val = kv_val * time_faaaa_val + prev_state_val;
+ dst_data[t_h_j_offset] += temp_val * r_val;
+ state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
+ }
+ }
+ }
+ }
+ #endif
+}
+
+
+void ggml_compute_forward_rwkv_wkv6(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rwkv_wkv6_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_gla
+
+static void ggml_compute_forward_gla_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ const int64_t T = dst->src[1]->ne[2];
+ const int64_t C = dst->ne[0];
+ const int64_t HEADS = dst->src[1]->ne[1];
+ const int64_t n_seqs = dst->src[4]->ne[1];
+ const int64_t head_size = C / HEADS;
+ const float scale = ggml_get_op_params_f32(dst, 0);
+
+ float * dst_data = (float *) dst->data;
+ float * state = ((float *) dst->data) + C * T;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ if (ith >= HEADS) {
+ return;
+ }
+
+ const int h_start = (HEADS * ith) / nth;
+ const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
+ (HEADS * (ith + 1)) / nth : HEADS;
+
+ float * k = (float *) dst->src[0]->data;
+ float * v = (float *) dst->src[1]->data;
+ float * q = (float *) dst->src[2]->data;
+ float * g = (float *) dst->src[3]->data;
+
+ size_t t_stride = HEADS * head_size; // Same to C
+
+ size_t h_stride = C / HEADS;
+ GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
+ size_t h_stride_2d = head_size * head_size;
+
+ if (ith == 0) {
+ memset(dst_data, 0, T * C * sizeof(float));
+ }
+ ggml_barrier(params->threadpool);
+
+
+ #if defined(__AVX__) && !defined(__AVX512F__)
+ #define GGML_F32X GGML_F32x8
+ #define GGML_F32X_SET1 GGML_F32x8_SET1
+ #define GGML_F32X_LOAD GGML_F32x8_LOAD
+ #define GGML_F32X_STORE GGML_F32x8_STORE
+ #define GGML_F32X_MUL GGML_F32x8_MUL
+ #define GGML_F32X_FMA GGML_F32x8_FMA
+ #define GLA_VECTOR_SIZE 8
+ #elif defined(__AVX512F__)
+ #define GGML_F32X GGML_F32x16
+ #define GGML_F32X_SET1 GGML_F32x16_SET1
+ #define GGML_F32X_LOAD GGML_F32x16_LOAD
+ #define GGML_F32X_STORE GGML_F32x16_STORE
+ #define GGML_F32X_MUL GGML_F32x16_MUL
+ #define GGML_F32X_FMA GGML_F32x16_FMA
+ #define GLA_VECTOR_SIZE 16
+ #elif defined(__ARM_NEON) && defined(__aarch64__)
+ #define GGML_F32X GGML_F32x4
+ #define GGML_F32X_SET1 GGML_F32x4_SET1
+ #define GGML_F32X_LOAD GGML_F32x4_LOAD
+ #define GGML_F32X_STORE GGML_F32x4_STORE
+ #define GGML_F32X_MUL GGML_F32x4_MUL
+ #define GGML_F32X_FMA GGML_F32x4_FMA
+ #define GLA_VECTOR_SIZE 4
+ #endif
+
+ #ifdef GLA_VECTOR_SIZE
+ const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
+
+ for (int64_t t = 0; t < T; t++) {
+ size_t t_offset = t * t_stride;
+ size_t state_offset = head_size * C * (t / (T / n_seqs));
+ float * state_cur = state + state_offset;
+ float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
+
+ for (int64_t h = h_start; h < h_end; h++) {
+ size_t h_offset = h * h_stride;
+ size_t t_h_offset = t_offset + h_offset;
+ size_t h_2d_offset = h * h_stride_2d;
+
+ for (int64_t i = 0; i < head_size; i++) {
+ size_t t_h_i_offset = t_h_offset + i;
+ size_t h_2d_i_offset = h_2d_offset + i * h_stride;
+
+ float k_val = k[t_h_i_offset];
+ float q_val = q[t_h_i_offset] * scale;
+ float g_val = g[t_h_i_offset];
+
+ // Broadcast scalar values to vectors
+ GGML_F32X k_vec = GGML_F32X_SET1(k_val);
+ GGML_F32X q_vec = GGML_F32X_SET1(q_val);
+ GGML_F32X g_vec = GGML_F32X_SET1(g_val);
+
+ for (int64_t j = 0; j < vec_count; j++) {
+ size_t base_j = j * GLA_VECTOR_SIZE;
+ size_t t_h_j_offset = t_h_offset + base_j;
+ size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
+
+ // Load x elements at once
+ GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
+ GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
+ GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
+
+ // Compute kv = v * k
+ GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
+
+ // Compute temp = prev_state * g + kv
+ GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
+
+ // Update dst: dst += temp * q
+ dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
+ GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
+
+ // Update state
+ GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
+ }
+
+ // Handle remaining elements, this will not be used.
