#
# whisper
+add_library(whisper-cpp SHARED
+ whisper.cpp
+ )
+
+target_link_libraries(whisper-cpp PRIVATE
+ ggml
+ )
+
set(TEST_TARGET whisper)
add_executable(${TEST_TARGET} main.cpp)
-target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
+target_link_libraries(${TEST_TARGET} PRIVATE whisper-cpp)
+target_include_directories(${TEST_TARGET} PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/..)
-#include "ggml.h"
-
-#define USE_FLASH_ATTN
-#define USE_FLASH_FF
+#include "whisper.h"
// third-party utilities
// use your favorite implementations
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
-#include <algorithm>
-#include <cassert>
-#include <cmath>
#include <cstdio>
-#include <cstring>
-#include <fstream>
-#include <map>
#include <string>
#include <thread>
#include <vector>
-// available whisper models
-enum e_model {
- MODEL_UNKNOWN,
- MODEL_TINY,
- MODEL_BASE,
- MODEL_SMALL,
- MODEL_MEDIUM,
- MODEL_LARGE,
-};
-
-const std::map<std::string, std::pair<int, std::string>> g_lang = {
- { "en", { 0, "english", } },
- { "zh", { 1, "chinese", } },
- { "de", { 2, "german", } },
- { "es", { 3, "spanish", } },
- { "ru", { 4, "russian", } },
- { "ko", { 5, "korean", } },
- { "fr", { 6, "french", } },
- { "ja", { 7, "japanese", } },
- { "pt", { 8, "portuguese", } },
- { "tr", { 9, "turkish", } },
- { "pl", { 10, "polish", } },
- { "ca", { 11, "catalan", } },
- { "nl", { 12, "dutch", } },
- { "ar", { 13, "arabic", } },
- { "sv", { 14, "swedish", } },
- { "it", { 15, "italian", } },
- { "id", { 16, "indonesian", } },
- { "hi", { 17, "hindi", } },
- { "fi", { 18, "finnish", } },
- { "vi", { 19, "vietnamese", } },
- { "iw", { 20, "hebrew", } },
- { "uk", { 21, "ukrainian", } },
- { "el", { 22, "greek", } },
- { "ms", { 23, "malay", } },
- { "cs", { 24, "czech", } },
- { "ro", { 25, "romanian", } },
- { "da", { 26, "danish", } },
- { "hu", { 27, "hungarian", } },
- { "ta", { 28, "tamil", } },
- { "no", { 29, "norwegian", } },
- { "th", { 30, "thai", } },
- { "ur", { 31, "urdu", } },
- { "hr", { 32, "croatian", } },
- { "bg", { 33, "bulgarian", } },
- { "lt", { 34, "lithuanian", } },
- { "la", { 35, "latin", } },
- { "mi", { 36, "maori", } },
- { "ml", { 37, "malayalam", } },
- { "cy", { 38, "welsh", } },
- { "sk", { 39, "slovak", } },
- { "te", { 40, "telugu", } },
- { "fa", { 41, "persian", } },
- { "lv", { 42, "latvian", } },
- { "bn", { 43, "bengali", } },
- { "sr", { 44, "serbian", } },
- { "az", { 45, "azerbaijani", } },
- { "sl", { 46, "slovenian", } },
- { "kn", { 47, "kannada", } },
- { "et", { 48, "estonian", } },
- { "mk", { 49, "macedonian", } },
- { "br", { 50, "breton", } },
- { "eu", { 51, "basque", } },
- { "is", { 52, "icelandic", } },
- { "hy", { 53, "armenian", } },
- { "ne", { 54, "nepali", } },
- { "mn", { 55, "mongolian", } },
- { "bs", { 56, "bosnian", } },
- { "kk", { 57, "kazakh", } },
- { "sq", { 58, "albanian", } },
- { "sw", { 59, "swahili", } },
- { "gl", { 60, "galician", } },
- { "mr", { 61, "marathi", } },
- { "pa", { 62, "punjabi", } },
- { "si", { 63, "sinhala", } },
- { "km", { 64, "khmer", } },
- { "sn", { 65, "shona", } },
- { "yo", { 66, "yoruba", } },
- { "so", { 67, "somali", } },
- { "af", { 68, "afrikaans", } },
- { "oc", { 69, "occitan", } },
- { "ka", { 70, "georgian", } },
- { "be", { 71, "belarusian", } },
- { "tg", { 72, "tajik", } },
- { "sd", { 73, "sindhi", } },
- { "gu", { 74, "gujarati", } },
- { "am", { 75, "amharic", } },
- { "yi", { 76, "yiddish", } },
- { "lo", { 77, "lao", } },
- { "uz", { 78, "uzbek", } },
- { "fo", { 79, "faroese", } },
- { "ht", { 80, "haitian creole", } },
- { "ps", { 81, "pashto", } },
- { "tk", { 82, "turkmen", } },
- { "nn", { 83, "nynorsk", } },
- { "mt", { 84, "maltese", } },
- { "sa", { 85, "sanskrit", } },
- { "lb", { 86, "luxembourgish", } },
- { "my", { 87, "myanmar", } },
- { "bo", { 88, "tibetan", } },
- { "tl", { 89, "tagalog", } },
- { "mg", { 90, "malagasy", } },
- { "as", { 91, "assamese", } },
- { "tt", { 92, "tatar", } },
- { "haw", { 93, "hawaiian", } },
- { "ln", { 94, "lingala", } },
- { "ha", { 95, "hausa", } },
- { "ba", { 96, "bashkir", } },
- { "jw", { 97, "javanese", } },
- { "su", { 98, "sundanese", } },
-};
-
-const size_t MB = 1024*1024;
-
-const std::map<e_model, size_t> MEM_REQ_MODEL = {
- { MODEL_TINY, 86ull*MB },
- { MODEL_BASE, 165ull*MB },
- { MODEL_SMALL, 540ull*MB },
- { MODEL_MEDIUM, 1650ull*MB },
- { MODEL_LARGE, 3260ull*MB },
-};
-
-const std::map<e_model, size_t> MEM_REQ_ENCODE = {
- { MODEL_TINY, 80ull*MB },
- { MODEL_BASE, 128ull*MB },
- { MODEL_SMALL, 300ull*MB },
- { MODEL_MEDIUM, 680ull*MB },
- { MODEL_LARGE, 1100ull*MB },
-};
-
-const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
- { MODEL_TINY, 64ull*MB },
- { MODEL_BASE, 84ull*MB },
- { MODEL_SMALL, 128ull*MB },
- { MODEL_MEDIUM, 172ull*MB },
- { MODEL_LARGE, 216ull*MB },
-};
-
-const std::map<e_model, size_t> MEM_REQ_DECODE = {
- { MODEL_TINY, 94ull*MB },
- { MODEL_BASE, 96ull*MB },
- { MODEL_SMALL, 98ull*MB },
- { MODEL_MEDIUM, 100ull*MB },
- { MODEL_LARGE, 102ull*MB },
-};
-
-const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
- { MODEL_TINY, 32ull*MB },
- { MODEL_BASE, 44ull*MB },
- { MODEL_SMALL, 64ull*MB },
- { MODEL_MEDIUM, 84ull*MB },
- { MODEL_LARGE, 110ull*MB },
-};
-
-// the memory buffers used to store the model in memory and perform the inference computations
-std::vector<uint8_t> g_buf_model;
-std::vector<uint8_t> g_buf_compute;
-std::vector<uint8_t> g_buf_compute_layer;
-
-const int SAMPLE_RATE = 16000;
-const int N_FFT = 400;
-const int N_MEL = 80;
-const int HOP_LENGTH = 160;
-const int CHUNK_SIZE = 30; // seconds
-
-struct whisper_mel {
- int n_len;
- int n_mel;
-
- std::vector<float> data;
-};
-
-struct whisper_filters {
- int32_t n_mel;
- int32_t n_fft;
-
- std::vector<float> data;
-};
-
-struct whisper_vocab {
- using id = int32_t;
- using token = std::string;
-
- int n_vocab = 51864;
-
- std::map<token, id> token_to_id;
- std::map<id, token> id_to_token;
-
- id token_eot = 50256;
- id token_sot = 50257;
- id token_prev = 50360;
- id token_solm = 50361; // ??
- id token_not = 50362; // no timestamps
- id token_beg = 50363;
-
- // available tasks
- const id token_translate = 50358;
- const id token_transcribe = 50359;
+// 500 -> 00:05.000
+// 6000 -> 01:00.000
+std::string to_timestamp(int64_t t) {
+ int64_t sec = t/100;
+ int64_t msec = t - sec*100;
+ int64_t min = sec/60;
+ sec = sec - min*60;
- bool is_multilingual() const {
- return n_vocab == 51865;
- }
-};
+ char buf[32];
+ snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
-struct whisper_result {
- whisper_vocab::id id;
- int64_t t;
-};
+ return std::string(buf);
+}
// command-line parameters
struct whisper_params {
params.translate = true;
} else if (arg == "-l" || arg == "--language") {
params.language = argv[++i];
- if (g_lang.find(params.language) == g_lang.end()) {
+ if (whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
fprintf(stderr, "\n");
}
+int main(int argc, char ** argv) {
+ whisper_params params;
-// medium
-// hparams: {
-// 'n_mels': 80,
-// 'n_vocab': 51864,
-// 'n_audio_ctx': 1500,
-// 'n_audio_state': 1024,
-// 'n_audio_head': 16,
-// 'n_audio_layer': 24,
-// 'n_text_ctx': 448,
-// 'n_text_state': 1024,
-// 'n_text_head': 16,
-// 'n_text_layer': 24
-// }
-//
-// default hparams (Whisper tiny)
-struct whisper_hparams {
- int32_t n_vocab = 51864;
- int32_t n_audio_ctx = 1500;
- int32_t n_audio_state = 384;
- int32_t n_audio_head = 6;
- int32_t n_audio_layer = 4;
- int32_t n_text_ctx = 448;
- int32_t n_text_state = 384;
- int32_t n_text_head = 6;
- int32_t n_text_layer = 4;
- int32_t n_mels = 80;
- int32_t f16 = 1;
-};
-
-// audio encoding layer
-struct whisper_layer_encoder {
- // encoder.blocks.*.attn_ln
- struct ggml_tensor * attn_ln_0_w;
- struct ggml_tensor * attn_ln_0_b;
-
- // encoder.blocks.*.attn.out
- struct ggml_tensor * attn_ln_1_w;
- struct ggml_tensor * attn_ln_1_b;
-
- // encoder.blocks.*.attn.query
- struct ggml_tensor * attn_q_w;
- struct ggml_tensor * attn_q_b;
-
- // encoder.blocks.*.attn.key
- struct ggml_tensor * attn_k_w;
-
- // encoder.blocks.*.attn.value
- struct ggml_tensor * attn_v_w;
- struct ggml_tensor * attn_v_b;
-
- // encoder.blocks.*.mlp_ln
- struct ggml_tensor * mlp_ln_w;
- struct ggml_tensor * mlp_ln_b;
-
- // encoder.blocks.*.mlp.0
- struct ggml_tensor * mlp_0_w;
- struct ggml_tensor * mlp_0_b;
-
- // encoder.blocks.*.mlp.2
- struct ggml_tensor * mlp_1_w;
- struct ggml_tensor * mlp_1_b;
-};
-
-// token decoding layer
-struct whisper_layer_decoder {
- // decoder.blocks.*.attn_ln
- struct ggml_tensor * attn_ln_0_w;
- struct ggml_tensor * attn_ln_0_b;
-
- // decoder.blocks.*.attn.out
- struct ggml_tensor * attn_ln_1_w;
- struct ggml_tensor * attn_ln_1_b;
-
- // decoder.blocks.*.attn.query
- struct ggml_tensor * attn_q_w;
- struct ggml_tensor * attn_q_b;
-
- // decoder.blocks.*.attn.key
- struct ggml_tensor * attn_k_w;
-
- // decoder.blocks.*.attn.value
- struct ggml_tensor * attn_v_w;
- struct ggml_tensor * attn_v_b;
-
- // decoder.blocks.*.cross_attn_ln
- struct ggml_tensor * cross_attn_ln_0_w;
- struct ggml_tensor * cross_attn_ln_0_b;
-
- // decoder.blocks.*.cross_attn.out
- struct ggml_tensor * cross_attn_ln_1_w;
- struct ggml_tensor * cross_attn_ln_1_b;
-
- // decoder.blocks.*.cross_attn.query
- struct ggml_tensor * cross_attn_q_w;
- struct ggml_tensor * cross_attn_q_b;
-
- // decoder.blocks.*.cross_attn.key
- struct ggml_tensor * cross_attn_k_w;
-
- // decoder.blocks.*.cross_attn.value
- struct ggml_tensor * cross_attn_v_w;
- struct ggml_tensor * cross_attn_v_b;
-
- // decoder.blocks.*.mlp_ln
- struct ggml_tensor * mlp_ln_w;
- struct ggml_tensor * mlp_ln_b;
-
- // decoder.blocks.*.mlp.0
- struct ggml_tensor * mlp_0_w;
- struct ggml_tensor * mlp_0_b;
-
- // decoder.blocks.*.mlp.2
- struct ggml_tensor * mlp_1_w;
- struct ggml_tensor * mlp_1_b;
-};
-
-struct whisper_model {
- e_model type = MODEL_UNKNOWN;
-
- whisper_hparams hparams;
- whisper_filters filters;
-
- // encoder.positional_embedding
- struct ggml_tensor * e_pe;
-
- // encoder.conv1
- struct ggml_tensor * e_conv_1_w;
- struct ggml_tensor * e_conv_1_b;
-
- // encoder.conv2
- struct ggml_tensor * e_conv_2_w;
- struct ggml_tensor * e_conv_2_b;
-
- // encoder.ln_post
- struct ggml_tensor * e_ln_w;
- struct ggml_tensor * e_ln_b;
-
- // decoder.positional_embedding
- struct ggml_tensor * d_pe; // DD
-
- // decoder.token_embedding
- struct ggml_tensor * d_te; // DD
-
- // decoder.ln
- struct ggml_tensor * d_ln_w; // DD
- struct ggml_tensor * d_ln_b; // DD
-
- std::vector<whisper_layer_encoder> layers_encoder;
- std::vector<whisper_layer_decoder> layers_decoder;
-
- // key + value memory
- struct ggml_tensor * memory_k;
- struct ggml_tensor * memory_v;
-
- struct ggml_tensor * memory_cross_k;
- struct ggml_tensor * memory_cross_v;
-
- //
- struct ggml_context * ctx;
- std::map<std::string, struct ggml_tensor *> tensors;
-};
-
-// load the model from a ggml file
-//
-// file format:
-//
-// - hparams
-// - pre-computed mel filters
-// - vocab
-// - weights
-//
-// see the convert-pt-to-ggml.py script for details
-//
-bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) {
- printf("%s: loading model from '%s'\n", __func__, fname.c_str());
-
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
-
- // verify magic
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic != 0x67676d6c) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
+ if (whisper_params_parse(argc, argv, params) == false) {
+ return 1;
}
- //load hparams
- {
- auto & hparams = model.hparams;
-
- fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
- fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
- fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
- fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
- fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
- fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
- fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
- fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
- fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
- fin.read((char *) &hparams.f16, sizeof(hparams.f16));
-
- assert(hparams.n_text_state == hparams.n_audio_state);
-
- if (hparams.n_audio_layer == 4) {
- model.type = e_model::MODEL_TINY;
- }
-
- if (hparams.n_audio_layer == 6) {
- model.type = e_model::MODEL_BASE;
- }
-
- if (hparams.n_audio_layer == 12) {
- model.type = e_model::MODEL_SMALL;
- }
-
- if (hparams.n_audio_layer == 24) {
- model.type = e_model::MODEL_MEDIUM;
- }
-
- if (hparams.n_audio_layer == 32) {
- model.type = e_model::MODEL_LARGE;
- }
-
- printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
- printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
- printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
- printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
- printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
- printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state);
- printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head);
- printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
- printf("%s: n_mels = %d\n", __func__, hparams.n_mels);
- printf("%s: f16 = %d\n", __func__, hparams.f16);
- printf("%s: type = %d\n", __func__, model.type);
-
- g_buf_model.resize(MEM_REQ_MODEL.at(model.type));
- g_buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
- g_buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
-
- // this is the total memory required to run the inference
- const size_t mem_required =
- g_buf_model.size() +
- g_buf_compute.size() +
- g_buf_compute_layer.size();
-
- printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
+ if (params.seed < 0) {
+ params.seed = time(NULL);
}
- // load mel filters
- {
- auto & filters = model.filters;
-
- fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
- fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
+ // whisper init
- filters.data.resize(filters.n_mel * filters.n_fft);
- fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
- }
+ struct whisper_context * ctx = whisper_init(params.model.c_str());
- // load vocab
+ // WAV input
+ std::vector<float> pcmf32;
{
- int32_t n_vocab = 0;
- fin.read((char *) &n_vocab, sizeof(n_vocab));
-
- //if (n_vocab != model.hparams.n_vocab) {
- // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
- // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
- // return false;
- //}
-
- std::string word;
- for (int i = 0; i < n_vocab; i++) {
- uint32_t len;
- fin.read((char *) &len, sizeof(len));
-
- word.resize(len);
- fin.read((char *) word.data(), len);
-
- vocab.token_to_id[word] = i;
- vocab.id_to_token[i] = word;
-
- //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
- }
-
- vocab.n_vocab = model.hparams.n_vocab;
- if (vocab.is_multilingual()) {
- vocab.token_eot++;
- vocab.token_sot++;
- vocab.token_prev++;
- vocab.token_solm++;
- vocab.token_not++;
- vocab.token_beg++;
- }
-
- if (n_vocab < model.hparams.n_vocab) {
- printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
- for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
- if (i > vocab.token_beg) {
- word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
- } else if (i == vocab.token_eot) {
- word = "[_EOT_]";
- } else if (i == vocab.token_sot) {
- word = "[_SOT_]";
- } else if (i == vocab.token_prev) {
- word = "[_PREV_]";
- } else if (i == vocab.token_not) {
- word = "[_NOT_]";
- } else if (i == vocab.token_beg) {
- word = "[_BEG_]";
- } else {
- word = "[_extra_token_" + std::to_string(i) + "]";
- }
- vocab.token_to_id[word] = i;
- vocab.id_to_token[i] = word;
- }
+ drwav wav;
+ if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) {
+ fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str());
+ whisper_print_usage(argc, argv, {});
+ return 2;
}
- }
-
- // for the big tensors, we have the option to store the data in 16-bit floats
- // in order to save memory and also to speed up the computation
- const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
-
- auto & ctx = model.ctx;
-
- size_t ctx_size = 0;
-
- {
- const auto & hparams = model.hparams;
-
- const int n_vocab = hparams.n_vocab;
-
- const int n_audio_ctx = hparams.n_audio_ctx;
- const int n_audio_state = hparams.n_audio_state;
- const int n_audio_layer = hparams.n_audio_layer;
-
- const int n_text_ctx = hparams.n_text_ctx;
- const int n_text_state = hparams.n_text_state;
- const int n_text_layer = hparams.n_text_layer;
-
- const int n_mels = hparams.n_mels;
-
- // encoder
- {
- // TODO: F16 .. maybe not?
- ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
-
- ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
- ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
-
- ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
- ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
- ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
- ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
+ if (wav.channels != 1 && wav.channels != 2) {
+ fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], params.fname_inp.c_str());
+ return 3;
}
- // decoder
- {
- // TODO: F16 .. maybe not?
- ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
-
- ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
-
- ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
- ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
+ if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
+ fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str());
+ return 4;
}
- // encoder layers
- {
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
-
- ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
- ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
-
- ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
-
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
-
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
-
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
-
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
-
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
+ if (wav.bitsPerSample != 16) {
+ fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str());
+ return 5;
}
- // decoder layers
- {
- ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
- ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
-
- ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
- ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
-
- ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
-
- ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
- ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
-
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
-
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
-
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
-
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
- //
- ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
- ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
-
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
-
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
+ int n = wav.totalPCMFrameCount;
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
+ std::vector<int16_t> pcm16;
+ pcm16.resize(n*wav.channels);
+ drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
+ drwav_uninit(&wav);
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
+ // convert to mono, float
+ pcmf32.resize(n);
+ if (wav.channels == 1) {
+ for (size_t i = 0; i < n; i++) {
+ pcmf32[i] = float(pcm16[i])/32768.0f;
+ }
+ } else {
+ for (size_t i = 0; i < n; i++) {
+ pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
+ }
}
-
- ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
- ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
-
- ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
- ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
-
- ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
-
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
- // create the ggml context
+ // print some info about the processing
{
- struct ggml_init_params params = {
- .mem_size = g_buf_model.size(),
- .mem_buffer = g_buf_model.data(),
- };
-
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
+ printf("\n");
+ if (!whisper_is_multilingual(ctx)) {
+ if (params.language != "en" || params.translate) {
+ params.language = "en";
+ params.translate = false;
+ printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
+ }
}
+ printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
+ __func__, int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, params.n_threads,
+ params.language.c_str(),
+ params.translate ? "translate" : "transcribe",
+ params.no_timestamps ? 0 : 1);
+ printf("\n");
}
- // prepare memory for the weights
+ // run the inference
{
- const auto & hparams = model.hparams;
-
- const int n_vocab = hparams.n_vocab;
-
- const int n_audio_ctx = hparams.n_audio_ctx;
- const int n_audio_state = hparams.n_audio_state;
- const int n_audio_layer = hparams.n_audio_layer;
-
- const int n_text_ctx = hparams.n_text_ctx;
- const int n_text_state = hparams.n_text_state;
- const int n_text_layer = hparams.n_text_layer;
-
- const int n_mels = hparams.n_mels;
-
- model.layers_encoder.resize(n_audio_layer);
- model.layers_decoder.resize(n_text_layer);
-
- // encoder
- {
- model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
-
- model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
- model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
-
- model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
- model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
-
- model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
-
- // map by name
- model.tensors["encoder.positional_embedding"] = model.e_pe;
-
- model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
- model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
-
- model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
- model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
-
- model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
- model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
-
- for (int i = 0; i < n_audio_layer; ++i) {
- auto & layer = model.layers_encoder[i];
-
- layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
-
- layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
- layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
-
- layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
- layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
-
- layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
-
- layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
- layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
-
- layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
-
- layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
- layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
-
- layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
- layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
-
- // map by name
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
+ whisper_full_params wparams = whisper_full_default_params(WHISPER_DECODE_GREEDY);
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
+ wparams.print_realtime = true;
+ wparams.print_progress = false;
+ wparams.print_timestamps = !params.no_timestamps;
+ wparams.print_special_tokens = params.print_special_tokens;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
-
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
+ if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
+ fprintf(stderr, "%s: failed to process audio\n", argv[0]);
+ return 6;
+ }
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
+ // print result;
+ if (!wparams.print_realtime) {
+ printf("\n");
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
+ const int n_segments = whisper_full_n_segments(ctx);
+ for (int i = 0; i < n_segments; ++i) {
+ const char * text = whisper_full_get_segment_text(ctx, i);
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
+ if (params.no_timestamps) {
+ printf ("%s", text);
+ fflush(stdout);
+ } else {
+ const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
+ const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
+ printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
+ }
}
}
-
- // decoder
- {
- model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
-
- model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
-
- model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- // map by name
- model.tensors["decoder.positional_embedding"] = model.d_pe;
-
- model.tensors["decoder.token_embedding.weight"] = model.d_te;
-
- model.tensors["decoder.ln.weight"] = model.d_ln_w;
- model.tensors["decoder.ln.bias"] = model.d_ln_b;
-
- for (int i = 0; i < n_text_layer; ++i) {
- auto & layer = model.layers_decoder[i];
-
- layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
- layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
-
- layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
- layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
-
- layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
-
- layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
-
- // map by name
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
-
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
- }
- }
- }
-
- // key + value memory
- {
- const auto & hparams = model.hparams;
-
- const int n_text_state = hparams.n_text_state;
- const int n_text_layer = hparams.n_text_layer;
- const int n_text_ctx = hparams.n_text_ctx;
-
- // key/value memory for the self-attention layer
- {
- const int n_mem = n_text_layer*n_text_ctx;
- const int n_elements = n_text_state*n_mem;
-
- model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- }
-
- // key/value memory for the cross-attention layer
- {
- const int n_audio_ctx = hparams.n_audio_ctx;
-
- const int n_mem = n_text_layer*n_audio_ctx;
- const int n_elements = n_text_state*n_mem;
-
- model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- }
-
- const size_t memory_size =
- ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
- ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
-
- printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
- }
-
- // load weights
- {
- size_t total_size = 0;
-
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
-
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
-
- if (fin.eof()) {
- break;
- }
-
- int32_t nelements = 1;
- int32_t ne[3] = { 1, 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
-
- std::string name(length, 0);
- fin.read(&name[0], length);
-
- if (model.tensors.find(name.data()) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
- return false;
- }
-
- auto tensor = model.tensors[name.data()];
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
-
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
- return false;
- }
-
- const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
-
- if (nelements*bpe != ggml_nbytes(tensor)) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
-
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
-
- //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
- total_size += ggml_nbytes(tensor);
- }
-
- printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
- }
-
- fin.close();
-
- return true;
-}
-
-// evaluate the encoder
-//
-// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
-// part of the transformer model and returns the encoded features
-//
-// - model: the model
-// - n_threads: number of threads to use
-// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
-// - mel_inp: input mel spectrogram
-// - features: output encoded features
-//
-bool whisper_encode(
- const whisper_model & model,
- const int n_threads,
- const int mel_offset,
