import os
import sys
import importlib
+import torch
+import numpy as np
+
from pathlib import Path
+from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
# Add parent directory to path for imports
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
-
-from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
-import torch
-import numpy as np
from utils.common import debug_hook
-parser = argparse.ArgumentParser(description="Process model with specified path")
-parser.add_argument("--model-path", "-m", help="Path to the model")
-parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
-parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
-args = parser.parse_args()
-
-model_path = os.environ.get("MODEL_PATH", args.model_path)
-if model_path is None:
- parser.error(
- "Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
- )
-
-### If you want to dump RoPE activations, uncomment the following lines:
-### === START ROPE DEBUG ===
-# from utils.common import setup_rope_debug
-# setup_rope_debug("transformers.models.apertus.modeling_apertus")
-### == END ROPE DEBUG ===
-
-
-print("Loading model and tokenizer using AutoTokenizer:", model_path)
-tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
-config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
-multimodal = False
-full_config = config
-
-print("Model type: ", config.model_type)
-if "vocab_size" not in config and "text_config" in config:
- config = config.text_config
- multimodal = True
-print("Vocab size: ", config.vocab_size)
-print("Hidden size: ", config.hidden_size)
-print("Number of layers: ", config.num_hidden_layers)
-print("BOS token id: ", config.bos_token_id)
-print("EOS token id: ", config.eos_token_id)
-
-unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
-if unreleased_model_name:
- model_name_lower = unreleased_model_name.lower()
- unreleased_module_path = (
- f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
- )
- class_name = f"{unreleased_model_name}ForCausalLM"
- print(f"Importing unreleased model module: {unreleased_module_path}")
-
- try:
- model_class = getattr(
- importlib.import_module(unreleased_module_path), class_name
- )
- model = model_class.from_pretrained(
- model_path
- ) # Note: from_pretrained, not fromPretrained
- except (ImportError, AttributeError) as e:
- print(f"Failed to import or load model: {e}")
- exit(1)
-else:
- if multimodal:
- model = AutoModelForImageTextToText.from_pretrained(
- model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=full_config
- )
+def parse_arguments():
+ parser = argparse.ArgumentParser(description="Process model with specified path")
+ parser.add_argument("--model-path", "-m", help="Path to the model")
+ parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
+ parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
+ parser.add_argument("--device", "-d", help="Device to use (cpu, cuda, mps, auto)", default="auto")
+ return parser.parse_args()
+
+def load_model_and_tokenizer(model_path, device="auto"):
+ print("Loading model and tokenizer using AutoTokenizer:", model_path)
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
+ multimodal = False
+ full_config = config
+
+ # Determine device_map based on device argument
+ if device == "cpu":
+ device_map = {"": "cpu"}
+ print("Forcing CPU usage")
+ elif device == "auto":
+ device_map = "auto"
else:
- model = AutoModelForCausalLM.from_pretrained(
- model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
+ device_map = {"": device}
+
+ print("Model type: ", config.model_type)
+ if "vocab_size" not in config and "text_config" in config:
+ config = config.text_config
+ multimodal = True
+
+ print("Vocab size: ", config.vocab_size)
+ print("Hidden size: ", config.hidden_size)
+ print("Number of layers: ", config.num_hidden_layers)
+ print("BOS token id: ", config.bos_token_id)
+ print("EOS token id: ", config.eos_token_id)
+
+ unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
+ if unreleased_model_name:
+ model_name_lower = unreleased_model_name.lower()
+ unreleased_module_path = (
+ f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
)
+ class_name = f"{unreleased_model_name}ForCausalLM"
+ print(f"Importing unreleased model module: {unreleased_module_path}")
+
+ try:
+ model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
+ model = model_class.from_pretrained(
+ model_path,
+ device_map=device_map,
+ offload_folder="offload",
+ trust_remote_code=True,
+ config=config
+ )
+ except (ImportError, AttributeError) as e:
+ print(f"Failed to import or load model: {e}")
+ exit(1)
+ else:
+ if multimodal:
+ model = AutoModelForImageTextToText.from_pretrained(
+ model_path,
+ device_map=device_map,
+ offload_folder="offload",
+ trust_remote_code=True,
+ config=full_config
+ )
+ else:
+ model = AutoModelForCausalLM.from_pretrained(
+ model_path,
+ device_map=device_map,
+ offload_folder="offload",
+ trust_remote_code=True,
+ config=config
+ )
+
+ print(f"Model class: {model.__class__.__name__}")
+
+ return model, tokenizer, config
+
+def enable_torch_debugging(model):
+ for name, module in model.named_modules():
+ if len(list(module.children())) == 0: # only leaf modules
+ module.register_forward_hook(debug_hook(name))
+
+def get_prompt(args):
+ if args.prompt_file:
+ with open(args.prompt_file, encoding='utf-8') as f:
+ return f.read()
+ elif os.getenv("MODEL_TESTING_PROMPT"):
+ return os.getenv("MODEL_TESTING_PROMPT")
+ else:
+ return "Hello, my name is"
+
+def main():
+ args = parse_arguments()
+ model_path = os.environ.get("MODEL_PATH", args.model_path)
+ if model_path is None:
+ print("Error: Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
+ sys.exit(1)
+
+
+ model, tokenizer, config = load_model_and_tokenizer(model_path, args.device)
+
+ if args.verbose:
+ enable_torch_debugging(model)
+
+ model_name = os.path.basename(model_path)
+
+ # Iterate over the model parameters (the tensors) and get the first one
+ # and use it to get the device the model is on.
