#include "speculative.h"
+#include "ggml.h"
+#include "llama.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include <cstring>
#include <algorithm>
+#include <map>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct common_speculative {
- struct llama_context * ctx;
+ struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
+ struct llama_context * ctx_dft;
struct common_sampler * smpl;
llama_batch batch;
- llama_tokens prompt;
+ llama_tokens prompt_dft;
+ bool vocab_dft_compatible = true; // whether retokenization is needed
+ std::map<std::string, std::string> tgt_dft_replacements = {};
};
struct common_speculative * common_speculative_init(
+ struct llama_context * ctx_tgt,
struct llama_context * ctx_dft) {
auto * result = new common_speculative {
- /* .ctx = */ ctx_dft,
- /* .smpl = */ nullptr,
- /* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
- /* .prompt = */ {},
+ /* .ctx_tgt = */ ctx_tgt,
+ /* .ctx_dft = */ ctx_dft,
+ /* .smpl = */ nullptr,
+ /* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
+ /* .prompt_dft = */ {},
+ /* .vocab_dft_compatible = */ false,
};
// TODO: optimize or pass from outside?
}
#endif
+ result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft);
+ LOG_DBG("vocab_dft_compatible = %d\n", result->vocab_dft_compatible);
+
return result;
}
}
bool common_speculative_are_compatible(
- const struct llama_context * ctx_tgt,
- const struct llama_context * ctx_dft) {
+ const struct llama_context * ctx_tgt,
+ const struct llama_context * ctx_dft) {
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
const struct llama_model * model_dft = llama_get_model(ctx_dft);
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) {
- LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
- "vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
+ LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__);
+ LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
return false;
}
- if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
+ if (
+ llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
- llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
- LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
- LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
- LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
+ llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
+ ) {
+ LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__);
return false;
}
{
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
-
- const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
+ const int vocab_diff = n_vocab_tgt > n_vocab_dft
+ ? n_vocab_tgt - n_vocab_dft
+ : n_vocab_dft - n_vocab_tgt;
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
- LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
- "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
- __func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
+ LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__);
+ LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
+ n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return false;
}
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
- LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
- "token %d content differs - target '%s', draft '%s'\n", __func__, i,
+ LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
+ LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
common_token_to_piece(ctx_tgt, i).c_str(),
common_token_to_piece(ctx_dft, i).c_str());
return false;
return true;
}
+void common_speculative_add_replacement_tgt_dft(
+ struct common_speculative * spec,
+ const char *source, const char *dest) {
+ spec->tgt_dft_replacements[source] = dest;
+}
+
+static std::string replace_to_dft(
+ struct common_speculative * spec,
+ const std::string& input) {
+ std::string result = input;
+ for (const auto & pair : spec->tgt_dft_replacements) {
+ size_t pos = result.find(pair.first);
+ while (pos != std::string::npos) {
+ result.replace(pos, pair.first.length(), pair.second);
+ pos = result.find(pair.first, pos + pair.second.length());
+ }
+ }
+ return result;
+}
+
+static std::string replace_to_tgt(
+ struct common_speculative * spec,
+ const std::string& input) {
+ std::string result = input;
+ for (const auto& pair : spec->tgt_dft_replacements) {
+ size_t pos = result.find(pair.second);
+ while (pos != std::string::npos) {
+ result.replace(pos, pair.second.length(), pair.first);
+ pos = result.find(pair.second, pos + pair.first.length());
+ }
+ }
+ return result;
+}
+
+
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
struct common_speculative_params params,
- const llama_tokens & prompt_tgt,
+ const llama_tokens & prompt_tgt_main_model, // specified in target model vocab
llama_token id_last) {
auto & batch = spec->batch;
- auto & ctx = spec->ctx;
+ auto & ctx_tgt = spec->ctx_tgt;
+ auto & ctx_dft = spec->ctx_dft;
auto & smpl = spec->smpl;
- auto & prompt = spec->prompt;
+ auto & prompt_dft = spec->prompt_dft;