- const whisper_mel & mel_inp,
- std::vector<float> & features) {
- const auto & hparams = model.hparams;
-
- const int n_vocab = hparams.n_vocab;
-
- const int n_ctx = hparams.n_audio_ctx;
- const int n_state = hparams.n_audio_state;
- const int n_head = hparams.n_audio_head;
- const int n_layer = hparams.n_audio_layer;
-
- const int N = n_ctx;
-
- const int n_mels = hparams.n_mels;
- assert(mel_inp.n_mel == n_mels);
-
- struct ggml_init_params params = {
- .mem_size = g_buf_compute.size(),
- .mem_buffer = g_buf_compute.data(),
- };
-
- struct ggml_context * ctx0 = ggml_init(params);
-
- struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
- assert(mel->type == GGML_TYPE_F32);
- {
- float * dst = (float *) mel->data;
- memset(dst, 0, ggml_nbytes(mel));
-
- const int i0 = std::min(mel_offset, mel_inp.n_len);
- const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
-
- for (int j = 0; j < mel_inp.n_mel; ++j) {
- for (int i = i0; i < i1; ++i) {
- dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
- }
- }
- }
-
- struct ggml_tensor * cur;
-
- // convolution + gelu
- {
- cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- model.e_conv_1_b,
- cur),
- cur);
-
- cur = ggml_gelu(ctx0, cur);
-
- cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- model.e_conv_2_b,
- cur),
- cur);
-
- cur = ggml_gelu(ctx0, cur);
- }
-
- cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
-
- struct ggml_tensor * inpL = cur;
-
- for (int il = 0; il < n_layer; ++il) {
- const auto & layer = model.layers_encoder[il];
-
- // create separate context for each layer to reduce memory usage
-
- struct ggml_init_params paramsL = {
- .mem_size = g_buf_compute_layer.size(),
- .mem_buffer = g_buf_compute_layer.data(),
- };
-
- struct ggml_context * ctxL = ggml_init(paramsL);
-
- // norm
- {
- cur = ggml_norm(ctxL, inpL);
-
- // cur = ln_0_w*cur + ln_0_b
- cur = ggml_add(ctxL,
- ggml_mul(ctxL,
- ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
- cur),
- ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
- }
-
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
- layer.attn_q_w,
- cur);
-
- Qcur = ggml_add(ctxL,
- ggml_repeat(ctxL,
- layer.attn_q_b,
- Qcur),
- Qcur);
-
- //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
-
- // note: no bias for Key
- struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
- layer.attn_k_w,
- cur);
-
- //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
-
- struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
- layer.attn_v_w,
- cur);
-
- Vcur = ggml_add(ctxL,
- ggml_repeat(ctxL,
- layer.attn_v_b,
- Vcur),
- Vcur);
-
- // ------
-
-#ifdef USE_FLASH_ATTN
- struct ggml_tensor * Q =
- ggml_permute(ctxL,
- ggml_cpy(ctxL,
- Qcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
-
- struct ggml_tensor * K =
- ggml_permute(ctxL,
- ggml_cpy(ctxL,
- Kcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
-
- struct ggml_tensor * V =
- ggml_cpy(ctxL,
- ggml_permute(ctxL,
- ggml_reshape_3d(ctxL,
- Vcur,
- n_state/n_head, n_head, N),
- 1, 2, 0, 3),
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
- );
-
- struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
-#else
- struct ggml_tensor * Q =
- ggml_permute(ctxL,
- ggml_cpy(ctxL,
- Qcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
-
- struct ggml_tensor * K =
- ggml_permute(ctxL,
- ggml_cpy(ctxL,
- Kcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
-
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
-
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctxL,
- KQ,
- ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
- );
-
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
-
- //struct ggml_tensor * V_trans =
- // ggml_permute(ctxL,
- // ggml_cpy(ctxL,
- // Vcur,
- // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
- // 1, 2, 0, 3);
-
- //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
-
- struct ggml_tensor * V =
- ggml_cpy(ctxL,
- ggml_permute(ctxL,
- ggml_reshape_3d(ctxL,
- Vcur,
- n_state/n_head, n_head, N),
- 0, 2, 1, 3),
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
- );
-
- struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
-#endif
-
- struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
-
- cur = ggml_cpy(ctxL,
- KQV_merged,
- ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
- }
-
- // projection
- {
- cur = ggml_mul_mat(ctxL,
- layer.attn_ln_1_w,
- cur);
-
- cur = ggml_add(ctxL,
- ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
- cur);
- }
-
- // add the input
- cur = ggml_add(ctxL, cur, inpL);
-
- struct ggml_tensor * inpFF = cur;
-
- // feed-forward network
- {
- // norm
- {
- cur = ggml_norm(ctxL, inpFF);
-
- // cur = mlp_ln_w*cur + mlp_ln_b
- cur = ggml_add(ctxL,
- ggml_mul(ctxL,
- ggml_repeat(ctxL, layer.mlp_ln_w, cur),
- cur),
- ggml_repeat(ctxL, layer.mlp_ln_b, cur));
- }
-
-#ifdef USE_FLASH_FF
- cur = ggml_flash_ff(ctxL,
- ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
- layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
-#else
- // fully connected
- cur = ggml_mul_mat(ctxL,
- layer.mlp_0_w,
- cur);
-
- cur = ggml_add(ctxL,
- ggml_repeat(ctxL, layer.mlp_0_b, cur),
- cur);
-
- // GELU activation
- cur = ggml_gelu(ctxL, cur);
-
- // projection
- cur = ggml_mul_mat(ctxL,
- layer.mlp_1_w,
- cur);
-
- cur = ggml_add(ctxL,
- ggml_repeat(ctxL, layer.mlp_1_b, cur),
- cur);
-#endif
- }
-
- // output from this layer
- struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
-
- {
- struct ggml_cgraph gf = { .n_threads = n_threads };
-
- ggml_build_forward_expand(&gf, inpO);
- ggml_graph_compute (ctxL, &gf);
-
- //ggml_graph_print(&gf);
- }
-
- // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
- // input for next layer (inpO -> inpL)
- memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
- inpL->op = GGML_OP_NONE;
- inpL->src0 = NULL;
- inpL->src1 = NULL;
-
- //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
-
- ggml_free(ctxL);
- }
-
- cur = inpL;
-
- // norm
- {
- cur = ggml_norm(ctx0, cur);
-
- // cur = ln_f_g*cur + ln_f_b
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, model.e_ln_w, cur),
- cur),
- ggml_repeat(ctx0, model.e_ln_b, cur));
- }
-
- // run the computation
- {
- struct ggml_cgraph gf = { .n_threads = n_threads };
-
- ggml_build_forward_expand(&gf, cur);
- ggml_graph_compute (ctx0, &gf);
-
- //ggml_graph_print(&gf);
- }
-
- // cur
- //{
- // printf("ne0 = %d\n", cur->ne[0]);
- // printf("ne1 = %d\n", cur->ne[1]);
- // for (int i = 0; i < 10; ++i) {
- // printf("%8.4f ", ((float *)(cur->data))[i]);
- // }
- // printf("... ");
- // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
- // printf("%8.4f ", ((float *)(cur->data))[i]);
- // }
- // printf("\n");
- //}
-
- // pre-compute cross-attention memory
- {
- struct ggml_cgraph gf = { .n_threads = n_threads };
-
- // TODO: hack to disconnect the encoded features from the previous graph
- cur->op = GGML_OP_NONE;
- cur->src0 = NULL;
- cur->src1 = NULL;
-
- for (int il = 0; il < model.hparams.n_text_layer; ++il) {
- auto & layer = model.layers_decoder[il];
-
- struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
- layer.cross_attn_k_w,
- cur);
-
- Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
-
- struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
- layer.cross_attn_v_w,
- cur);
-
- Vcross = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.cross_attn_v_b,
- Vcross),
- Vcross);
-
- struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
- struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
-
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
- }
-
- ggml_graph_compute(ctx0, &gf);
- }
-
- ////////////////////////////////////////////////////////////////////////////
-
- // output the features
- assert(cur->type == GGML_TYPE_F32);
- features.resize(cur->ne[0]*cur->ne[1]);
- memcpy(features.data(), cur->data, features.size()*sizeof(float));
-
- //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
-
- ggml_free(ctx0);
-
- return true;
-}
-
-// evaluate the decoder
-//
-// given text prompt + audio features -> predicts the probabilities for the next token
-//
-// - model: the model
-// - n_threads: number of threads to use
-// - n_past: prompt length
-// - prompt: text prompt
-// - logits_out: output logits
-// - probs_out: output probabilities
-//
-bool whisper_decode(
- const whisper_model & model,
- const int n_threads,
- const int n_past,
- const std::vector<whisper_vocab::id> & prompt,
- std::vector<float> & logits_out,
- std::vector<float> & probs_out) {
- const auto & hparams = model.hparams;
-
- const int n_vocab = hparams.n_vocab;
-
- const int n_ctx = hparams.n_text_ctx;
- const int n_state = hparams.n_text_state;
- const int n_head = hparams.n_text_head;
- const int n_layer = hparams.n_text_layer;
-
- const int N = prompt.size();
- const int M = hparams.n_audio_ctx;
-
- struct ggml_init_params params = {
- .mem_size = g_buf_compute.size(),
- .mem_buffer = g_buf_compute.data(),
- };
-
- struct ggml_context * ctx0 = ggml_init(params);
-
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, prompt.data(), N*ggml_element_size(embd));
-
- struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- for (int i = 0; i < N; ++i) {
- ((int32_t *) position->data)[i] = n_past + i;
- }
-
- // token encoding + position encoding
- struct ggml_tensor * cur =
- ggml_add(ctx0,
- ggml_get_rows(ctx0, model.d_te, embd),
- ggml_get_rows(ctx0, model.d_pe, position));
-
- struct ggml_tensor * inpL = cur;
-
- for (int il = 0; il < n_layer; ++il) {
- const auto & layer = model.layers_decoder[il];
-
- struct ggml_init_params paramsL = {
- .mem_size = g_buf_compute_layer.size(),
- .mem_buffer = g_buf_compute_layer.data(),
- };
-
- struct ggml_context * ctxL = ggml_init(paramsL);
- struct ggml_cgraph gf = { .n_threads = n_threads };
-
- // norm
- {
- cur = ggml_norm(ctxL, inpL);
-
- // cur = ln_0_w*cur + ln_0_b
- cur = ggml_add(ctxL,
- ggml_mul(ctxL,
- ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
- cur),
- ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
- }
-
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
- layer.attn_q_w,
- cur);
-
- Qcur = ggml_add(ctxL,
- ggml_repeat(ctxL,
- layer.attn_q_b,
- Qcur),
- Qcur);
-
- Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
-
- // note: no bias for Key
- struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
- layer.attn_k_w,
- cur);
-
- Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
-
- struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
- layer.attn_v_w,
- cur);
-
- Vcur = ggml_add(ctxL,
- ggml_repeat(ctxL,
- layer.attn_v_b,
- Vcur),
- Vcur);
-
- // store key and value to memory
- {
- struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
-
- ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
- }
-
- // ------
-
- struct ggml_tensor * Q =
- ggml_permute(ctxL,
- ggml_cpy(ctxL,
- Qcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
-
- struct ggml_tensor * K =
- ggml_permute(ctxL,
- ggml_reshape_3d(ctxL,
- ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
- n_state/n_head, n_head, n_past + N),
- 0, 2, 1, 3);
-
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
-
- //struct ggml_tensor * KQ_scaled =
- // ggml_scale(ctxL,
- // KQ,
- // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
- // );
-
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
-
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
-
- struct ggml_tensor * V_trans =
- ggml_permute(ctxL,
- ggml_reshape_3d(ctxL,
- ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
- n_state/n_head, n_head, n_past + N),
- 1, 2, 0, 3);
-
- struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
-
- struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
-
- cur = ggml_cpy(ctxL,
- KQV_merged,
- ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
- }
-
- {
- cur = ggml_mul_mat(ctxL,
- layer.attn_ln_1_w,
- cur);
-
- cur = ggml_add(ctxL,
- ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
- cur);
- }
-
- // add the input
- struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
-
- // norm
- {
- cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
-
- // cur = ln_0_w*cur + ln_0_b
- cur = ggml_add(ctxL,
- ggml_mul(ctxL,
- ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
- cur),
- ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
- }
-
- // cross-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
- layer.cross_attn_q_w,
- cur);
-
- Qcur = ggml_add(ctxL,
- ggml_repeat(ctxL,
- layer.cross_attn_q_b,
- Qcur),
- Qcur);
-
- Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
-
- // Kcross is already scaled
- struct ggml_tensor * Kcross =
- ggml_reshape_3d(ctxL,
- ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
- n_state/n_head, n_head, M);
-
- struct ggml_tensor * Vcross =
- ggml_reshape_3d(ctxL,
- ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
- n_state/n_head, n_head, M);
-
- // ------
-
- struct ggml_tensor * Q =
- ggml_permute(ctxL,
- ggml_cpy(ctxL,
- Qcur,
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
-
- struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
-
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
-
- //struct ggml_tensor * KQ_scaled =
- // ggml_scale(ctxL,
- // KQ,
- // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
- // );
-
- // no masking for cross-attention
- //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
-
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
-
- struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
-
- struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
-
- struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
-
- // cur = KQV_merged.contiguous().view(n_state, N)
- cur = ggml_cpy(ctxL,
- KQV_merged,
- ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
- }
-
- // projection
- {
- cur = ggml_mul_mat(ctxL,
- layer.cross_attn_ln_1_w,
- cur);
-