+ for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
+ size_t t_h_j_offset = t_h_offset + j;
+ size_t h_2d_i_j_offset = h_2d_i_offset + j;
+ float v_val = v[t_h_j_offset];
+ float kv_val = v_val * k_val;
+ float prev_state_val = state_prev[h_2d_i_j_offset];
+ float temp_val = kv_val + prev_state_val * g_val;
+ dst_data[t_h_j_offset] += temp_val * q_val;
+ state_cur[h_2d_i_j_offset] = temp_val;
+ }
+ }
+ }
+ }
+
+ #else
+ for (int64_t t = 0; t < T; t++) {
+ size_t t_offset = t * t_stride;
+ size_t state_offset = head_size * C * (t / (T / n_seqs));
+ float * state_cur = state + state_offset;
+ float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
+
+ for (int64_t h = h_start; h < h_end; h++) {
+ size_t h_offset = h * h_stride;
+ size_t t_h_offset = t_offset + h_offset;
+ size_t h_2d_offset = h * h_stride_2d;
+
+ for (int64_t i = 0; i < head_size; i++) {
+ size_t t_h_i_offset = t_h_offset + i;
+ size_t h_2d_i_offset = h_2d_offset + i * h_stride;
+
+ float k_val = k[t_h_i_offset];
+ float q_val = q[t_h_i_offset] * scale;
+ float g_val = g[t_h_i_offset];
+
+ for (int64_t j = 0; j < head_size; j++) {
+ size_t t_h_j_offset = t_h_offset + j;
+ size_t h_2d_i_j_offset = h_2d_i_offset + j;
+
+ float v_val = v[t_h_j_offset];
+ float kv_val = v_val * k_val;
+ float prev_state_val = state_prev[h_2d_i_j_offset];
+ float temp_val = prev_state_val * g_val + kv_val;
+ dst_data[t_h_j_offset] += temp_val * q_val;
+ state_cur[h_2d_i_j_offset] = temp_val;
+ }
+ }
+ }
+ }
+ #endif
+}
+
+
+void ggml_compute_forward_gla(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_gla_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_rwkv_wkv7
+
+static void ggml_compute_forward_rwkv_wkv7_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+ const int64_t T = dst->src[1]->ne[2];
+ const int64_t C = dst->ne[0];
+ const int64_t HEADS = dst->src[1]->ne[1];
+ const int64_t n_seqs = dst->src[6]->ne[1];
+ const int64_t head_size = C / HEADS;
+
+ float * dst_data = (float *) dst->data;
+ float * state = ((float *) dst->data) + C * T;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ if (ith >= HEADS) {
+ return;
+ }
+
+ const int h_start = (HEADS * ith) / nth;
+ const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
+ (HEADS * (ith + 1)) / nth : HEADS;
+
+ float * r = (float *) dst->src[0]->data;
+ float * w = (float *) dst->src[1]->data;
+ float * k = (float *) dst->src[2]->data;
+ float * v = (float *) dst->src[3]->data;
+ float * a = (float *) dst->src[4]->data;
+ float * b = (float *) dst->src[5]->data;
+
+ int64_t t_stride = HEADS * head_size; // Same to C
+
+ int64_t h_stride = C / HEADS;
+ GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
+ int64_t h_stride_2d = head_size * head_size;
+
+ #if defined(GGML_SIMD)
+ for (int64_t t = 0; t < T; t++) {
+ int64_t t_offset = t * t_stride;
+ int64_t state_offset = head_size * C * (t / (T / n_seqs));
+ float * state_cur = state + state_offset;
+ float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
+
+ for (int64_t h = h_start; h < h_end; h++) {
+ int64_t h_offset = h * h_stride;
+ int64_t t_h_offset = t_offset + h_offset;
+ int64_t h_2d_offset = h * h_stride_2d;
+
+ for (int64_t ii = 0; ii < head_size; ii++) {
+ int64_t t_h_i_offset = t_h_offset + ii;
+ int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
+
+ GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
+
+ float sa = 0;
+ {
+ GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
+ GGML_F32_VEC ax[GGML_F32_ARR];
+ GGML_F32_VEC ay[GGML_F32_ARR];
+ for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
+ for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
+ ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
+ ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
+ sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
+ }
+ }
+ GGML_F32_VEC_REDUCE(sa, sum);
+ }
+
+ GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
+
