* convert : extend DEEPSEEK2 model architecture to support DeepseekV3ForCausalLM by adding EXPERT_WEIGHTS_NORM and EXPERT_GATING_FUNC model parameters and FFN_EXP_PROBS_B tensor type
* vocab : add DeepSeek V3 pre-tokenizer regexes
* unicode : handle ACCENT_MARK and SYMBOL categories in regex
* llama : add DeepSeek V3 chat template, handle new model parameters and tensor types
---------
Co-authored-by: Stanisław Szymczyk <redacted>
if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
# ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
res = "megrez"
+ if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
+ # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
+ res = "deepseek-v3"
if res is None:
logger.warning("\n")
@Model.register("DeepseekV2ForCausalLM")
+@Model.register("DeepseekV3ForCausalLM")
class DeepseekV2Model(Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
+ self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
+
+ if hparams["scoring_func"] == "sigmoid":
+ self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+ elif hparams["scoring_func"] == "softmax":
+ self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
+ else:
+ raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
+
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ # rename e_score_correction_bias tensors
+ if name.endswith("e_score_correction_bias"):
+ name = name.replace("e_score_correction_bias", "e_score_correction.bias")
+
+ # skip Multi-Token Prediction (MTP) layers
+ block_count = self.hparams["num_hidden_layers"]
+ match = re.match(r"model.layers.(\d+)", name)
+ if match and int(match.group(1)) >= block_count:
+ return []
+
# process the experts separately
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
+ {"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
]
EXPERT_USED_COUNT = "{arch}.expert_used_count"
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
+ EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm"
+ EXPERT_GATING_FUNC = "{arch}.expert_gating_func"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
FFN_GATE_SHEXP = auto()
FFN_DOWN_SHEXP = auto()
FFN_UP_SHEXP = auto()
+ FFN_EXP_PROBS_B = auto()
ATTN_Q_NORM = auto()
ATTN_K_NORM = auto()
LAYER_OUT_NORM = auto()
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
+ MODEL_TENSOR.FFN_EXP_PROBS_B: "blk.{bid}.exp_probs_b",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
+ MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.CHATGLM : [
MODEL_TENSOR.TOKEN_EMBD,
TQ2_0 = 35
+class ExpertGatingFuncType(IntEnum):
+ SOFTMAX = 1
+ SIGMOID = 2
+
+
# TODO: add GGMLFileType from ggml_ftype in ggml.h
RopeScalingType,
PoolingType,
TokenType,
+ ExpertGatingFuncType,
)
from .quants import quant_shape_from_byte_shape
def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
+ def add_expert_weights_norm(self, value: bool) -> None:
+ self.add_bool(Keys.LLM.EXPERT_WEIGHTS_NORM.format(arch=self.arch), value)
+
+ def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None:
+ self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value)
+
def add_swin_norm(self, value: bool) -> None:
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
),
+ MODEL_TENSOR.FFN_EXP_PROBS_B: (
+ "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
+ ),
+
# Feed-forward up
MODEL_TENSOR.FFN_UP: (
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
+ LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
};
enum llama_rope_type {
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
+ { LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" },
+ { LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" },
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
+ { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
{LLM_TENSOR_FFN_DOWN_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_GATE_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
{LLM_TENSOR_FFN_UP_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}},
+ {LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_EXPERT_SHARED_COUNT,
LLM_KV_EXPERT_WEIGHTS_SCALE,
+ LLM_KV_EXPERT_WEIGHTS_NORM,
+ LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
+ LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
+ { "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
+ } else if (tmpl_contains(LU8("'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'"))) {
+ return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
if (add_ass) {
ss << "Assistant:";
}
+ } else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_3) {
+ // DeepSeek-V3
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content << "\n\n";
+ } else if (role == "user") {
+ ss << LU8("<|User|>") << message->content;
+ } else if (role == "assistant") {
+ ss << LU8("<|Assistant|>") << message->content << LU8("<|end▁of▁sentence|>");
+ }
+ }
+ if (add_ass) {
+ ss << LU8("<|Assistant|>");
+ }
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
LLM_CHAT_TEMPLATE_DEEPSEEK,
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
+ LLM_CHAT_TEMPLATE_DEEPSEEK_3,
LLM_CHAT_TEMPLATE_COMMAND_R,
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
// bump if necessary
#define LLAMA_MAX_LAYERS 512
-#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
+#define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
+
+enum llama_expert_gating_func_type {
+ LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
+};
struct llama_hparams_posnet {
uint32_t n_embd;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