- cur = ggml_add(ctxL,
- ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
- cur);
- }
-
- // add the input
- cur = ggml_add(ctxL, cur, inpCA);
-
- struct ggml_tensor * inpFF = cur;
-
- // feed-forward network
- {
- // norm
- {
- cur = ggml_norm(ctxL, inpFF);
-
- // cur = mlp_ln_w*cur + mlp_ln_b
- cur = ggml_add(ctxL,
- ggml_mul(ctxL,
- ggml_repeat(ctxL, layer.mlp_ln_w, cur),
- cur),
- ggml_repeat(ctxL, layer.mlp_ln_b, cur));
- }
-
- // fully connected
- cur = ggml_mul_mat(ctxL,
- layer.mlp_0_w,
- cur);
-
- cur = ggml_add(ctxL,
- ggml_repeat(ctxL, layer.mlp_0_b, cur),
- cur);
-
- // GELU activation
- cur = ggml_gelu(ctxL, cur);
-
- // projection
- cur = ggml_mul_mat(ctxL,
- layer.mlp_1_w,
- cur);
-
- cur = ggml_add(ctxL,
- ggml_repeat(ctxL, layer.mlp_1_b, cur),
- cur);
- }
-
- // output from this layer
- struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
-
- {
- ggml_build_forward_expand(&gf, inpO);
- ggml_graph_compute (ctxL, &gf);
-
- //ggml_graph_print(&gf);
- }
-
- // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
- // input for next layer (inpO -> inpL)
- memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
- inpL->op = GGML_OP_NONE;
- inpL->src0 = NULL;
- inpL->src1 = NULL;
-
- if (N > 1) {
- //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
- }
-
- ggml_free(ctxL);
- }
-
- cur = inpL;
-
- // norm
- {
- cur = ggml_norm(ctx0, cur);
-
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, model.d_ln_w, cur),
- cur),
- ggml_repeat(ctx0, model.d_ln_b, cur));
- }
-
- struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
-
- // logits -> probs
- cur = ggml_dup(ctx0, logits);
- cur = ggml_soft_max(ctx0, cur); // in-place
-
- // run the computation
- {
- struct ggml_cgraph gf = { .n_threads = n_threads };
-
- ggml_build_forward_expand(&gf, cur);
- ggml_graph_compute (ctx0, &gf);
- }
-
- logits_out.resize(N*n_vocab);
- memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
-
- probs_out.resize(N*n_vocab);
- memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
-
- if (N > 1) {
- //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
- //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
- //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
- }
-
- ggml_free(ctx0);
-
- return true;
-}
-
-// the most basic sampling scheme - select the top token
-// TODO: beam search
-// TODO: temperature
-whisper_vocab::id whisper_sample_best(
- const whisper_vocab & vocab,
- const float * probs, bool need_timestamp) {
- int n_logits = vocab.id_to_token.size();
-
- std::vector<std::pair<double, whisper_vocab::id>> probs_id;
- probs_id.reserve(n_logits);
-
- for (int i = 0; i < n_logits; i++) {
- probs_id.push_back(std::make_pair(probs[i], i));
- }
-
- const int top_k = 4;
-
- // find the top K tokens
- std::partial_sort(
- probs_id.begin(),
- probs_id.begin() + top_k, probs_id.end(),
- [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
- return a.first > b.first;
- });
-
- probs_id.resize(top_k);
-
- //printf("\n");
- //for (int i = 0; i < (int) probs_id.size(); i++) {
- // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
- //}
-
- if (need_timestamp) {
- // at the end of the 30-second audio segment, we start giving preference to time tokens
- for (int i = 0; i < top_k; i++) {
- if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) {
- return probs_id[i].second;
- }
- }
- }
-
- int res = 0;
- while ((probs_id[res].second == vocab.token_sot ||
- probs_id[res].second == vocab.token_solm ||
- probs_id[res].second == vocab.token_not) &&
- res < (int) probs_id.size() - 1) {
- res++;
- }
-
- return probs_id[res].second;
-}
-
-// samples only from the timestamps tokens
-whisper_vocab::id whisper_sample_timestamp(
- const whisper_vocab & vocab,
- const float * probs) {
- int n_logits = vocab.id_to_token.size();
-
- std::vector<std::pair<double, whisper_vocab::id>> probs_id;
- probs_id.reserve(n_logits);
-
- for (int i = vocab.token_beg + 1; i < n_logits; i++) {
- probs_id.push_back(std::make_pair(probs[i], i));
- }
-
- const int top_k = 10;
-
- // find the top K tokens
- std::partial_sort(
- probs_id.begin(),
- probs_id.begin() + top_k, probs_id.end(),
- [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
- return a.first > b.first;
- });
-
- probs_id.resize(top_k);
-
- //printf("\n");
- //for (int i = 0; i < (int) probs_id.size(); i++) {
- // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
- //}
-
- return probs_id[0].second;
-}
-
-// naive Discrete Fourier Transform
-// input is real-valued
-// output is complex-valued
-void dft(const std::vector<float> & in, std::vector<float> & out) {
- int N = in.size();
-
- out.resize(N*2);
-
- for (int k = 0; k < N; k++) {
- float re = 0;
- float im = 0;
-
- for (int n = 0; n < N; n++) {
- float angle = 2*M_PI*k*n/N;
- re += in[n]*cos(angle);
- im -= in[n]*sin(angle);
- }
-
- out[k*2 + 0] = re;
- out[k*2 + 1] = im;
- }
-}
-
-// Cooley-Tukey FFT
-// poor man's implementation - use something better
-// input is real-valued
-// output is complex-valued
-void fft(const std::vector<float> & in, std::vector<float> & out) {
- out.resize(in.size()*2);
-
- int N = in.size();
-
- if (N == 1) {
- out[0] = in[0];
- out[1] = 0;
- return;
- }
-
- if (N%2 == 1) {
- dft(in, out);
- return;
- }
-
- std::vector<float> even;
- std::vector<float> odd;
-
- for (int i = 0; i < N; i++) {
- if (i % 2 == 0) {
- even.push_back(in[i]);
- } else {
- odd.push_back(in[i]);
- }
- }
-
- std::vector<float> even_fft;
- std::vector<float> odd_fft;
-
- fft(even, even_fft);
- fft(odd, odd_fft);
-
- for (int k = 0; k < N/2; k++) {
- float theta = 2*M_PI*k/N;
-
- float re = cos(theta);
- float im = -sin(theta);
-
- float re_odd = odd_fft[2*k + 0];
- float im_odd = odd_fft[2*k + 1];
-
- out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
- out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
-
- out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
- out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
- }
-}
-
-// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
-bool log_mel_spectrogram(
- const std::vector<float> sf32,
- const int sample_rate,
- const int fft_size,
- const int fft_step,
- const int n_mel,
- const int n_threads,
- const whisper_filters & filters,
- whisper_mel & mel) {
- const int n_sample = sf32.size();
- const float * samples = sf32.data();
-
- // Hanning window
- std::vector<float> hann;
- hann.resize(fft_size);
- for (int i = 0; i < fft_size; i++) {
- hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
- }
-
- mel.n_mel = n_mel;
- mel.n_len = (n_sample)/fft_step;
- mel.data.resize(mel.n_mel*mel.n_len);
-
- const int n_fft = 1 + fft_size/2;
-
- printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len);
- printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate);
-
- std::vector<std::thread> workers(n_threads);
- for (int iw = 0; iw < n_threads; ++iw) {
- workers[iw] = std::thread([&](int ith) {
- std::vector<float> fft_in;
- fft_in.resize(fft_size);
- for (int i = 0; i < fft_size; i++) {
- fft_in[i] = 0.0;
- }
-
- std::vector<float> fft_out;
- fft_out.resize(2*fft_size);
-
- for (int i = ith; i < mel.n_len; i += n_threads) {
- const int offset = i*fft_step;
-
- // apply Hanning window
- for (int j = 0; j < fft_size; j++) {
- if (offset + j < n_sample) {
- fft_in[j] = hann[j]*samples[offset + j];
- } else {
- fft_in[j] = 0.0;
- }
- }
-
- // FFT -> mag^2
- fft(fft_in, fft_out);
-
- for (int j = 0; j < fft_size; j++) {
- fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
- }
- for (int j = 1; j < fft_size/2; j++) {
- //if (i == 0) {
- // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]);
- //}
- fft_out[j] += fft_out[fft_size - j];
- }
- if (i == 0) {
- //for (int j = 0; j < fft_size; j++) {
- // printf("%d: %e\n", j, fft_out[j]);
- //}
- }
-
- // mel spectrogram
- for (int j = 0; j < mel.n_mel; j++) {
- double sum = 0.0;
-
- for (int k = 0; k < n_fft; k++) {
- sum += fft_out[k]*filters.data[j*n_fft + k];
- }
- if (sum < 1e-10) {
- sum = 1e-10;
- }
-
- sum = log10(sum);
-
- mel.data[j*mel.n_len + i] = sum;
- }
- }
- }, iw);
- }
-
- for (int iw = 0; iw < n_threads; ++iw) {
- workers[iw].join();
- }
-
- // clamping and normalization
- double mmax = -1e20;
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
- if (mel.data[i] > mmax) {
- mmax = mel.data[i];
- }
- }
- //printf("%s: max = %f\n", __func__, mmax);
-
- mmax -= 8.0;
-
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
- if (mel.data[i] < mmax) {
- mel.data[i] = mmax;
- }
-
- mel.data[i] = (mel.data[i] + 4.0)/4.0;
- }
-
- return true;
-}
-
-// 500 -> 00:05.000
-// 6000 -> 01:00.000
-std::string to_timestamp(int64_t t) {
- int64_t sec = t/100;
- int64_t msec = t - sec*100;
- int64_t min = sec/60;
- sec = sec - min*60;
-
- char buf[32];
- snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
-
- return std::string(buf);
-}
-
-int main(int argc, char ** argv) {
- const int64_t t_main_start_us = ggml_time_us();
-
- whisper_params params;
-
- if (whisper_params_parse(argc, argv, params) == false) {
- return 1;
- }
-
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
-
- // Model loading
-
- //printf("%s: seed = %d\n", __func__, params.seed);
-
- int64_t t_load_us = 0;
- int64_t t_mel_us = 0;
- int64_t t_sample_us = 0;
- int64_t t_encode_us = 0;
- int64_t t_decode_us = 0;
-
- whisper_vocab vocab;
- whisper_model model;
-
- // load the model
- {
- const int64_t t_start_us = ggml_time_us();
-
- if (!whisper_model_load(params.model, model, vocab)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- whisper_print_usage(argc, argv, {});
- return 1;
- }
-
- t_load_us = ggml_time_us() - t_start_us;
- }
-
- // WAV input
- std::vector<float> pcmf32;
- {
- drwav wav;
- if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) {
- fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str());
- whisper_print_usage(argc, argv, {});
- return 2;
- }
-
- if (wav.channels != 1 && wav.channels != 2) {
- fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], params.fname_inp.c_str());
- return 3;
- }
-
- if (wav.sampleRate != SAMPLE_RATE) {
- fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str());
- return 4;
- }
-
- if (wav.bitsPerSample != 16) {
- fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str());
- return 5;
- }
-
- int n = wav.totalPCMFrameCount;
-
- std::vector<int16_t> pcm16;
- pcm16.resize(n*wav.channels);
- drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
- drwav_uninit(&wav);
-
- // convert to mono, float
- pcmf32.resize(n);
- if (wav.channels == 1) {
- for (size_t i = 0; i < n; i++) {
- pcmf32[i] = float(pcm16[i])/32768.0f;
- }
- } else {
- for (size_t i = 0; i < n; i++) {
- pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
- }
- }
- }
-
- // compute log mel spectrogram
- whisper_mel mel_inp;
- {
- const int64_t t_start_us = ggml_time_us();
-
- log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp);
-
- t_mel_us = ggml_time_us() - t_start_us;
- }
-
- // print some info about the processing
- {
- printf("\n");
- if (!vocab.is_multilingual()) {
- if (params.language != "en" || params.translate) {
- params.language = "en";
- params.translate = false;
- printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
- }
- }
- printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
- __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads,
- g_lang.at(params.language).second.c_str(),
- params.translate ? "translate" : "transcribe",
- params.no_timestamps ? 0 : 1);
- printf("\n");
- }
-
- // the accumulated text context so far
- std::vector<whisper_vocab::id> prompt_past = { };
-
- // these tokens determine the task that will be performed
- std::vector<whisper_vocab::id> prompt_init = { vocab.token_sot };
- if (vocab.is_multilingual()) {
- prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first);
- if (params.translate) {
- prompt_init.push_back(vocab.token_translate);
- } else {
- prompt_init.push_back(vocab.token_transcribe);
- }
- }
-
- // the generated text including timestamps
- //std::vector<whisper_result> result_all;
-
- // main loop
- int seek = 0;
- while (true) {
- if (seek >= mel_inp.n_len) {
- break;
- }
-
- // encode audio features starting at offset seek
- std::vector<float> features;
- {
- const int64_t t_start_us = ggml_time_us();
-
- if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
-
- t_encode_us += ggml_time_us() - t_start_us;
- }
-
- std::vector<float> probs;
- std::vector<float> logits;
-
- std::vector<whisper_vocab::id> prompt;
-
- int n_past = 0;
-
- // if we have already generated some text, use it as a prompt to condition the next generation
- if (prompt_past.size() > 0) {
- int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
-
- prompt = { vocab.token_prev };
- prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
-
- prompt_past.clear();
- prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
- }
-
- prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
-
- bool done = false;
- int seek_delta = 100*CHUNK_SIZE;
- whisper_vocab::id last_id = 0;
-
- // print the prompt
- //printf("\n\n");
- //for (int i = 0; i < prompt.size(); i++) {
- // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str());
- //}
- //printf("\n\n");
-
- // the accumulated transcription in the current interation
- int result_len = 0;
- std::vector<whisper_result> result_cur;
-
- for (int i = 0; i < model.hparams.n_text_ctx/2 - 4; ++i) {
- // decode
- if (prompt.size() > 0) {
- const int64_t t_start_us = ggml_time_us();
-
- if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
-
- t_decode_us += ggml_time_us() - t_start_us;
- }
-
- n_past += prompt.size();
- prompt.clear();
-
- // very basic greedy sampling strategy:
- //
- // - always take the most probable token
- //
- // more sophisticated sampling strategies could be implemented here, but we keep it simple
- // feel free to experiment!
