// quantization
//
-static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vector<float> & output, const size_t nelements, const int nthread) {
+template <typename T>
+struct no_init {
+ T value;
+ no_init() { /* do nothing */ }
+};
+
+static void llama_convert_tensor_internal(
+ struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
+ const size_t nelements, const int nthread
+) {
if (output.size() < nelements) {
output.resize(nelements);
}
auto blocks_per_thread = nblocks / nthread;
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
- std::vector<std::thread> workers;
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
auto thr_elems = thr_blocks * block_size; // number of elements for this thread
qtype.to_float(inbuf, outbuf, nels);
}
};
- workers.push_back(std::thread(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
+ workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
- for (auto & worker : workers) {
- worker.join();
+ for (auto & w : workers) { w.join(); }
+ workers.clear();
+}
+
+#ifdef GGML_USE_K_QUANTS
+static ggml_type get_k_quant_type(
+ ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
+ int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
+) {
+ const std::string name = ggml_get_name(tensor);
+ // TODO: avoid hardcoded tensor names - use the TN_* constants
+ const auto tn = LLM_TN(model.arch);
+
+ auto use_more_bits = [](int i_layer, int num_layers) -> bool {
+ return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
+ };
+
+ if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
+ int nx = tensor->ne[0];
+ if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
+ new_type = GGML_TYPE_Q8_0;
+ }
+ else if (new_type != GGML_TYPE_Q8_0) {
+ new_type = GGML_TYPE_Q6_K;
+ }
+ } else if (name.find("attn_v.weight") != std::string::npos) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+ new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
+ else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
+ use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
+ else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
+ (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
+ if (model.type == MODEL_70B) {
+ // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
+ // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
+ // nearly negligible increase in model size by quantizing this tensor with more bits:
+ if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
+ }
+ ++*i_attention_wv;
+ } else if (name.find("ffn_down.weight") != std::string::npos) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+ new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
+ : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
+ : GGML_TYPE_Q3_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
+ new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
+ if (model.arch == LLM_ARCH_FALCON) {
+ new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
+ use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
+ } else {
+ if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
+ }
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ ++*i_feed_forward_w2;
+ } else if (name.find("attn_output.weight") != std::string::npos) {
+ if (model.arch != LLM_ARCH_FALCON) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
+ } else {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
+ }
+ }
+ else if (name.find("attn_qkv.weight") != std::string::npos) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
+ }
+ else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+ }
+ // This can be used to reduce the size of the Q5_K_S model.
+ // The associated PPL increase is fully in line with the size reduction
+ //else {
+ // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
+ //}
+ bool convert_incompatible_tensor = false;
+ if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
+ new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
+ int nx = tensor->ne[0];
+ int ny = tensor->ne[1];
+ if (nx % QK_K != 0) {
+ LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
+ convert_incompatible_tensor = true;
+ }
+ }
+ if (convert_incompatible_tensor) {
+ if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
+ new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
+ LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
+ } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
+ new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
+ LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
+ } else {
+ throw std::runtime_error("Unsupported tensor size encountered\n");
+ }
}
+
+ return new_type;
}
+#endif
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type quantized_type;
std::vector<int64_t> hist_all(1 << 4, 0);
std::vector<std::thread> workers;
+ workers.reserve(nthread);
std::mutex mutex;
-#ifdef GGML_USE_K_QUANTS
- auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
- return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
- };
-#endif
-
int idx = 0;
- std::vector<uint8_t> read_data;
- std::vector<uint8_t> work;
+ std::vector<no_init<uint8_t>> read_data;
+ std::vector<no_init<uint8_t>> work;
+ std::vector<no_init<float>> f32_conv_buf;
// populate the original tensors so we get an initial meta data
for (int i = 0; i < ml->n_tensors; ++i) {
const std::string name = ggml_get_name(tensor);
- read_data.resize(ggml_nbytes(tensor));
+ if (read_data.size() < ggml_nbytes(tensor)) {
+ read_data.resize(ggml_nbytes(tensor));
+ }
tensor->data = read_data.data();
ml->load_data_for(tensor);
if (quantize) {
new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- const auto tn = LLM_TN(ml->get_arch());
-
- if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
- int nx = tensor->ne[0];
- if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
- new_type = GGML_TYPE_Q8_0;
- }
- else if (new_type != GGML_TYPE_Q8_0) {
- new_type = GGML_TYPE_Q6_K;
- }
- } else if (name.find("attn_v.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
- else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
- (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
- if (model.type == MODEL_70B) {
- // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
- // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
- // nearly negligible increase in model size by quantizing this tensor with more bits:
- if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
- }
- ++i_attention_wv;
- } else if (name.find("ffn_down.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
- : model.arch != LLM_ARCH_FALCON || use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
- : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
- new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
- if (model.arch == LLM_ARCH_FALCON) {
- new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
- use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- } else {
- if (use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
- }
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && i_feed_forward_w2 < 4) {
- new_type = GGML_TYPE_Q5_K;
- }
- ++i_feed_forward_w2;
- } else if (name.find("attn_output.weight") != std::string::npos) {
- if (model.arch != LLM_ARCH_FALCON) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
- }
- }
- else if (name.find("attn_qkv.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
- }
- else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- }
- // This can be used to reduce the size of the Q5_K_S model.
- // The associated PPL increase is fully in line with the size reduction
- //else {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
- //}
- bool convert_incompatible_tensor = false;
- if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
- new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
- int nx = tensor->ne[0];
- int ny = tensor->ne[1];
- if (nx % QK_K != 0) {
- LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
- convert_incompatible_tensor = true;
- }
- }
- if (convert_incompatible_tensor) {
- if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
- new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
- LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
- } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
- new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
- LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
- } else {
- throw std::runtime_error("Unsupported tensor size encountered\n");
- }
- }
+ new_type = get_k_quant_type(
+ new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
+ );
#endif
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
const size_t nelements = ggml_nelements(tensor);
float * f32_data;
- std::vector<float> f32_conv_buf;
if (tensor->type == GGML_TYPE_F32) {
f32_data = (float *) tensor->data;
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
- llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
+ llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
fflush(stdout);
- work.resize(nelements * 4); // upper bound on size
+ if (work.size() < nelements * 4) {
+ work.resize(nelements * 4); // upper bound on size
+ }
new_data = work.data();
- std::vector<int64_t> hist_cur(1 << 4, 0);
+ std::array<int64_t, 1 << 4> hist_cur = {};
static const int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
size_t counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
- std::vector<int64_t> local_hist;
+ std::array<int64_t, 1 << 4> local_hist = {};
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size;
if (first >= nelements) {
- if (!local_hist.empty()) {
+ if (local_size > 0) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
- if (local_hist.empty()) {
- local_hist.resize(hist_cur.size(), 0);
- }
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
}
};
- if ((int) workers.size() < nthread_use - 1) {
- workers.resize(nthread_use - 1);
- }
for (int it = 0; it < nthread_use - 1; ++it) {
- workers[it] = std::thread(compute);
+ workers.emplace_back(compute);
}
compute();
- for (int it = 0; it < nthread_use - 1; ++it) {
- workers[it].join();
- }
+ for (auto & w : workers) { w.join(); }
+ workers.clear();
}
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);