- float expert_weights_scale = 0.0;
+ float expert_weights_scale = 0.0;
+ bool expert_weights_norm = false;
+ uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
float f_norm_eps;
float f_norm_rms_eps;
case MODEL_70B: return "70B";
case MODEL_236B: return "236B";
case MODEL_314B: return "314B";
+ case MODEL_671B: return "671B";
case MODEL_SMALL: return "0.1B";
case MODEL_MEDIUM: return "0.4B";
case MODEL_LARGE: return "0.8B";
}
}
+static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
+ switch (type) {
+ case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
+ case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
+ default: return "unknown";
+ }
+}
+
std::string llama_model_arch_name (const llama_model & model) {
return llm_arch_name(model.arch);
}
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
+ if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
+ // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
+ // that have no expert_gating_func model parameter set
+ hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
+ }
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
switch (hparams.n_layer) {
case 27: model.type = e_model::MODEL_16B; break;
case 60: model.type = e_model::MODEL_236B; break;
+ case 61: model.type = e_model::MODEL_671B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
tokenizer_pre == "deepseek-coder") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "deepseek-v3") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
+ vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "falcon") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
+ LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
+ LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((enum llama_expert_gating_func_type) hparams.expert_gating_func));
LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
}
MODEL_70B,
MODEL_236B,
MODEL_314B,
+ MODEL_671B,
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
struct ggml_tensor * ffn_down_b = nullptr; // b2
struct ggml_tensor * ffn_up_b = nullptr; // b3
struct ggml_tensor * ffn_act = nullptr;
+ struct ggml_tensor * ffn_exp_probs_b = nullptr;
// mamba proj
struct ggml_tensor * ssm_in = nullptr;
"\\p{N}+",
};
break;
+ case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
+ regex_exprs = {
+ "\\p{N}{1,3}",
+ "[一-龥-ゟ゠-ヿ]+",
+ "[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
regex_exprs = {
"[\r\n]",
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} else {
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
if (n_expert == 0) {
throw std::runtime_error("n_expert must be > 0");
struct ggml_tensor * up_exps,
struct ggml_tensor * gate_exps,
struct ggml_tensor * down_exps,
+ struct ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llm_ffn_op_type type_op,
bool norm_w,
bool scale_w,
float w_scale,
+llama_expert_gating_func_type gating_op,
const llm_build_cb & cb,
int il) {
int64_t n_embd = cur->ne[0];
ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
cb(logits, "ffn_moe_logits", il);
- ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
+ ggml_tensor * probs = nullptr;
+ switch (gating_op) {
+ case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
+ {
+ probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
+ } break;
+ case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
+ {
+ probs = ggml_sigmoid(ctx, logits); // [n_expert, n_tokens]
+ } break;
+ default:
+ GGML_ABORT("fatal error");
+ }
cb(probs, "ffn_moe_probs", il);
+ // add experts selection bias - introduced in DeepSeek V3
+ // leave probs unbiased as it's later used to get expert weights
+ ggml_tensor * selection_probs = probs;
+ if (exp_probs_b != nullptr) {
+ selection_probs = ggml_add(ctx, probs, exp_probs_b);
+ cb(selection_probs, "ffn_moe_probs_biased", il);
+ }
+
// select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
+ ggml_tensor * selected_experts = ggml_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
cb(selected_experts, "ffn_moe_topk", il);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
}
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_GELU, true,
false, 0.0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, hparams.expert_weights_scale,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
cb, il);
cb(moe_out, "ffn_moe_out", il);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
- LLM_FFN_SILU, false,
+ LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
+ (enum llama_expert_gating_func_type) hparams.expert_gating_func,
cb, il);
cb(moe_out, "ffn_moe_out", il);
{ "\\p{N}", unicode_cpt_flags::NUMBER },
{ "\\p{L}", unicode_cpt_flags::LETTER },
{ "\\p{P}", unicode_cpt_flags::PUNCTUATION },
+ { "\\p{M}", unicode_cpt_flags::ACCENT_MARK },
+ { "\\p{S}", unicode_cpt_flags::SYMBOL },
};
static const std::map<int, int> k_ucat_cpt = {
{ unicode_cpt_flags::NUMBER, 0xD1 },
{ unicode_cpt_flags::LETTER, 0xD2 },
{ unicode_cpt_flags::PUNCTUATION, 0xD3 },
+ { unicode_cpt_flags::ACCENT_MARK, 0xD4 },
+ { unicode_cpt_flags::SYMBOL, 0xD5 },
};
static const std::map<int, std::string> k_ucat_map = {
{ unicode_cpt_flags::NUMBER, "\x30-\x39" }, // 0-9
{ unicode_cpt_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
{ unicode_cpt_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
+ { unicode_cpt_flags::ACCENT_MARK, "" }, // no sub-128 codepoints
+ { unicode_cpt_flags::SYMBOL, "\\\x24\\\x2B\x3C-\x3E\x5E\x60\\\x7C" }, // $+<=>^`|
};
// compute collapsed codepoints only if needed by at least one regex