- //
- {
- const int n_vocab = model.hparams.n_vocab;
-
- whisper_vocab::id id = 0;
- whisper_vocab::id tid = vocab.token_beg;
-
- {
- const int64_t t_start_sample_us = ggml_time_us();
-
- id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), result_len == 0);
- if (i > 0) {
- tid = whisper_sample_timestamp(vocab, probs.data() + (probs.size() - n_vocab));
- }
-
- t_sample_us += ggml_time_us() - t_start_sample_us;
- }
-
- // update sliding window
- if (id > vocab.token_beg) {
- seek_delta = 2*(id - vocab.token_beg);
- result_len = i + 1;
- }
- last_id = id;
-
- // add it to the context
- prompt.push_back(id);
- result_cur.push_back({ id, seek + 2*(tid - vocab.token_beg) });
-
- //printf("%s: %s\n", __func__, vocab.id_to_token[id].c_str());
-
- // end of text token
- if (id == vocab.token_eot) {
- break;
- }
- }
-
- if (done) {
- break;
- }
- }
-
- result_cur.resize(result_len);
- //result_all.insert(result_all.end(), result_cur.begin(), result_cur.end());
-
- for (const auto & r : result_cur) {
- prompt_past.push_back(r.id);
- }
-
- // print the text from this iteration
- if (result_cur.size() > 0) {
- auto t0 = result_cur.front().t;
-
- std::string text = "";
- for (int i = 0; i < result_cur.size(); i++) {
- if (params.print_special_tokens == false && result_cur[i].id >= vocab.token_eot) {
- } else {
- text += vocab.id_to_token[result_cur[i].id];
- }
- if (result_cur[i].id > vocab.token_beg) {
- const auto t1 = result_cur[i].t;
- if (!text.empty()) {
- if (params.no_timestamps) {
- printf ("%s", text.c_str());
- fflush(stdout);
- } else {
- printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
- }
- }
- text = "";
- while (result_cur[i].id > vocab.token_beg && i < result_cur.size()) {
- i++;
- }
- i--;
- t0 = result_cur[i].t;
- }
- }
-
- if (!text.empty()) {
- printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(seek + seek_delta).c_str(), text.c_str());
- }
- }
-
- seek += seek_delta;
- }
-
- // WIP: attempt for per-token timestamps
- //if (!params.no_timestamps && result_all.size() > 0) {
- // const int64_t dt = 500; // 5 second intervals
-
- // int i0 = 0;
-
- // int64_t t0 = result_all[0].t;
- // int64_t t1 = t0;
-
- // printf("\n\n");
- // for (int i = 0; i < result_all.size(); ++i) {
- // printf("'%s' -> %lld\n", vocab.id_to_token[result_all[i].id].c_str(), result_all[i].t);
- // if (result_all[i].t - t0 > dt) {
- // t1 = result_all[i - 1].t;
- // printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
- // for (int j = i0; j < i; ++j) {
- // printf("%s", vocab.id_to_token.at(result_all[j].id).c_str());
- // }
- // printf("\n");
- // i0 = i;
- // t0 = result_all[i].t;
- // }
- // }
- //}
-
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
-
- printf("\n\n");
- printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
- printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f);
- printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
- printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer);
- printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
}
- ggml_free(model.ctx);
+ whisper_print_timings(ctx);
+ whisper_free(ctx);
return 0;
}
--- /dev/null
+#include "whisper.h"
+
+#include "ggml.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <map>
+#include <string>
+#include <thread>
+#include <vector>
+
+#define USE_FLASH_ATTN
+#define USE_FLASH_FF
+
+// available whisper models
+enum e_model {
+ MODEL_UNKNOWN,
+ MODEL_TINY,
+ MODEL_BASE,
+ MODEL_SMALL,
+ MODEL_MEDIUM,
+ MODEL_LARGE,
+};
+
+static const std::map<std::string, std::pair<int, std::string>> g_lang = {
+ { "en", { 0, "english", } },
+ { "zh", { 1, "chinese", } },
+ { "de", { 2, "german", } },
+ { "es", { 3, "spanish", } },
+ { "ru", { 4, "russian", } },
+ { "ko", { 5, "korean", } },
+ { "fr", { 6, "french", } },
+ { "ja", { 7, "japanese", } },
+ { "pt", { 8, "portuguese", } },
+ { "tr", { 9, "turkish", } },
+ { "pl", { 10, "polish", } },
+ { "ca", { 11, "catalan", } },
+ { "nl", { 12, "dutch", } },
+ { "ar", { 13, "arabic", } },
+ { "sv", { 14, "swedish", } },
+ { "it", { 15, "italian", } },
+ { "id", { 16, "indonesian", } },
+ { "hi", { 17, "hindi", } },
+ { "fi", { 18, "finnish", } },
+ { "vi", { 19, "vietnamese", } },
+ { "iw", { 20, "hebrew", } },
+ { "uk", { 21, "ukrainian", } },
+ { "el", { 22, "greek", } },
+ { "ms", { 23, "malay", } },
+ { "cs", { 24, "czech", } },
+ { "ro", { 25, "romanian", } },
+ { "da", { 26, "danish", } },
+ { "hu", { 27, "hungarian", } },
+ { "ta", { 28, "tamil", } },
+ { "no", { 29, "norwegian", } },
+ { "th", { 30, "thai", } },
+ { "ur", { 31, "urdu", } },
+ { "hr", { 32, "croatian", } },
+ { "bg", { 33, "bulgarian", } },
+ { "lt", { 34, "lithuanian", } },
+ { "la", { 35, "latin", } },
+ { "mi", { 36, "maori", } },
+ { "ml", { 37, "malayalam", } },
+ { "cy", { 38, "welsh", } },
+ { "sk", { 39, "slovak", } },
+ { "te", { 40, "telugu", } },
+ { "fa", { 41, "persian", } },
+ { "lv", { 42, "latvian", } },
+ { "bn", { 43, "bengali", } },
+ { "sr", { 44, "serbian", } },
+ { "az", { 45, "azerbaijani", } },
+ { "sl", { 46, "slovenian", } },
+ { "kn", { 47, "kannada", } },
+ { "et", { 48, "estonian", } },
+ { "mk", { 49, "macedonian", } },
+ { "br", { 50, "breton", } },
+ { "eu", { 51, "basque", } },
+ { "is", { 52, "icelandic", } },
+ { "hy", { 53, "armenian", } },
+ { "ne", { 54, "nepali", } },
+ { "mn", { 55, "mongolian", } },
+ { "bs", { 56, "bosnian", } },
+ { "kk", { 57, "kazakh", } },
+ { "sq", { 58, "albanian", } },
+ { "sw", { 59, "swahili", } },
+ { "gl", { 60, "galician", } },
+ { "mr", { 61, "marathi", } },
+ { "pa", { 62, "punjabi", } },
+ { "si", { 63, "sinhala", } },
+ { "km", { 64, "khmer", } },
+ { "sn", { 65, "shona", } },
+ { "yo", { 66, "yoruba", } },
+ { "so", { 67, "somali", } },
+ { "af", { 68, "afrikaans", } },
+ { "oc", { 69, "occitan", } },
+ { "ka", { 70, "georgian", } },
+ { "be", { 71, "belarusian", } },
+ { "tg", { 72, "tajik", } },
+ { "sd", { 73, "sindhi", } },
+ { "gu", { 74, "gujarati", } },
+ { "am", { 75, "amharic", } },
+ { "yi", { 76, "yiddish", } },
+ { "lo", { 77, "lao", } },
+ { "uz", { 78, "uzbek", } },
+ { "fo", { 79, "faroese", } },
+ { "ht", { 80, "haitian creole", } },
+ { "ps", { 81, "pashto", } },
+ { "tk", { 82, "turkmen", } },
+ { "nn", { 83, "nynorsk", } },
+ { "mt", { 84, "maltese", } },
+ { "sa", { 85, "sanskrit", } },
+ { "lb", { 86, "luxembourgish", } },
+ { "my", { 87, "myanmar", } },
+ { "bo", { 88, "tibetan", } },
+ { "tl", { 89, "tagalog", } },
+ { "mg", { 90, "malagasy", } },
+ { "as", { 91, "assamese", } },
+ { "tt", { 92, "tatar", } },
+ { "haw", { 93, "hawaiian", } },
+ { "ln", { 94, "lingala", } },
+ { "ha", { 95, "hausa", } },
+ { "ba", { 96, "bashkir", } },
+ { "jw", { 97, "javanese", } },
+ { "su", { 98, "sundanese", } },
+};
+
+static const size_t MB = 1024*1024;
+
+static const std::map<e_model, size_t> MEM_REQ_MODEL = {
+ { MODEL_TINY, 86ull*MB },
+ { MODEL_BASE, 165ull*MB },
+ { MODEL_SMALL, 540ull*MB },
+ { MODEL_MEDIUM, 1650ull*MB },
+ { MODEL_LARGE, 3260ull*MB },
+};
+
+static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
+ { MODEL_TINY, 80ull*MB },
+ { MODEL_BASE, 128ull*MB },
+ { MODEL_SMALL, 300ull*MB },
+ { MODEL_MEDIUM, 680ull*MB },
+ { MODEL_LARGE, 1100ull*MB },
+};
+
+static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
+ { MODEL_TINY, 64ull*MB },
+ { MODEL_BASE, 84ull*MB },
+ { MODEL_SMALL, 128ull*MB },
+ { MODEL_MEDIUM, 172ull*MB },
+ { MODEL_LARGE, 216ull*MB },
+};
+
+static const std::map<e_model, size_t> MEM_REQ_DECODE = {
+ { MODEL_TINY, 94ull*MB },
+ { MODEL_BASE, 96ull*MB },
+ { MODEL_SMALL, 98ull*MB },
+ { MODEL_MEDIUM, 100ull*MB },
+ { MODEL_LARGE, 102ull*MB },
+};
+
+static const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
+ { MODEL_TINY, 32ull*MB },
+ { MODEL_BASE, 44ull*MB },
+ { MODEL_SMALL, 64ull*MB },
+ { MODEL_MEDIUM, 84ull*MB },
+ { MODEL_LARGE, 110ull*MB },
+};
+
+struct whisper_mel {
+ int n_len;
+ int n_mel;
+
+ std::vector<float> data;
+};
+
+struct whisper_filters {
+ int32_t n_mel;
+ int32_t n_fft;
+
+ std::vector<float> data;
+};
+
+struct whisper_vocab {
+ using id = int32_t;
+ using token = std::string;
+
+ int n_vocab = 51864;
+
+ std::map<token, id> token_to_id;
+ std::map<id, token> id_to_token;
+
+ id token_eot = 50256;
+ id token_sot = 50257;
+ id token_prev = 50360;
+ id token_solm = 50361; // ??
