}
}
- int64_t sum_total = 0;
+ int64_t sum_free = 0;
int64_t sum_projected_free = 0;
int64_t min_projected_free = INT64_MAX;
int64_t sum_projected_used = 0;
int64_t sum_projected_model = 0;
- int64_t sum_projected_ctx = 0;
if (nd > 1) {
LLAMA_LOG_INFO("%s: projected memory use with initial parameters [MiB]:\n", __func__);
const int64_t projected_used = dmd.mb.total();
const int64_t projected_free = dmd.free - projected_used;
- sum_total += dmd.total;
+ sum_free += dmd.free;
sum_projected_used += projected_used;
sum_projected_free += projected_free;
min_projected_free = std::min(min_projected_free, projected_free);
sum_projected_model += dmd.mb.model;
- sum_projected_ctx += dmd.mb.context;
if (nd > 1) {
LLAMA_LOG_INFO("%s: - %s: %6" PRId64 " total, %6" PRId64 " used, %6" PRId64 " %s\n",
projected_free >= 0 ? "surplus" : "deficit");
}
}
- assert(sum_total >= 0 && sum_projected_used >= 0 && sum_projected_ctx >= 0);
- assert(sum_projected_used >= sum_projected_ctx);
+ assert(sum_free >= 0 && sum_projected_used >= 0);
LLAMA_LOG_INFO("%s: projected to use %" PRId64 " MiB of device memory vs. %" PRId64 " MiB of free device memory\n",
- __func__, sum_projected_used/MiB, sum_total/MiB);
+ __func__, sum_projected_used/MiB, sum_free/MiB);
if (min_projected_free >= margin) {
if (nd == 1) {
LLAMA_LOG_INFO("%s: will leave %" PRId64 " >= %" PRId64 " MiB of free device memory, no changes needed\n",
__func__, margin/MiB, -global_surplus/MiB);
if (cparams->n_ctx == 0) {
if (hp_nct > n_ctx_min) {
- const int64_t bytes_per_ctx = sum_projected_ctx / hp_nct;
-
- int64_t memory_reduction = -global_surplus;
+ int64_t sum_used_target = sum_free - nd*margin_s;
if (nd > 1) {
// for multiple devices we need to be more conservative in terms of how much context we think can fit:
// - for dense models only whole layers can be assigned to devices
// - on average we expect a waste of 0.5 layers/tensors per device
// - use slightly more than the expected average for nd devices to be safe
const int64_t model_per_layer = sum_projected_model / std::min(uint32_t(mparams->n_gpu_layers), hp_ngl);
- memory_reduction += (nd + 1) * model_per_layer / (hp_nex == 0 ? 2 : 6);
+ sum_used_target -= (nd + 1) * model_per_layer / (hp_nex == 0 ? 2 : 6);
}
- uint32_t ctx_reduction = std::min(uint32_t((memory_reduction + bytes_per_ctx - 1) / bytes_per_ctx), hp_nct - n_ctx_min);
- cparams->n_ctx = hp_nct - ctx_reduction;
- cparams->n_ctx = std::max(cparams->n_ctx - cparams->n_ctx % 256, n_ctx_min); // round down context for CUDA backend
-
- ctx_reduction = hp_nct - cparams->n_ctx;
- memory_reduction = ctx_reduction * bytes_per_ctx;
- global_surplus += memory_reduction;
- LLAMA_LOG_INFO("%s: context size reduced from %" PRIu32 " to %" PRIu32 " -> need %" PRId64 " MiB less memory in total\n",
- __func__, hp_nct, cparams->n_ctx, memory_reduction/MiB);
- if (global_surplus >= 0) {
+ int64_t sum_projected_used_min_ctx = 0;
+ cparams->n_ctx = n_ctx_min;
+ const dmds_t dmds_min_ctx = llama_get_device_memory_data(path_model, mparams, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level);
+ for (const auto & dmd : dmds_min_ctx) {
+ sum_projected_used_min_ctx += dmd.mb.total();
+ }
+ if (sum_used_target > sum_projected_used_min_ctx) {
+ // linear interpolation between minimum and maximum context size:
+ cparams->n_ctx += (hp_nct - n_ctx_min) * (sum_used_target - sum_projected_used_min_ctx)
+ / (sum_projected_used - sum_projected_used_min_ctx);
+ cparams->n_ctx = std::max(cparams->n_ctx - cparams->n_ctx % 256, n_ctx_min); // round down context for CUDA backend
+
+ const int64_t bytes_per_ctx = (sum_projected_used - sum_projected_used_min_ctx) / (hp_nct - n_ctx_min);
+ const int64_t memory_reduction = (hp_nct - cparams->n_ctx) * bytes_per_ctx;
+ LLAMA_LOG_INFO("%s: context size reduced from %" PRIu32 " to %" PRIu32 " -> need %" PRId64 " MiB less memory in total\n",
+ __func__, hp_nct, cparams->n_ctx, memory_reduction/MiB);
if (nd == 1) {
LLAMA_LOG_INFO("%s: entire model can be fit by reducing context\n", __func__);
return;
}
LLAMA_LOG_INFO("%s: entire model should be fit across devices by reducing context\n", __func__);
+ } else {
+ const int64_t memory_reduction = sum_projected_used - sum_projected_used_min_ctx;
+ LLAMA_LOG_INFO("%s: context size reduced from %" PRIu32 " to %" PRIu32 " -> need %" PRId64 " MiB less memory in total\n",
+ __func__, hp_nct, cparams->n_ctx, memory_reduction/MiB);
}
} else {
LLAMA_LOG_INFO("%s: default model context size is %" PRIu32 " which is <= the min. context size of %" PRIu32 " -> no change\n",