break;
}
params.n_sequences = std::stoi(argv[i]);
+ } else if (arg == "--p-accept" || arg == "-pa") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.p_accept = std::stof(argv[i]);
+ } else if (arg == "--p-split" || arg == "-ps") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.p_split = std::stof(argv[i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
+ printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept);
+ printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
struct gpt_params {
uint32_t seed = -1; // RNG seed
+
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_predict = -1; // new tokens to predict
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
+ float p_accept = 0.5f; // speculative decoding accept probability
+ float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
- int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
+ int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
+ // pinging @cebtenzzre
// // sampling parameters
struct llama_sampling_params sparams;
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
- bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
+ bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
// max number of parallel drafting sequences (i.e. tree branches)
const int n_seq_dft = params.n_parallel;
- // TODO: make this configurable
- const float p_accept = 0.80f;
- const float p_split = 0.10f;
+ // probability threshold for accepting a token from the draft model
+ const float p_accept = params.p_accept;
+
+ // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
+ const float p_split = params.p_split;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("speculative", "log"));