+ id token_not = 50362; // no timestamps
+ id token_beg = 50363;
+
+ // available tasks
+ static const id token_translate = 50358;
+ static const id token_transcribe = 50359;
+
+ bool is_multilingual() const {
+ return n_vocab == 51865;
+ }
+};
+
+struct whisper_result {
+ int64_t t;
+ whisper_token id;
+};
+
+struct whisper_segment {
+ int64_t t0;
+ int64_t t1;
+
+ std::string text;
+};
+
+// medium
+// hparams: {
+// 'n_mels': 80,
+// 'n_vocab': 51864,
+// 'n_audio_ctx': 1500,
+// 'n_audio_state': 1024,
+// 'n_audio_head': 16,
+// 'n_audio_layer': 24,
+// 'n_text_ctx': 448,
+// 'n_text_state': 1024,
+// 'n_text_head': 16,
+// 'n_text_layer': 24
+// }
+//
+// default hparams (Whisper tiny)
+struct whisper_hparams {
+ int32_t n_vocab = 51864;
+ int32_t n_audio_ctx = 1500;
+ int32_t n_audio_state = 384;
+ int32_t n_audio_head = 6;
+ int32_t n_audio_layer = 4;
+ int32_t n_text_ctx = 448;
+ int32_t n_text_state = 384;
+ int32_t n_text_head = 6;
+ int32_t n_text_layer = 4;
+ int32_t n_mels = 80;
+ int32_t f16 = 1;
+};
+
+// audio encoding layer
+struct whisper_layer_encoder {
+ // encoder.blocks.*.attn_ln
+ struct ggml_tensor * attn_ln_0_w;
+ struct ggml_tensor * attn_ln_0_b;
+
+ // encoder.blocks.*.attn.out
+ struct ggml_tensor * attn_ln_1_w;
+ struct ggml_tensor * attn_ln_1_b;
+
+ // encoder.blocks.*.attn.query
+ struct ggml_tensor * attn_q_w;
+ struct ggml_tensor * attn_q_b;
+
+ // encoder.blocks.*.attn.key
+ struct ggml_tensor * attn_k_w;
+
+ // encoder.blocks.*.attn.value
+ struct ggml_tensor * attn_v_w;
+ struct ggml_tensor * attn_v_b;
+
+ // encoder.blocks.*.mlp_ln
+ struct ggml_tensor * mlp_ln_w;
+ struct ggml_tensor * mlp_ln_b;
+
+ // encoder.blocks.*.mlp.0
+ struct ggml_tensor * mlp_0_w;
+ struct ggml_tensor * mlp_0_b;
+
+ // encoder.blocks.*.mlp.2
+ struct ggml_tensor * mlp_1_w;
+ struct ggml_tensor * mlp_1_b;
+};
+
+// token decoding layer
+struct whisper_layer_decoder {
+ // decoder.blocks.*.attn_ln
+ struct ggml_tensor * attn_ln_0_w;
+ struct ggml_tensor * attn_ln_0_b;
+
+ // decoder.blocks.*.attn.out
+ struct ggml_tensor * attn_ln_1_w;
+ struct ggml_tensor * attn_ln_1_b;
+
+ // decoder.blocks.*.attn.query
+ struct ggml_tensor * attn_q_w;
+ struct ggml_tensor * attn_q_b;
+
+ // decoder.blocks.*.attn.key
+ struct ggml_tensor * attn_k_w;
+
+ // decoder.blocks.*.attn.value
+ struct ggml_tensor * attn_v_w;
+ struct ggml_tensor * attn_v_b;
+
+ // decoder.blocks.*.cross_attn_ln
+ struct ggml_tensor * cross_attn_ln_0_w;
+ struct ggml_tensor * cross_attn_ln_0_b;
+
+ // decoder.blocks.*.cross_attn.out
+ struct ggml_tensor * cross_attn_ln_1_w;
+ struct ggml_tensor * cross_attn_ln_1_b;
+
+ // decoder.blocks.*.cross_attn.query
+ struct ggml_tensor * cross_attn_q_w;
+ struct ggml_tensor * cross_attn_q_b;
+
+ // decoder.blocks.*.cross_attn.key
+ struct ggml_tensor * cross_attn_k_w;
+
+ // decoder.blocks.*.cross_attn.value
+ struct ggml_tensor * cross_attn_v_w;
+ struct ggml_tensor * cross_attn_v_b;
+
+ // decoder.blocks.*.mlp_ln
+ struct ggml_tensor * mlp_ln_w;
+ struct ggml_tensor * mlp_ln_b;
+
+ // decoder.blocks.*.mlp.0
+ struct ggml_tensor * mlp_0_w;
+ struct ggml_tensor * mlp_0_b;
+
+ // decoder.blocks.*.mlp.2
+ struct ggml_tensor * mlp_1_w;
+ struct ggml_tensor * mlp_1_b;
+};
+
+struct whisper_model {
+ e_model type = MODEL_UNKNOWN;
+
+ whisper_hparams hparams;
+ whisper_filters filters;
+
+ // encoder.positional_embedding
+ struct ggml_tensor * e_pe;
+
+ // encoder.conv1
+ struct ggml_tensor * e_conv_1_w;
+ struct ggml_tensor * e_conv_1_b;
+
+ // encoder.conv2
+ struct ggml_tensor * e_conv_2_w;
+ struct ggml_tensor * e_conv_2_b;
+
+ // encoder.ln_post
+ struct ggml_tensor * e_ln_w;
+ struct ggml_tensor * e_ln_b;
+
+ // decoder.positional_embedding
+ struct ggml_tensor * d_pe; // DD
+
+ // decoder.token_embedding
+ struct ggml_tensor * d_te; // DD
+
+ // decoder.ln
+ struct ggml_tensor * d_ln_w; // DD
+ struct ggml_tensor * d_ln_b; // DD
+
+ std::vector<whisper_layer_encoder> layers_encoder;
+ std::vector<whisper_layer_decoder> layers_decoder;
+
+ // key + value memory
+ struct ggml_tensor * memory_k;
+ struct ggml_tensor * memory_v;
+
+ struct ggml_tensor * memory_cross_k;
+ struct ggml_tensor * memory_cross_v;
+
+ //
+ struct ggml_context * ctx;
+ std::map<std::string, struct ggml_tensor *> tensors;
+};
+
+struct whisper_context {
+ int64_t t_load_us = 0;
+ int64_t t_mel_us = 0;
+ int64_t t_sample_us = 0;
+ int64_t t_encode_us = 0;
+ int64_t t_decode_us = 0;
+ int64_t t_start_us = 0;
+
+ std::vector<uint8_t> buf_model;
+ std::vector<uint8_t> buf_compute;
+ std::vector<uint8_t> buf_compute_layer;
+
+ whisper_model model;
+ whisper_vocab vocab;
+
+ whisper_mel mel;
+
+ std::vector<float> probs;
+ std::vector<float> logits;
+
+ std::vector<whisper_result> result_cur;
+ std::vector<whisper_segment> result_all;
+};
+
+// load the model from a ggml file
+//
+// file format:
+//
+// - hparams
+// - pre-computed mel filters
+// - vocab
+// - weights
+//
+// see the convert-pt-to-ggml.py script for details
+//
+bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
+ printf("%s: loading model from '%s'\n", __func__, fname.c_str());
+
+ auto & model = wctx.model;
+ auto & vocab = wctx.vocab;
+
+ auto fin = std::ifstream(fname, std::ios::binary);
+ if (!fin) {
+ fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
+ return false;
+ }
+
+ // verify magic
+ {
+ uint32_t magic;
+ fin.read((char *) &magic, sizeof(magic));
+ if (magic != 0x67676d6c) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
+ return false;
+ }
+ }
+
+ //load hparams
+ {
+ auto & hparams = model.hparams;
+
+ fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
+ fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
+ fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
+ fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
+ fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
+ fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
+ fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
+ fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
+ fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
+ fin.read((char *) &hparams.f16, sizeof(hparams.f16));
+
+ assert(hparams.n_text_state == hparams.n_audio_state);
+
+ if (hparams.n_audio_layer == 4) {
+ model.type = e_model::MODEL_TINY;
+ }
+
+ if (hparams.n_audio_layer == 6) {
+ model.type = e_model::MODEL_BASE;
+ }
+
+ if (hparams.n_audio_layer == 12) {
+ model.type = e_model::MODEL_SMALL;
+ }
+
+ if (hparams.n_audio_layer == 24) {
+ model.type = e_model::MODEL_MEDIUM;
+ }
+
+ if (hparams.n_audio_layer == 32) {
+ model.type = e_model::MODEL_LARGE;
+ }
+
+ printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+ printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
+ printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
+ printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
+ printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
+ printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
+ printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state);
+ printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head);
+ printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
+ printf("%s: n_mels = %d\n", __func__, hparams.n_mels);
+ printf("%s: f16 = %d\n", __func__, hparams.f16);
+ printf("%s: type = %d\n", __func__, model.type);
+
+ wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type));
+ wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
+ wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
+
+ // this is the total memory required to run the inference
+ const size_t mem_required =
+ wctx.buf_model.size() +
+ wctx.buf_compute.size() +
+ wctx.buf_compute_layer.size();
+
+ printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
+ }
+
+ // load mel filters
+ {
+ auto & filters = wctx.model.filters;
+
+ fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
+ fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
+
+ filters.data.resize(filters.n_mel * filters.n_fft);
+ fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
+ }
+
+ // load vocab
+ {
+ int32_t n_vocab = 0;
+ fin.read((char *) &n_vocab, sizeof(n_vocab));
+
+ //if (n_vocab != model.hparams.n_vocab) {
+ // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+ // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
+ // return false;
+ //}
+
+ std::string word;
+ for (int i = 0; i < n_vocab; i++) {
+ uint32_t len;
+ fin.read((char *) &len, sizeof(len));
+
+ word.resize(len);
+ fin.read((char *) word.data(), len);
+
+ vocab.token_to_id[word] = i;
+ vocab.id_to_token[i] = word;
+
+ //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
+ }
+
+ vocab.n_vocab = model.hparams.n_vocab;
+ if (vocab.is_multilingual()) {
+ vocab.token_eot++;
+ vocab.token_sot++;
+ vocab.token_prev++;
+ vocab.token_solm++;
+ vocab.token_not++;
+ vocab.token_beg++;
+ }
+
+ if (n_vocab < model.hparams.n_vocab) {
+ printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
+ for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
+ if (i > vocab.token_beg) {
+ word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
+ } else if (i == vocab.token_eot) {
+ word = "[_EOT_]";
+ } else if (i == vocab.token_sot) {
+ word = "[_SOT_]";
+ } else if (i == vocab.token_prev) {
+ word = "[_PREV_]";
+ } else if (i == vocab.token_not) {
+ word = "[_NOT_]";
+ } else if (i == vocab.token_beg) {
+ word = "[_BEG_]";
+ } else {
+ word = "[_extra_token_" + std::to_string(i) + "]";
+ }
+ vocab.token_to_id[word] = i;
+ vocab.id_to_token[i] = word;
+ }
+ }
+ }
+
+ // for the big tensors, we have the option to store the data in 16-bit floats
+ // in order to save memory and also to speed up the computation
+ const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
+
+
+ size_t ctx_size = 0;
+
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_audio_ctx = hparams.n_audio_ctx;
+ const int n_audio_state = hparams.n_audio_state;
+ const int n_audio_layer = hparams.n_audio_layer;
+
+ const int n_text_ctx = hparams.n_text_ctx;
+ const int n_text_state = hparams.n_text_state;
+ const int n_text_layer = hparams.n_text_layer;
+
+ const int n_mels = hparams.n_mels;
+
+ // encoder
+ {
+ // TODO: F16 .. maybe not?
+ ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
+
+ ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
+
+ ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
+
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
+ }
+
+ // decoder
+ {
+ // TODO: F16 .. maybe not?
+ ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
+
+ ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
+
+ ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
+ ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
+ }
+
+ // encoder layers
+ {
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
+
+ ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
+ ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
+
+ ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
+
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
+ }
+
+ // decoder layers
+ {
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
+
+ ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
+ ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
+
+ ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
+
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
+ //
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
+ }
+
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
+
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
+
+ ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
+
+ printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
+ }
+
+ // create the ggml context
+ {
+ struct ggml_init_params params = {
+ .mem_size = wctx.buf_model.size(),
+ .mem_buffer = wctx.buf_model.data(),
+ };
+
+ model.ctx = ggml_init(params);
+ if (!model.ctx) {
+ fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+ return false;
+ }
+ }
+
+ // prepare memory for the weights
+ {
+ auto & ctx = model.ctx;
+
+ const auto & hparams = model.hparams;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_audio_ctx = hparams.n_audio_ctx;
+ const int n_audio_state = hparams.n_audio_state;
+ const int n_audio_layer = hparams.n_audio_layer;
+
+ const int n_text_ctx = hparams.n_text_ctx;
+ const int n_text_state = hparams.n_text_state;
+ const int n_text_layer = hparams.n_text_layer;
+
+ const int n_mels = hparams.n_mels;
+
+ model.layers_encoder.resize(n_audio_layer);
+ model.layers_decoder.resize(n_text_layer);
+
+ // encoder
+ {
+ model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
+
+ model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
+ model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
+
+ model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
+ model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
+
+ model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+ model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ // map by name
+ model.tensors["encoder.positional_embedding"] = model.e_pe;
+
+ model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
+ model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
+
+ model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
+ model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
+
+ model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
+ model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
+
+ for (int i = 0; i < n_audio_layer; ++i) {
+ auto & layer = model.layers_encoder[i];
+
+ layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+ layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
+ layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
+
+ layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
+ layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+ layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+ layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+
+ layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+ layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+ layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ // map by name
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
+ }
+ }
+
+ // decoder
+ {
+ model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
+
+ model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
+
+ model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ // map by name
+ model.tensors["decoder.positional_embedding"] = model.d_pe;
+
+ model.tensors["decoder.token_embedding.weight"] = model.d_te;
+
+ model.tensors["decoder.ln.weight"] = model.d_ln_w;
+ model.tensors["decoder.ln.bias"] = model.d_ln_b;
+
+ for (int i = 0; i < n_text_layer; ++i) {
+ auto & layer = model.layers_decoder[i];
+
+ layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
+ layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
+
+ layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
+ layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+
+ layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+
+ layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ // map by name
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
+ }
+ }
+ }
+
+ // key + value memory
+ {
+ auto & ctx = model.ctx;
+
+ const auto & hparams = model.hparams;
+
+ const int n_text_state = hparams.n_text_state;
+ const int n_text_layer = hparams.n_text_layer;
+ const int n_text_ctx = hparams.n_text_ctx;
+
+ // key/value memory for the self-attention layer
+ {
+ const int n_mem = n_text_layer*n_text_ctx;
+ const int n_elements = n_text_state*n_mem;
+
+ model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ }
+
+ // key/value memory for the cross-attention layer
+ {
+ const int n_audio_ctx = hparams.n_audio_ctx;
+
+ const int n_mem = n_text_layer*n_audio_ctx;
+ const int n_elements = n_text_state*n_mem;
+
+ model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ }
+
+ const size_t memory_size =
+ ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
+ ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
+
+ printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
+ }
+
+ // load weights
+ {
+ size_t total_size = 0;
+
+ while (true) {
+ int32_t n_dims;
+ int32_t length;
+ int32_t ftype;
+
+ fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ fin.read(reinterpret_cast<char *>(&length), sizeof(length));
+ fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+
+ if (fin.eof()) {
+ break;
+ }
+
+ int32_t nelements = 1;
+ int32_t ne[3] = { 1, 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ nelements *= ne[i];
+ }
+
+ std::string name(length, 0);
+ fin.read(&name[0], length);
+
+ if (model.tensors.find(name.data()) == model.tensors.end()) {
+ fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
+ return false;
+ }
+
+ auto tensor = model.tensors[name.data()];
+ if (ggml_nelements(tensor) != nelements) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+ return false;
+ }
+
+ if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
+ fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
+ __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
+ return false;
+ }
+
+ const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
+
+ if (nelements*bpe != ggml_nbytes(tensor)) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+ __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
+ return false;
+ }
+
+ fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
+
+ //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
+ total_size += ggml_nbytes(tensor);
+ }
+
+ printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
+ }
+
+ fin.close();
+
+ return true;
+}
+
+// evaluate the encoder
+//
+// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
+// part of the transformer model and returns the encoded features
+//
+// - model: the model
+// - n_threads: number of threads to use
+// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
+// - mel_inp: input mel spectrogram
+// - features: output encoded features
+//
+bool whisper_encode(
+ whisper_context & wctx,
+ const int n_threads,
+ const int mel_offset) {
+ const auto & model = wctx.model;
+ const auto & mel_inp = wctx.mel;
+ const auto & hparams = model.hparams;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_ctx = hparams.n_audio_ctx;
+ const int n_state = hparams.n_audio_state;
+ const int n_head = hparams.n_audio_head;
+ const int n_layer = hparams.n_audio_layer;
+
+ const int N = n_ctx;
+
+ const int n_mels = hparams.n_mels;
+ assert(mel_inp.n_mel == n_mels);
+
+ struct ggml_init_params params = {
+ .mem_size = wctx.buf_compute.size(),
+ .mem_buffer = wctx.buf_compute.data(),
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
+ assert(mel->type == GGML_TYPE_F32);
+ {
+ float * dst = (float *) mel->data;
+ memset(dst, 0, ggml_nbytes(mel));
+
+ const int i0 = std::min(mel_offset, mel_inp.n_len);
+ const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
+
+ for (int j = 0; j < mel_inp.n_mel; ++j) {
+ for (int i = i0; i < i1; ++i) {
+ dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
+ }
+ }
+ }
+
+ struct ggml_tensor * cur;
+
+ // convolution + gelu
+ {
+ cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0,
+ model.e_conv_1_b,
+ cur),
+ cur);
+
+ cur = ggml_gelu(ctx0, cur);
+
+ cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0,
+ model.e_conv_2_b,
+ cur),
+ cur);
+
+ cur = ggml_gelu(ctx0, cur);
+ }
+
+ cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
+
+ struct ggml_tensor * inpL = cur;
+
+ for (int il = 0; il < n_layer; ++il) {
+ const auto & layer = model.layers_encoder[il];
+
+ // create separate context for each layer to reduce memory usage
+
+ struct ggml_init_params paramsL = {
+ .mem_size = wctx.buf_compute_layer.size(),
+ .mem_buffer = wctx.buf_compute_layer.data(),
+ };
+
+ struct ggml_context * ctxL = ggml_init(paramsL);
+
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpL);
+
+ // cur = ln_0_w*cur + ln_0_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
+ }
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+ layer.attn_q_w,
+ cur);
+
+ Qcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_q_b,
+ Qcur),
+ Qcur);
+
+ //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ // note: no bias for Key
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
+ layer.attn_k_w,
+ cur);
+
+ //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
+ layer.attn_v_w,
+ cur);
+
+ Vcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_v_b,
+ Vcur),
+ Vcur);
+
+ // ------
+
+#ifdef USE_FLASH_ATTN
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Kcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * V =
+ ggml_cpy(ctxL,
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ Vcur,
+ n_state/n_head, n_head, N),
+ 1, 2, 0, 3),
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
+ );
+
+ struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
+#else
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Kcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctxL,
+ KQ,
+ ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+ );
+
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
+
+ //struct ggml_tensor * V_trans =
+ // ggml_permute(ctxL,
+ // ggml_cpy(ctxL,
+ // Vcur,
+ // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ // 1, 2, 0, 3);
+
+ //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+ struct ggml_tensor * V =
+ ggml_cpy(ctxL,
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ Vcur,
+ n_state/n_head, n_head, N),
+ 0, 2, 1, 3),
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
+ );
+
+ struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
+#endif
+
+ struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+ cur = ggml_cpy(ctxL,
+ KQV_merged,
+ ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+ }
+
+ // projection
+ {
+ cur = ggml_mul_mat(ctxL,
+ layer.attn_ln_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
+ cur);
+ }
+
+ // add the input
+ cur = ggml_add(ctxL, cur, inpL);
+
+ struct ggml_tensor * inpFF = cur;
+
+ // feed-forward network
+ {
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpFF);
+
+ // cur = mlp_ln_w*cur + mlp_ln_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.mlp_ln_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.mlp_ln_b, cur));
+ }
+
+#ifdef USE_FLASH_FF
+ cur = ggml_flash_ff(ctxL,
+ ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
+ layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
+#else
+ // fully connected
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_0_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_0_b, cur),
+ cur);
+
+ // GELU activation
+ cur = ggml_gelu(ctxL, cur);
+
+ // projection
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_1_b, cur),
+ cur);
+#endif
+ }
+
+ // output from this layer
+ struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
+
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ ggml_build_forward_expand(&gf, inpO);
+ ggml_graph_compute (ctxL, &gf);
+
+ //ggml_graph_print(&gf);
+ }
+
+ // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
+ // input for next layer (inpO -> inpL)
+ memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
+ inpL->op = GGML_OP_NONE;
+ inpL->src0 = NULL;
+ inpL->src1 = NULL;
+
+ //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
+
+ ggml_free(ctxL);
+ }
+
+ cur = inpL;
+
+ // norm
+ {
+ cur = ggml_norm(ctx0, cur);
+
+ // cur = ln_f_g*cur + ln_f_b
+ cur = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.e_ln_w, cur),
+ cur),
+ ggml_repeat(ctx0, model.e_ln_b, cur));
+ }
+
+ // run the computation
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ ggml_build_forward_expand(&gf, cur);
+ ggml_graph_compute (ctx0, &gf);
+
+ //ggml_graph_print(&gf);
+ }
+
+ // cur
+ //{
+ // printf("ne0 = %d\n", cur->ne[0]);
+ // printf("ne1 = %d\n", cur->ne[1]);
+ // for (int i = 0; i < 10; ++i) {
+ // printf("%8.4f ", ((float *)(cur->data))[i]);
+ // }
+ // printf("... ");
+ // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
+ // printf("%8.4f ", ((float *)(cur->data))[i]);
+ // }
+ // printf("\n");
+ //}
+
+ // pre-compute cross-attention memory
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ // TODO: hack to disconnect the encoded features from the previous graph
+ cur->op = GGML_OP_NONE;
+ cur->src0 = NULL;
+ cur->src1 = NULL;
+
+ for (int il = 0; il < model.hparams.n_text_layer; ++il) {
+ auto & layer = model.layers_decoder[il];
+
+ struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
+ layer.cross_attn_k_w,
+ cur);
+
+ Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
+
+ struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
+ layer.cross_attn_v_w,
+ cur);
+
