--- /dev/null
+#include "common.h"
+#include "llama.h"
+
+#include <cmath>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+struct ngram_data {
+ bool active = false;
+
+ llama_seq_id seq_id = -1;
+
+ std::vector<int> i_batch;
+
+ std::vector<llama_token> tokens;
+};
+
+// n-gram container
+struct ngram_container {
+ ngram_container(int n_vocab, int N, int G) {
+ cnt.resize(n_vocab);
+ head.resize(n_vocab);
+ tokens.resize(n_vocab * G * (N - 1));
+ }
+
+ int n_total = 0;
+
+ std::vector<int> cnt;
+ std::vector<int> head;
+
+ // [n_vocab][G][N - 1]
+ // for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
+ std::vector<llama_token> tokens;
+};
+
+int main(int argc, char ** argv) {
+ gpt_params params;
+
+ if (gpt_params_parse(argc, argv, params) == false) {
+ return 1;
+ }
+
+ const int W = 15; // lookahead window
+ const int N = 5; // n-gram size
+ const int G = 15; // max verification n-grams
+
+ const bool dump_kv_cache = params.dump_kv_cache;
+
+#ifndef LOG_DISABLE_LOGS
+ log_set_target(log_filename_generator("lookahead", "log"));
+ LOG_TEE("Log start\n");
+ log_dump_cmdline(argc, argv);
+#endif // LOG_DISABLE_LOGS
+
+ // init llama.cpp
+ llama_backend_init(params.numa);
+
+ llama_model * model = NULL;
+ llama_context * ctx = NULL;
+
+ // load the target model
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
+
+ // Tokenize the prompt
+ const bool add_bos = llama_should_add_bos_token(model);
+ LOG("add_bos tgt: %d\n", add_bos);
+
+ std::vector<llama_token> inp;
+ std::vector<llama_token> all;
+
+ inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
+ all = inp;
+
+ const int max_context_size = llama_n_ctx(ctx);
+ const int max_tokens_list_size = max_context_size - 4;
+
+ if ((int) inp.size() > max_tokens_list_size) {
+ fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
+ return 1;
+ }
+
+ fprintf(stderr, "\n\n");
+
+ for (auto id : inp) {
+ fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
+ }
+
+ fflush(stderr);
+
+ const int n_input = inp.size();
+
+ const auto t_enc_start = ggml_time_us();
+
+ // eval the prompt
+ llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
+ llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
+
+ for (int s = 1; s < W + G + 1; ++s) {
+ llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
+ }
+
+ const auto t_enc_end = ggml_time_us();
+
+ int n_predict = 0;
+ int n_accept = 0;
+
+ int n_past = inp.size();
+
+ llama_token id = 0;
+
+ // used to determine end of generation
+ bool has_eos = false;
+
+ // for each decoded batch, we have at most W + G + 1 distinct sequences:
+ // seq_id == 0 : the current input token
+ // seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
+ // seq_id [W + 1, W + G] : verification n-grams
+ llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
+
+ // target model sampling context
+ struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
+
+ // verification n-grams
+ std::vector<ngram_data> ngrams_cur(G);
+
+ // tokens for the past N - 1 Jacobi iterations
+ std::vector<llama_token> tokens_j_prev(W);
+ std::vector<std::vector<llama_token>> tokens_j(N - 1);
+ for (int j = 0; j < N - 1; j++) {
+ tokens_j[j].resize(W);
+
+ for (int i = 0; i < W; i++) {
+ // there are different ways to init these tokens
+ if (0) {
+ // initialize randomly from the prompt tokens
+ tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
+ } else {
+ // initialize with a sequence of increasing numbers
+ tokens_j[j][i] = 100 + i;
+ }
+ }
+ }
+
+ std::vector<llama_seq_id> seq_id_look;
+
+ // the input token belongs both to all sequences
+ std::vector<llama_seq_id> seq_id_all(W + G + 1);
+ for (int i = 0; i < W + G + 1; i++) {
+ seq_id_all[i] = i;
+ }
+
+ // here we keep adding new n-grams as we go
+ ngram_container ngrams_observed(llama_n_vocab(model), N, G);
+
+ // debug
+ struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
+
+ const auto t_dec_start = ggml_time_us();
+
+ // sample first token
+ {
+ id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
+
+ llama_sampling_accept(ctx_sampling, ctx, id, true);
+
+ {
+ const std::string token_str = llama_token_to_piece(ctx, id);
+
+ printf("%s", token_str.c_str());
+ fflush(stdout);
+ }
+ }
+
+ while (true) {
+ // debug
+ if (dump_kv_cache) {
+ llama_kv_cache_view_update(ctx, &kvc_view);
+ dump_kv_cache_view_seqs(kvc_view, 40);
+ }
+
+ // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
+ //
+ // Example for W = 5, N = 4, G = 2:
+ // (I = input, L = lookahead, V = verification)
+ //
+ // Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
+ // T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0
+ // Info: I L L L L L L L L L L L L L L V V V V V V
+ // Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past)
+ // Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
+ // ---------------------------------------------------------------------
+ // Seq: 0
+ // 1 1 1
+ // 2 2 2 2
+ // 3 3 3 3 3
+ // 4 4 4 4 4 4
+ // 5 5 5 5 5 5 5
+ // 6 6 6 6
+ // 7 7 7 7
+ // ---------------------------------------------------------------------
+ // | | | | | | | | | | |
+ // V V V V V | | | | | |
+ // j_tokens | | | | | |
+ // V V V V V V
+ // id
+ {
+ llama_batch_clear(batch);
+
+ // current token - first token of the first level
+ llama_batch_add(batch, id, n_past, seq_id_all, true);
+
+ // verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
+ {
+ const int g_cur = ngrams_observed.cnt[id];
+
+ ngrams_cur.resize(g_cur);
+ for (int g = 0; g < g_cur; g++) {
+ ngrams_cur[g].active = true;
+ ngrams_cur[g].tokens.resize(N);
+ ngrams_cur[g].i_batch.resize(N);
+ ngrams_cur[g].seq_id = W + 1 + g;
+ ngrams_cur[g].i_batch[0] = 0;
+ ngrams_cur[g].tokens [0] = id;
+ }
+
+ for (int j = 0; j < N - 1; j++) {
+ for (int g = 0; g < g_cur; g++) {
+ const int idx = id*(N - 1)*G + g*(N - 1);
+
+ const llama_token t = ngrams_observed.tokens[idx + j];
+
+ ngrams_cur[g].tokens [j + 1] = t;
+ ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
+
+ llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
+ }
+ }
+ }
+
+ // fill the remaining W - 1 tokens for the first level
+ for (int i = 1; i < W; i++) {
+ seq_id_look.resize(W - i);
+ for (int j = 0; j < W - i; j++) {
+ seq_id_look[j] = i + j + 1;
+ }
+
+ llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
+ }
+
+ // fill the rest of the levels
+ for (int j = 1; j < N - 1; j++) {
+ for (int i = 0; i < W; i++) {
+ llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
+ }
+ }
+ }
+
+ if (llama_decode(ctx, batch) != 0) {
+ fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__);
+ return 1;
+ }
+
+ int seq_id_best = 0;
+
+ for (int v = 0; v < N; ++v) {
+ int i_batch = 0;
+
+ // if no active ngrams are left, it means the sampled token does not pass the verification
+ if (v > 0) {
+ for (int g = 0; g < (int) ngrams_cur.size(); g++) {
+ if (ngrams_cur[g].active) {
+ i_batch = ngrams_cur[g].i_batch[v];
+ seq_id_best = ngrams_cur[g].seq_id;
+
+ ++n_accept;
+ break;
+ }
+ }
+
+ // no more matches -> create a new batch
+ if (i_batch == 0) {
+ break;
+ }
+ }
+
+ // sample the next token
+ id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
+
+ llama_sampling_accept(ctx_sampling, ctx, id, true);
+
+ // print
+ {
+ const std::string token_str = llama_token_to_piece(ctx, id);
+
+ if (v == 0) {
+ printf("%s", token_str.c_str());
+ } else {
+ // print light cyan
+ printf("\033[0;96m%s\033[0m", token_str.c_str());
+ }
+ fflush(stdout);
+
+ if (id == llama_token_eos(model)) {
+ has_eos = true;
+ }
+
+ all.push_back(id);
+ }
+
+ ++n_predict;
+ ++n_past;
+
+ if (n_predict > params.n_predict || has_eos) {
+ break;
+ }
+
+ // verify across active n-grams