+ device = next(model.parameters()).device
+ prompt = get_prompt(args)
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
+
+ print(f"Input tokens: {input_ids}")
+ print(f"Input text: {repr(prompt)}")
+ print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
+
+ batch_size = 512
+
+ with torch.no_grad():
+ past = None
+ outputs = None
+ for i in range(0, input_ids.size(1), batch_size):
+ print(f"Processing chunk with tokens {i} to {i + batch_size}")
+ chunk = input_ids[:, i:i + batch_size]
+ outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
+ past = outputs.past_key_values
+
+ logits = outputs.logits # type: ignore
+
+ # Extract logits for the last token (next token prediction)
+ last_logits = logits[0, -1, :].float().cpu().numpy()
+
+ print(f"Logits shape: {logits.shape}")
+ print(f"Last token logits shape: {last_logits.shape}")
+ print(f"Vocab size: {len(last_logits)}")
+
+ data_dir = Path("data")
+ data_dir.mkdir(exist_ok=True)
+ bin_filename = data_dir / f"pytorch-{model_name}.bin"
+ txt_filename = data_dir / f"pytorch-{model_name}.txt"
+
+ # Save to file for comparison
+ last_logits.astype(np.float32).tofile(bin_filename)
+
+ # Also save as text file for easy inspection
+ with open(txt_filename, "w") as f:
+ for i, logit in enumerate(last_logits):
+ f.write(f"{i}: {logit:.6f}\n")
+
+ # Print some sample logits for quick verification
+ print(f"First 10 logits: {last_logits[:10]}")
+ print(f"Last 10 logits: {last_logits[-10:]}")
+
+ # Show top 5 predicted tokens
+ top_indices = np.argsort(last_logits)[-5:][::-1]
+ print("Top 5 predictions:")
+ for idx in top_indices:
+ token = tokenizer.decode([idx])
+ print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
+
+ print(f"Saved bin logits to: {bin_filename}")
+ print(f"Saved txt logist to: {txt_filename}")
-if args.verbose:
- for name, module in model.named_modules():
- if len(list(module.children())) == 0: # only leaf modules
- module.register_forward_hook(debug_hook(name))
-
-model_name = os.path.basename(model_path)
-# Printing the Model class to allow for easier debugging. This can be useful
-# when working with models that have not been publicly released yet and this
-# migth require that the concrete class is imported and used directly instead
-# of using AutoModelForCausalLM.
-print(f"Model class: {model.__class__.__name__}")
-
-device = next(model.parameters()).device
-if args.prompt_file:
- with open(args.prompt_file, encoding='utf-8') as f:
- prompt = f.read()
-elif os.getenv("MODEL_TESTING_PROMPT"):
- prompt = os.getenv("MODEL_TESTING_PROMPT")
-else:
- prompt = "Hello, my name is"
-input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
-
-print(f"Input tokens: {input_ids}")
-print(f"Input text: {repr(prompt)}")
-print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
-
-batch_size = 512
-
-with torch.no_grad():
- past = None
- outputs = None
- for i in range(0, input_ids.size(1), batch_size):
- print(f"Processing chunk with tokens {i} to {i + batch_size}")
- chunk = input_ids[:, i:i + batch_size]
- outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
- past = outputs.past_key_values
-
- logits = outputs.logits # type: ignore
-
- # Extract logits for the last token (next token prediction)
- last_logits = logits[0, -1, :].float().cpu().numpy()
-
- print(f"Logits shape: {logits.shape}")
- print(f"Last token logits shape: {last_logits.shape}")
- print(f"Vocab size: {len(last_logits)}")
-
- data_dir = Path("data")
- data_dir.mkdir(exist_ok=True)
- bin_filename = data_dir / f"pytorch-{model_name}.bin"
- txt_filename = data_dir / f"pytorch-{model_name}.txt"
-
- # Save to file for comparison
- last_logits.astype(np.float32).tofile(bin_filename)
-
- # Also save as text file for easy inspection
- with open(txt_filename, "w") as f:
- for i, logit in enumerate(last_logits):
- f.write(f"{i}: {logit:.6f}\n")
-
- # Print some sample logits for quick verification
- print(f"First 10 logits: {last_logits[:10]}")
- print(f"Last 10 logits: {last_logits[-10:]}")
-
- # Show top 5 predicted tokens
- top_indices = np.argsort(last_logits)[-5:][::-1]
- print("Top 5 predictions:")
- for idx in top_indices:
- token = tokenizer.decode([idx])
- print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
-
- print(f"Saved bin logits to: {bin_filename}")
- print(f"Saved txt logist to: {txt_filename}")
+if __name__ == "__main__":
+ main()