+ int64_t j = 0;
+ GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
+ for (; j < head_size; j += GGML_F32_STEP) {
+ for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
+ int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
+ int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
+
+ GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
+ GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
+ GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
+ GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
+
+ k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
+
+ GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
+ // kv + s * decay + sa * b
+ state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
+ state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
+ GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
+
+ result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
+ }
+ }
+ GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
+
+ // There shouldn't be left-overs though.
+ for (; j < head_size; j++) {
+ int64_t t_h_j_offset = t_h_offset + j;
+ int64_t h_2d_i_j_offset = h_2d_i_offset + j;
+
+ float r_val = r[t_h_j_offset];
+ float w_val = w[t_h_j_offset];
+ float k_val = k[t_h_j_offset];
+ float b_val = b[t_h_j_offset];
+ float kv_val = v[t_h_i_offset] * k_val;
+
+ float prev_state_val = state_prev[h_2d_i_j_offset];
+ state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
+ dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
+ }
+ }
+ }
+ }
+ #else
+ for (int64_t t = 0; t < T; t++) {
+ int64_t t_offset = t * t_stride;
+ int64_t state_offset = head_size * C * (t / (T / n_seqs));
+ float * state_cur = state + state_offset;
+ float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
+
+ for (int64_t h = h_start; h < h_end; h++) {
+ int64_t h_offset = h * h_stride;
+ int64_t t_h_offset = t_offset + h_offset;
+ int64_t h_2d_offset = h * h_stride_2d;
+
+ for (int64_t i = 0; i < head_size; i++) {
+ int64_t t_h_i_offset = t_h_offset + i;
+ int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
+
+ float v_val = v[t_h_i_offset];
+
+ float sa = 0, result = 0;
+ for (int64_t j = 0; j < head_size; j++) {
+ sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
+ }
+
+ for (int64_t j = 0; j < head_size; j++) {
+ int64_t t_h_j_offset = t_h_offset + j;
+ int64_t h_2d_i_j_offset = h_2d_i_offset + j;
+
+ float r_val = r[t_h_j_offset];
+ float w_val = w[t_h_j_offset];
+ float k_val = k[t_h_j_offset];
+ float b_val = b[t_h_j_offset];
+ float kv_val = v_val * k_val;
+ float prev_state_val = state_prev[h_2d_i_j_offset];
+ state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
+ result += state_cur[h_2d_i_j_offset] * r_val;
+ }
+ dst_data[t_h_i_offset] = result;
+ }
+ }
+ }
+ #endif
+}
+
+
+void ggml_compute_forward_rwkv_wkv7(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rwkv_wkv7_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_map_unary
+
+static void ggml_compute_forward_map_unary_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const ggml_unary_op_f32_t fun) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ fun(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])));
+ }
+}
+
+void ggml_compute_forward_map_unary(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const ggml_unary_op_f32_t fun) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_map_unary_f32(params, dst, fun);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_map_binary
+
+static void ggml_compute_forward_map_binary_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const ggml_binary_op_f32_t fun) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ assert(ggml_is_contiguous_1(src0));
+ assert(ggml_is_contiguous_1(src1));
+ assert(ggml_is_contiguous_1(dst));
+ assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int n = ggml_nrows(src0);
+ const int nc = src0->ne[0];
+
+ for (int i = 0; i < n; i++) {
+ fun(nc,
