id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
- llama_sample_top_k (ctx, &cur_p, top_k, 1);
- llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
- llama_sample_typical (ctx, &cur_p, typical_p, 1);
- llama_sample_top_p (ctx, &cur_p, top_p, 1);
+ size_t min_keep = std::max(1, params.n_probs);
+ llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
+ llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
+ llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
+ llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
llama_sample_temp(ctx, &cur_p, temp);
{
return result;
}
- // out of user input, sample next token
- const float temp = params.temp;
- const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k;
- const float top_p = params.top_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const float alpha_presence = params.presence_penalty;
- const float alpha_frequency = params.frequency_penalty;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- const bool penalize_nl = params.penalize_nl;
- const int32_t n_probs = params.n_probs;
-
{
- auto *logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(model);
-
- // Apply params.logit_bias map
- for (const auto &it : params.logit_bias)
- {
- logits[it.first] += it.second;
- }
-
+ // out of user input, sample next token
std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++)
- {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
+ candidates.reserve(llama_n_vocab(model));
- llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
-
- // Apply penalties
- float nl_logit = logits[llama_token_nl(ctx)];
- auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
- llama_sample_repetition_penalty(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
- if (!penalize_nl)
- {
- logits[llama_token_nl(ctx)] = nl_logit;
- }
+ result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
- if (grammar != nullptr) {
- llama_sample_grammar(ctx, &candidates_p, grammar);
- }
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- if (temp <= 0)
- {
- // Greedy sampling
- result.tok = llama_sample_token_greedy(ctx, &candidates_p);
- if (n_probs > 0)
- {
- llama_sample_softmax(ctx, &candidates_p);
- }
- }
- else
+ const int32_t n_probs = params.n_probs;
+ if (params.temp <= 0 && n_probs > 0)
{
- if (mirostat == 1)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temp(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- }
- else if (mirostat == 2)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temp(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- }
- else
- {
- // Temperature sampling
- size_t min_keep = std::max(1, n_probs);
- llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
- llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
- llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
- llama_sample_temp(ctx, &candidates_p, temp);
- result.tok = llama_sample_token(ctx, &candidates_p);
- }
- }
-
- if (grammar != nullptr) {
- llama_grammar_accept_token(ctx, grammar, result.tok);
+ // For llama_sample_token_greedy we need to sort candidates
+ llama_sample_softmax(ctx, &candidates_p);
}
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)