+ for (int g = 0; g < (int) ngrams_cur.size(); g++) {
+ if (ngrams_cur[g].active) {
+ if (v == N - 1) {
+ ngrams_cur[g].active = false;
+ } else {
+ if (id != ngrams_cur[g].tokens[v + 1]) {
+ ngrams_cur[g].active = false;
+ }
+ }
+ }
+ }
+
+ // print known n-grams starting with token id (debug)
+ if (0 && v == 0) {
+ if (ngrams_observed.cnt[id] > 0) {
+ printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
+ }
+
+ for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
+ printf(" - ngram %2d: ", i);
+
+ const int idx = id*(N - 1)*G + i*(N - 1);
+
+ for (int j = 0; j < N - 1; j++) {
+ const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
+
+ printf("%s", token_str.c_str());
+ }
+
+ printf("\n");
+ }
+ }
+
+ // update lookahead tokens
+ {
+ for (int i = 0; i < W; i++) {
+ tokens_j_prev[i] = tokens_j[0][i];
+ }
+
+ for (int j = 0; j < N - 2; j++) {
+ tokens_j[j] = tokens_j[j + 1];
+ }
+
+ if (v == 0) {
+ // sample from the last level
+ for (int i = 0; i < W; i++) {
+ tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
+ }
+ } else {
+ for (int i = 0; i < W; i++) {
+ // there are different ways to init these tokens
+ if (0) {
+ // random init
+ tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
+ } else {
+ // init from the previous level
+ tokens_j[N - 2][i] = tokens_j[0][i];
+ }
+ }
+ }
+ }
+
+ // update observed ngrams
+ if (v == 0) {
+ // the first token of the n-gram is determined by the index in the container so it is not stored
+ std::vector<llama_token> ngram(N - 1);
+
+ // n-gram generation
+ // ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
+ for (int f = 0; f < W; ++f) {
+ const int ft = tokens_j_prev[f]; // first token of the n-gram
+
+ for (int j = 0; j < N - 1; ++j) {
+ ngram[j] = tokens_j[j][f];
+ }
+
+ // filter-out repeating n-grams
+ {
+ bool is_unique = true;
+
+ for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
+ const int idx = ft*(N - 1)*G + k*(N - 1);
+
+ bool is_match = true;
+ for (int j = 0; j < N - 1; ++j) {
+ if (ngrams_observed.tokens[idx + j] != ngram[j]) {
+ is_match = false;
+ break;
+ }
+ }
+
+ if (is_match) {
+ is_unique = false;
+ break;
+ }
+ }
+
+ if (!is_unique) {
+ continue;
+ }
+ }
+
+ const int head = ngrams_observed.head[ft];
+ const int idx = ft*(N - 1)*G + head*(N - 1);
+
+ for (int i = 0; i < N - 1; i++) {
+ ngrams_observed.tokens[idx + i] = ngram[i];
+ }
+
+ ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
+ ngrams_observed.head[ft] = (head + 1) % G;
+
+ ngrams_observed.n_total++;
+ }
+ }
+ }
+
+ if (n_predict > params.n_predict || has_eos) {
+ break;
+ }
+
+ // KV cache management
+ // if no verification token matched, we simply remove all cells from this batch -> no fragmentation
+ llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
+
+ if (seq_id_best != 0) {
+ // if a verification token matched, we keep the best sequence and remove the rest
+ // this leads to some KV cache fragmentation
+ llama_kv_cache_seq_keep(ctx, seq_id_best);
+ llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
+ llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
+
+ for (int s = 1; s < W + G + 1; ++s) {
+ llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
+ }
+ }
+ }
+
+ auto t_dec_end = ggml_time_us();
+
+ LOG_TEE("\n\n");
+
+ LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
+ LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
+
+ LOG_TEE("\n");
+ LOG_TEE("W = %2d\n", W);
+ LOG_TEE("N = %2d\n", N);
+ LOG_TEE("G = %2d\n", G);
+ LOG_TEE("\n");
+ LOG_TEE("n_predict = %d\n", n_predict);
+ LOG_TEE("n_accept = %d\n", n_accept);
+
+ llama_print_timings(ctx);
+
+ llama_kv_cache_view_free(&kvc_view);
+ llama_sampling_free(ctx_sampling);
+
+ llama_batch_free(batch);
+
+ llama_free(ctx);
+ llama_free_model(model);
+
+ llama_backend_free();
+
+ fprintf(stderr, "\n\n");
+
+ return 0;
+}