+ (float *) ((char *) dst->data + i*( dst->nb[1])),
+ (float *) ((char *) src0->data + i*(src0->nb[1])),
+ (float *) ((char *) src1->data + i*(src1->nb[1])));
+ }
+}
+
+void ggml_compute_forward_map_binary(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const ggml_binary_op_f32_t fun) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_map_binary_f32(params, dst, fun);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_map_custom1
+
+void ggml_compute_forward_map_custom1_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const ggml_custom1_op_f32_t fun) {
+
+ const ggml_tensor * a = dst->src[0];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ fun(dst, a);
+}
+
+// ggml_compute_forward_map_custom2
+
+void ggml_compute_forward_map_custom2_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const ggml_custom2_op_f32_t fun) {
+
+ const ggml_tensor * a = dst->src[0];
+ const ggml_tensor * b = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ fun(dst, a, b);
+}
+
+// ggml_compute_forward_map_custom3
+
+void ggml_compute_forward_map_custom3_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst,
+ const ggml_custom3_op_f32_t fun) {
+
+ const ggml_tensor * a = dst->src[0];
+ const ggml_tensor * b = dst->src[1];
+ const ggml_tensor * c = dst->src[1];
+
+ if (params->ith != 0) {
+ return;
+ }
+
+ fun(dst, a, b, c);
+}
+
+// ggml_compute_forward_map_custom1
+
+void ggml_compute_forward_map_custom1(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * a = dst->src[0];
+
+ struct ggml_map_custom1_op_params p;
+ memcpy(&p, dst->op_params, sizeof(p));
+
+ p.fun(dst, a, params->ith, params->nth, p.userdata);
+}
+
+// ggml_compute_forward_map_custom2
+
+void ggml_compute_forward_map_custom2(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * a = dst->src[0];
+ const ggml_tensor * b = dst->src[1];
+
+ struct ggml_map_custom2_op_params p;
+ memcpy(&p, dst->op_params, sizeof(p));
+
+ p.fun(dst, a, b, params->ith, params->nth, p.userdata);
+}
+
+// ggml_compute_forward_map_custom3
+
+void ggml_compute_forward_map_custom3(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * a = dst->src[0];
+ const ggml_tensor * b = dst->src[1];
+ const ggml_tensor * c = dst->src[2];
+
+ struct ggml_map_custom3_op_params p;
+ memcpy(&p, dst->op_params, sizeof(p));
+
+ p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
+}
+
+// ggml_compute_forward_cross_entropy_loss
+
+static void ggml_compute_forward_cross_entropy_loss_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src1 = dst->src[1];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+ GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
+ GGML_ASSERT(ggml_are_same_shape(src0, src1));
+ GGML_ASSERT(ggml_is_scalar(dst));
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ // TODO: handle transposed/permuted matrices
+ const int64_t nc = src0->ne[0];
+ const int64_t nr = ggml_nrows(src0);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ float * sums = (float *) params->wdata;
+ float * st = ((float *) params->wdata) + nth + ith*nc;
+ float sum_thread = 0.0f;
+
+ GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ for (int64_t i1 = ir0; i1 < ir1; ++i1) {
+ const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
+ const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
+
+#ifndef NDEBUG
+ for (int64_t i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(s0[i]));
+ assert(!isnan(s1[i]));
+ }
+#endif
+
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, s0);
+ const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
+ assert(sum_softmax >= 0.0);
+
+ ggml_vec_add1_f32(nc, st, st, -sum_softmax);
+ ggml_vec_mul_f32(nc, st, st, s1);
+
+ float sum_st = 0.0f;
+ ggml_vec_sum_f32(nc, &sum_st, st);
+ sum_thread += sum_st;
+
+#ifndef NDEBUG
+ for (int64_t i = 0; i < nc; ++i) {
+ assert(!isnan(st[i]));
+ assert(!isinf(st[i]));
+ }
+#endif
+ }
+ sums[ith] = sum_thread;
+ ggml_barrier(params->threadpool);