- auto * mem = llama_get_memory(ctx);
+ auto * mem_dft = llama_get_memory(ctx_dft);
int reuse_i = 0;
int reuse_n = 0;
- const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
+ const int n_ctx = llama_n_ctx(ctx_dft) - params.n_draft;
+
+ llama_tokens prompt_tgt_draft_model;
+ if (!spec->vocab_dft_compatible) {
+ std::string text;
+ text = common_detokenize(ctx_tgt, prompt_tgt_main_model, true);
+ text = replace_to_dft(spec, text);
+ LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
+ prompt_tgt_draft_model = common_tokenize(ctx_dft, text, false, true);
+
+ // convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
+ const auto * model_tgt = llama_get_model(ctx_tgt);
+ const auto * vocab_tgt = llama_model_get_vocab(model_tgt);
+
+ int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
+ GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
+ text.resize(-n_chars);
+ llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
+ text = replace_to_dft(spec, text);
+
+ LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
+ id_last = common_tokenize(ctx_dft, text, false, true)[0];
+ }
+ // prompt_tgt's tokens will always be compatible with ctx_dft
+ const llama_tokens &prompt_tgt =
+ spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model;
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
// reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
- for (int i = 0; i < (int) prompt.size(); ++i) {
+ for (int i = 0; i < (int) prompt_dft.size(); ++i) {
int cur = 0;
while (i_start + cur < (int) prompt_tgt.size() &&
- i + cur < (int) prompt.size() &&
- prompt_tgt[i_start + cur] == prompt[i + cur]) {
+ i + cur < (int) prompt_dft.size() &&
+ prompt_tgt[i_start + cur] == prompt_dft[i + cur]) {
cur++;
}
}
}
- LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
+ LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size());
llama_tokens result;
result.reserve(params.n_draft);
if (reuse_n == 0) {
- llama_memory_clear(mem, false);
-
- prompt.clear();
+ llama_memory_clear(mem_dft, false);
+ prompt_dft.clear();
} else {
// this happens when a previous draft has been discarded (for example, due to being too small), but the
// target model agreed with it. in this case, we simply pass back the previous results to save compute
- if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
- for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
- result.push_back(prompt[i]);
+ if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) {
+ for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) {
+ result.push_back(prompt_dft[i]);
if (params.n_draft <= (int) result.size()) {
break;
}
if (reuse_i > 0) {
- llama_memory_seq_rm (mem, 0, 0, reuse_i);
- llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
+ llama_memory_seq_rm (mem_dft, 0, 0, reuse_i);
+ llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i);
- prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
+ prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i);
}
- if (reuse_n < (int) prompt.size()) {
- llama_memory_seq_rm (mem, 0, reuse_n, -1);
-
- prompt.erase(prompt.begin() + reuse_n, prompt.end());
+ if (reuse_n < (int) prompt_dft.size()) {
+ llama_memory_seq_rm (mem_dft, 0, reuse_n, -1);
+ prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end());
}
}
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
- prompt.push_back(prompt_tgt[i]);
+ prompt_dft.push_back(prompt_tgt[i]);
}
// we should rarely end-up here during normal decoding
if (batch.n_tokens > 0) {
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
- llama_decode(ctx, batch);
+ llama_decode(ctx_dft, batch);
}
- const llama_pos n_past = prompt.size();
+ const llama_pos n_past = prompt_dft.size();
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true);
- prompt.push_back(id_last);
+ prompt_dft.push_back(id_last);
- //LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
+ LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str());
- llama_decode(ctx, batch);
+ llama_decode(ctx_dft, batch);
common_sampler_reset(smpl);
for (int i = 0; i < params.n_draft; ++i) {
common_batch_clear(batch);
- common_sampler_sample(smpl, ctx, 0, true);
+ common_sampler_sample(smpl, ctx_dft, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
- k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
+ k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
}
// add drafted token for each sequence
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model
- llama_decode(ctx, batch);
+ llama_decode(ctx_dft, batch);
- prompt.push_back(id);
+ prompt_dft.push_back(id);
}
+ if (!spec->vocab_dft_compatible) {
+ std::string detokenized = common_detokenize(ctx_dft, result, true);
+ detokenized = replace_to_tgt(spec, detokenized);
+ LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
+ result = common_tokenize(ctx_tgt, detokenized, false, true);
+ if (result.size() > (size_t)params.n_draft) {
+ result.resize(params.n_draft);
+ }
+ }
return result;
}