return [] # skip other tensors
-@ModelBase.register("Llama4ForConditionalGeneration")
+@ModelBase.register(
+ "Llama4ForConditionalGeneration",
+ "Llama4ForCausalLM",
+)
class Llama4Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA4
undo_permute = False
super().set_gguf_parameters()
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
+ if "layer_types" in self.hparams:
+ if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
+ # all layers are full attention (for MobileLLM), disable swa
+ self.gguf_writer.add_sliding_window(0)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
if name.startswith("language_model."):
case LLM_TYPE_80M: return "80M";
case LLM_TYPE_109M: return "109M";
case LLM_TYPE_137M: return "137M";
+ case LLM_TYPE_140M: return "140M";
case LLM_TYPE_160M: return "160M";
case LLM_TYPE_190M: return "190M";
case LLM_TYPE_220M: return "220M";
case LLM_TYPE_270M: return "270M";
case LLM_TYPE_335M: return "335M";
case LLM_TYPE_350M: return "350M";
+ case LLM_TYPE_360M: return "360M";
case LLM_TYPE_410M: return "410M";
case LLM_TYPE_450M: return "450M";
case LLM_TYPE_475M: return "475M";
case LLM_TYPE_700M: return "700M";
case LLM_TYPE_770M: return "770M";
case LLM_TYPE_780M: return "780M";
+ case LLM_TYPE_950M: return "950M";
case LLM_TYPE_0_3B: return "0.3B";
case LLM_TYPE_0_5B: return "0.5B";
case LLM_TYPE_0_6B: return "0.6B";
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
- hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
- hparams.n_swa = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
- hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
+ const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
+ if (found_swa && hparams.n_swa == 0) {
+ hparams.swa_type = LLAMA_SWA_TYPE_NONE;
+ hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
+ } else {
+ hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
+ hparams.n_swa = 8192;
+ hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
+ }
switch (hparams.n_expert) {
+ case 0: {
+ // MobileLLM (no MoE)
+ switch (hparams.n_embd) {
+ case 2048: type = LLM_TYPE_140M; break;
+ case 4096: type = LLM_TYPE_360M; break;
+ case 6144: type = LLM_TYPE_950M; break;
+ default: type = LLM_TYPE_UNKNOWN;
+ }
+ } break;
case 16: type = LLM_TYPE_17B_16E; break;
case 128: type = LLM_TYPE_17B_128E; break;
default: type = LLM_TYPE_UNKNOWN;
}
- if (type == LLM_TYPE_17B_128E) {
- hparams.use_kq_norm = false;
- }
+ hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
} break;
case LLM_ARCH_ARCEE:
{
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
- GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
for (int i = 0; i < n_layer; ++i) {
- bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
+ bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
auto & layer = layers[i];
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
+ if (hparams.use_kq_norm) {
+ // Llama4TextL2Norm
+ Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
+ Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
+ cb(Qcur, "Qcur_normed", il);
+ cb(Kcur, "Kcur_normed", il);
+ }
+
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
- const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
+ const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
+ (il + 1) % hparams.n_no_rope_layer_step != 0;
// norm
cur = build_norm(inpL,
} break;
case LLM_ARCH_LLAMA4:
{
- llm = std::make_unique<llm_build_llama_iswa>(*this, params);
+ if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
+ llm = std::make_unique<llm_build_llama>(*this, params);
+ } else {
+ llm = std::make_unique<llm_build_llama_iswa>(*this, params);
+ }
} break;
case LLM_ARCH_DECI:
{