+
+ if (ith == 0) {
+ float * dp = (float *) dst->data;
+ ggml_vec_sum_f32(nth, dp, sums);
+ dp[0] *= -1.0f / (float) nr;
+ }
+}
+
+void ggml_compute_forward_cross_entropy_loss(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_cross_entropy_loss_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+// ggml_compute_forward_cross_entropy_loss_back
+
+static void ggml_compute_forward_cross_entropy_loss_back_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
+ const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
+ const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
+
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_is_contiguous(src0f));
+ GGML_ASSERT(ggml_is_contiguous(src1f));
+ GGML_ASSERT(ggml_is_contiguous(grad));
+ GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
+
+ const int64_t ith = params->ith;
+ const int64_t nth = params->nth;
+
+ // TODO: handle transposed/permuted matrices
+ const int64_t nc = src0f->ne[0];
+ const int64_t nr = ggml_nrows(src0f);
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
+
+ for (int64_t i1 = ir0; i1 < ir1; i1++) {
+ float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
+ const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
+ const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
+
+#ifndef NDEBUG
+ for (int64_t i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(s0[i]));
+ assert(!isnan(s1[i]));
+ }
+#endif
+
+ // soft_max
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, s0);
+ const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
+ assert(sum > 0.0);
+ ggml_vec_scale_f32(nc, ds0, 1.0/sum);
+
+ // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
+ ggml_vec_sub_f32(nc, ds0, ds0, s1);
+ ggml_vec_scale_f32(nc, ds0, d_by_nr);
+
+#ifndef NDEBUG
+ for (int64_t i = 0; i < nc; ++i) {
+ assert(!isnan(ds0[i]));
+ assert(!isinf(ds0[i]));
+ }
+#endif
+ }
+}
+
+void ggml_compute_forward_cross_entropy_loss_back(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
+
+static void ggml_compute_forward_opt_step_adamw_f32(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+ const ggml_tensor * src0_grad = dst->src[1];
+ const ggml_tensor * src0_grad_m = dst->src[2];
+ const ggml_tensor * src0_grad_v = dst->src[3];
+ const ggml_tensor * adamw_params = dst->src[4];
+
+ GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
+ GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
+ GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
+ GGML_ASSERT(ggml_nelements(adamw_params) == 7);
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
+ const float alpha = adamw_params_ptr[0];
+ const float beta1 = adamw_params_ptr[1];
+ const float beta2 = adamw_params_ptr[2];
+ const float eps = adamw_params_ptr[3];
+ const float wd = adamw_params_ptr[4];
+ const float beta1h = adamw_params_ptr[5];
+ const float beta2h = adamw_params_ptr[6];
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
+
+ float * w = (float *) ((char *) src0->data + offset); // weight
+ const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
+ float * m = (float *) ((char *) src0_grad_m->data + offset);
+ float * v = (float *) ((char *) src0_grad_v->data + offset);
+
+ for (int i00 = 0; i00 < ne00; ++i00) {
+ m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
+ v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
+
+ const float mh = m[i00]*beta1h;
+ const float vh = sqrtf(v[i00]*beta2h) + eps;
+
+ // The weight decay is applied independently of the Adam momenta m and v.
+ // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
+ // See: https://arxiv.org/pdf/1711.05101v3.pdf
+ w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
+ }
+ }
+}
+
+void ggml_compute_forward_opt_step_adamw(
+ const ggml_compute_params * params,
+ ggml_tensor * dst) {
+
+ const ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_opt_step_adamw_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}