model_arch = gguf.MODEL_ARCH.MINICPM
def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
+ super().set_gguf_parameters()
+ embedding_scale = float(self.hparams["scale_emb"])
+ self.gguf_writer.add_embedding_scale(embedding_scale)
+ logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
+ residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
+ self.gguf_writer.add_residual_scale(residual_scale)
+ logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
+ logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
+ self.gguf_writer.add_logit_scale(logit_scale)
+ logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
+ if self.hparams.get("rope_scaling") is not None:
+ if self.hparams["rope_scaling"].get("type") == "longrope":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
+ logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
- def set_vocab(self):
- self._set_vocab_llama_hf()
+ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+ rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
+ rope_scaling = self.find_hparam(['rope_scaling'], True)
+ if rope_scaling is not None:
+ long_factors = rope_scaling.get('long_factor', None)
+ short_factors = rope_scaling.get('short_factor', None)
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
+ if long_factors is None or short_factors is None:
+ raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
+
+ if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
+ raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
+
+ yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
+ yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
+
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# HF models permute some of the tensors, so we need to undo that
if name.endswith(("q_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
+ data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
+ data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
+ { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
//
static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
- { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
- { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
- { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
+ { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
+ { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
+ { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
+ { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
};
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
case LLM_ARCH_MINICPM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
+ ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
switch (hparams.n_layer) {
+ case 52: model.type = e_model::MODEL_1B; break;
case 40: model.type = e_model::MODEL_2B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
}
- if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
+ if (model.arch == LLM_ARCH_MINICPM || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ }
+ else {
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ }
if (n_expert == 0) {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
return gf;
}
- // ref: https://arxiv.org/abs/2203.03466
- // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
- // based on the original build_llama() function
- struct ggml_cgraph * build_minicpm() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
-
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
-
- const int64_t n_embd = hparams.n_embd;
- //TODO: if the model varies, these parameters need to be read from the model
- const int64_t n_embd_base = 256;
- const float scale_embd = 12.0f;
- const float scale_depth = 1.4f;
-
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
-
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
-
- // scale the input embeddings
- inpL = ggml_scale(ctx0, inpL, scale_embd);
- cb(inpL, "inp_scaled", -1);
-
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
-
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
-
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
-
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
-
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
-
- struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
-
- struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
-
- Qcur = ggml_rope_ext(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
-
- Kcur = ggml_rope_ext(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
- n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
-
- cur = llm_build_kv(ctx0, lctx, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
-
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
-
- // scale_res - scale the hidden states for residual connection
- const float scale_res = scale_depth/sqrtf(float(n_layer));
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled", -1);
-
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
-
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
-
- cur = llm_build_ffn(ctx0, lctx, cur,
- model.layers[il].ffn_up, NULL, NULL,
- model.layers[il].ffn_gate, NULL, NULL,
- model.layers[il].ffn_down, NULL, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
-
- // scale the hidden states for residual connection
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled_ffn", -1);
-
- cur = ggml_add(ctx0, cur, ffn_inp);
- cur = lctx.cvec.apply_to(ctx0, cur, il);
- cb(cur, "l_out", il);
-
- // input for next layer
- inpL = cur;
- }
-
- cur = inpL;
-
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
-
- // lm_head scaling
- const float scale_lmhead = float(n_embd_base)/float(n_embd);
- cur = ggml_scale(ctx0, cur, scale_lmhead);
- cb(cur, "lmhead_scaling", -1);
-
- // lm_head
- cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
- cb(cur, "result_output", -1);
-
- ggml_build_forward_expand(gf, cur);
-
- return gf;
- }
-
struct ggml_cgraph * build_minicpm3() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
switch (model.arch) {
case LLM_ARCH_LLAMA:
+ case LLM_ARCH_MINICPM:
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
{
{
result = llm.build_internlm2();
} break;
- case LLM_ARCH_MINICPM:
- {
- result = llm.build_minicpm();
- } break;
case LLM_ARCH_MINICPM3:
{
result = llm.build_minicpm3();