+ Vcross = ggml_add(ctx0,
+ ggml_repeat(ctx0,
+ layer.cross_attn_v_b,
+ Vcross),
+ Vcross);
+
+ struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
+ struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
+
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
+ }
+
+ ggml_graph_compute(ctx0, &gf);
+ }
+
+ ////////////////////////////////////////////////////////////////////////////
+
+ //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
+
+ ggml_free(ctx0);
+
+ return true;
+}
+
+// evaluate the decoder
+//
+// given text prompt + audio features -> predicts the probabilities for the next token
+//
+// - model: the model
+// - n_threads: number of threads to use
+// - n_past: prompt length
+// - prompt: text prompt
+// - logits_out: output logits
+// - probs_out: output probabilities
+//
+bool whisper_decode(
+ whisper_context & wctx,
+ const int n_threads,
+ const whisper_token * tokens,
+ const int n_tokens,
+ const int n_past) {
+ const auto & model = wctx.model;
+ const auto & hparams = model.hparams;
+
+ auto & logits_out = wctx.logits;
+ auto & probs_out = wctx.probs;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_ctx = hparams.n_text_ctx;
+ const int n_state = hparams.n_text_state;
+ const int n_head = hparams.n_text_head;
+ const int n_layer = hparams.n_text_layer;
+
+ const int N = n_tokens;
+ const int M = hparams.n_audio_ctx;
+
+ struct ggml_init_params params = {
+ .mem_size = wctx.buf_compute.size(),
+ .mem_buffer = wctx.buf_compute.data(),
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ memcpy(embd->data, tokens, N*ggml_element_size(embd));
+
+ struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ for (int i = 0; i < N; ++i) {
+ ((int32_t *) position->data)[i] = n_past + i;
+ }
+
+ // token encoding + position encoding
+ struct ggml_tensor * cur =
+ ggml_add(ctx0,
+ ggml_get_rows(ctx0, model.d_te, embd),
+ ggml_get_rows(ctx0, model.d_pe, position));
+
+ struct ggml_tensor * inpL = cur;
+
+ for (int il = 0; il < n_layer; ++il) {
+ const auto & layer = model.layers_decoder[il];
+
+ struct ggml_init_params paramsL = {
+ .mem_size = wctx.buf_compute_layer.size(),
+ .mem_buffer = wctx.buf_compute_layer.data(),
+ };
+
+ struct ggml_context * ctxL = ggml_init(paramsL);
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpL);
+
+ // cur = ln_0_w*cur + ln_0_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
+ }
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+ layer.attn_q_w,
+ cur);
+
+ Qcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_q_b,
+ Qcur),
+ Qcur);
+
+ Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ // note: no bias for Key
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
+ layer.attn_k_w,
+ cur);
+
+ Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
+ layer.attn_v_w,
+ cur);
+
+ Vcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_v_b,
+ Vcur),
+ Vcur);
+
+ // store key and value to memory
+ {
+ struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
+
+ ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
+ ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
+ }
+
+ // ------
+
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K =
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
+ n_state/n_head, n_head, n_past + N),
+ 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+ //struct ggml_tensor * KQ_scaled =
+ // ggml_scale(ctxL,
+ // KQ,
+ // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+ // );
+
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
+
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
+
+ struct ggml_tensor * V_trans =
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
+ n_state/n_head, n_head, n_past + N),
+ 1, 2, 0, 3);
+
+ struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+ struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+ cur = ggml_cpy(ctxL,
+ KQV_merged,
+ ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+ }
+
+ {
+ cur = ggml_mul_mat(ctxL,
+ layer.attn_ln_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
+ cur);
+ }
+
+ // add the input
+ struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
+
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
+
+ // cur = ln_0_w*cur + ln_0_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
+ }
+
+ // cross-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+ layer.cross_attn_q_w,
+ cur);
+
+ Qcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.cross_attn_q_b,
+ Qcur),
+ Qcur);
+
+ Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ // Kcross is already scaled
+ struct ggml_tensor * Kcross =
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
+ n_state/n_head, n_head, M);
+
+ struct ggml_tensor * Vcross =
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
+ n_state/n_head, n_head, M);
+
+ // ------
+
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+ //struct ggml_tensor * KQ_scaled =
+ // ggml_scale(ctxL,
+ // KQ,
+ // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+ // );
+
+ // no masking for cross-attention
+ //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
+
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
+
+ struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
+
+ struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+ struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+ // cur = KQV_merged.contiguous().view(n_state, N)
+ cur = ggml_cpy(ctxL,
+ KQV_merged,
+ ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+ }
+
+ // projection
+ {
+ cur = ggml_mul_mat(ctxL,
+ layer.cross_attn_ln_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
+ cur);
+ }
+
+ // add the input
+ cur = ggml_add(ctxL, cur, inpCA);
+
+ struct ggml_tensor * inpFF = cur;
+
+ // feed-forward network
+ {
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpFF);
+
+ // cur = mlp_ln_w*cur + mlp_ln_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.mlp_ln_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.mlp_ln_b, cur));
+ }
+
+ // fully connected
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_0_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_0_b, cur),
+ cur);
+
+ // GELU activation
+ cur = ggml_gelu(ctxL, cur);
+
+ // projection
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_1_b, cur),
+ cur);
+ }
+
+ // output from this layer
+ struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
+
+ {
+ ggml_build_forward_expand(&gf, inpO);
+ ggml_graph_compute (ctxL, &gf);
+
+ //ggml_graph_print(&gf);
+ }
+
+ // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
+ // input for next layer (inpO -> inpL)
+ memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
+ inpL->op = GGML_OP_NONE;
+ inpL->src0 = NULL;
+ inpL->src1 = NULL;
+
+ if (N > 1) {
+ //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
+ }
+
+ ggml_free(ctxL);
+ }
+
+ cur = inpL;
+
+ // norm
+ {
+ cur = ggml_norm(ctx0, cur);
+
+ cur = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.d_ln_w, cur),
+ cur),
+ ggml_repeat(ctx0, model.d_ln_b, cur));
+ }
+
+ struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
+
+ // logits -> probs
+ cur = ggml_dup(ctx0, logits);
+ cur = ggml_soft_max(ctx0, cur); // in-place
+
+ // run the computation
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ ggml_build_forward_expand(&gf, cur);
+ ggml_graph_compute (ctx0, &gf);
+ }
+
+ logits_out.resize(N*n_vocab);
+ memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
+
+ probs_out.resize(N*n_vocab);
+ memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
+
+ if (N > 1) {
+ //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
+ //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
+ //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
+ }
+
+ ggml_free(ctx0);
+
+ return true;
+}
+
+// the most basic sampling scheme - select the top token
+// TODO: beam search
+// TODO: temperature
+whisper_vocab::id whisper_sample_best(
+ const whisper_vocab & vocab,
+ const float * probs, bool need_timestamp) {
+ int n_logits = vocab.id_to_token.size();
+
+ std::vector<std::pair<double, whisper_vocab::id>> probs_id;
+ probs_id.reserve(n_logits);
+
+ for (int i = 0; i < n_logits; i++) {
+ probs_id.push_back(std::make_pair(probs[i], i));
+ }
+
+ const int top_k = 4;
+
+ // find the top K tokens
+ std::partial_sort(
+ probs_id.begin(),
+ probs_id.begin() + top_k, probs_id.end(),
+ [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
+ return a.first > b.first;
+ });
+
+ probs_id.resize(top_k);
+
+ //printf("\n");
+ //for (int i = 0; i < (int) probs_id.size(); i++) {
+ // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
+ //}
+
+ if (need_timestamp) {
+ // at the end of the 30-second audio segment, we start giving preference to time tokens
+ for (int i = 0; i < top_k; i++) {
+ if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > 0.01*probs_id[0].first) {
+ return probs_id[i].second;
+ }
+ }
+ }
+
+ int res = 0;
+ while ((probs_id[res].second == vocab.token_sot ||
+ probs_id[res].second == vocab.token_solm ||
+ probs_id[res].second == vocab.token_not) &&
+ res < (int) probs_id.size() - 1) {
+ res++;
+ }
+
+ return probs_id[res].second;
+}
+
+// samples only from the timestamps tokens
+whisper_vocab::id whisper_sample_timestamp(
+ const whisper_vocab & vocab,
+ const float * probs) {
+ int n_logits = vocab.id_to_token.size();
+
+ std::vector<std::pair<double, whisper_vocab::id>> probs_id;
+ probs_id.reserve(n_logits);
+
+ for (int i = vocab.token_beg + 1; i < n_logits; i++) {
+ probs_id.push_back(std::make_pair(probs[i], i));
+ }
+
+ const int top_k = 10;
+
+ // find the top K tokens
+ std::partial_sort(
+ probs_id.begin(),
+ probs_id.begin() + top_k, probs_id.end(),
+ [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
+ return a.first > b.first;
+ });
+
+ probs_id.resize(top_k);
+
+ //printf("\n");
+ //for (int i = 0; i < (int) probs_id.size(); i++) {
+ // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
+ //}
+
+ return probs_id[0].second;
+}
+
+static std::string to_timestamp(int64_t t) {
+ int64_t sec = t/100;
+ int64_t msec = t - sec*100;
+ int64_t min = sec/60;
+ sec = sec - min*60;
+
+ char buf[32];
+ snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
+
+ return std::string(buf);
+}
+
+// naive Discrete Fourier Transform
+// input is real-valued
+// output is complex-valued
+void dft(const std::vector<float> & in, std::vector<float> & out) {
+ int N = in.size();
+
+ out.resize(N*2);
+
+ for (int k = 0; k < N; k++) {
+ float re = 0;
+ float im = 0;
+
+ for (int n = 0; n < N; n++) {
+ float angle = 2*M_PI*k*n/N;
+ re += in[n]*cos(angle);
+ im -= in[n]*sin(angle);
+ }
+
+ out[k*2 + 0] = re;
+ out[k*2 + 1] = im;
+ }
+}
+
+// Cooley-Tukey FFT
+// poor man's implementation - use something better
+// input is real-valued
+// output is complex-valued
+void fft(const std::vector<float> & in, std::vector<float> & out) {
+ out.resize(in.size()*2);
+
+ int N = in.size();
+
+ if (N == 1) {
+ out[0] = in[0];
+ out[1] = 0;
+ return;
+ }
+
+ if (N%2 == 1) {
+ dft(in, out);
+ return;
+ }
+
+ std::vector<float> even;
+ std::vector<float> odd;
+
+ for (int i = 0; i < N; i++) {
+ if (i % 2 == 0) {
+ even.push_back(in[i]);
+ } else {
+ odd.push_back(in[i]);
+ }
+ }
+
+ std::vector<float> even_fft;
+ std::vector<float> odd_fft;
+
+ fft(even, even_fft);
+ fft(odd, odd_fft);
+
+ for (int k = 0; k < N/2; k++) {
+ float theta = 2*M_PI*k/N;
+
+ float re = cos(theta);
+ float im = -sin(theta);
+
+ float re_odd = odd_fft[2*k + 0];
+ float im_odd = odd_fft[2*k + 1];
+
+ out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
+ out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
+
+ out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
+ out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
+ }
+}
+
+// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
+bool log_mel_spectrogram(
+ const float * samples,
+ const int n_samples,
+ const int sample_rate,
+ const int fft_size,
+ const int fft_step,
+ const int n_mel,
+ const int n_threads,
+ const whisper_filters & filters,
+ whisper_mel & mel) {
+
+ // Hanning window
+ std::vector<float> hann;
+ hann.resize(fft_size);
+ for (int i = 0; i < fft_size; i++) {
+ hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
+ }
+
+ mel.n_mel = n_mel;
+ mel.n_len = (n_samples)/fft_step;
+ mel.data.resize(mel.n_mel*mel.n_len);
+
+ const int n_fft = 1 + fft_size/2;
+
+ //printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len);
+ //printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate);
+
+ std::vector<std::thread> workers(n_threads);
+ for (int iw = 0; iw < n_threads; ++iw) {
+ workers[iw] = std::thread([&](int ith) {
+ std::vector<float> fft_in;
+ fft_in.resize(fft_size);
+ for (int i = 0; i < fft_size; i++) {
+ fft_in[i] = 0.0;
+ }
+
+ std::vector<float> fft_out;
+ fft_out.resize(2*fft_size);
+
+ for (int i = ith; i < mel.n_len; i += n_threads) {
+ const int offset = i*fft_step;
+
+ // apply Hanning window
+ for (int j = 0; j < fft_size; j++) {
+ if (offset + j < n_samples) {
+ fft_in[j] = hann[j]*samples[offset + j];
+ } else {
+ fft_in[j] = 0.0;
+ }
+ }
+
+ // FFT -> mag^2
+ fft(fft_in, fft_out);
+
+ for (int j = 0; j < fft_size; j++) {
+ fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
+ }
+ for (int j = 1; j < fft_size/2; j++) {
+ //if (i == 0) {
+ // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]);
+ //}
+ fft_out[j] += fft_out[fft_size - j];
+ }
+ if (i == 0) {
+ //for (int j = 0; j < fft_size; j++) {
+ // printf("%d: %e\n", j, fft_out[j]);
+ //}
+ }
+
+ // mel spectrogram
+ for (int j = 0; j < mel.n_mel; j++) {
+ double sum = 0.0;
+
+ for (int k = 0; k < n_fft; k++) {
+ sum += fft_out[k]*filters.data[j*n_fft + k];
+ }
+ if (sum < 1e-10) {
+ sum = 1e-10;
+ }
+
+ sum = log10(sum);
+
+ mel.data[j*mel.n_len + i] = sum;
+ }
+ }
+ }, iw);
+ }
+
+ for (int iw = 0; iw < n_threads; ++iw) {
+ workers[iw].join();
+ }
+
+ // clamping and normalization
+ double mmax = -1e20;
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+ if (mel.data[i] > mmax) {
+ mmax = mel.data[i];
+ }
+ }
+ //printf("%s: max = %f\n", __func__, mmax);
+
+ mmax -= 8.0;
+
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+ if (mel.data[i] < mmax) {
+ mel.data[i] = mmax;
+ }
+
+ mel.data[i] = (mel.data[i] + 4.0)/4.0;
+ }
+
+ return true;
+}
+
+//
+// interface implementation
+//
+
+struct whisper_context * whisper_init(const char * path_model) {
+ whisper_context * ctx = new whisper_context;
+
+ const int64_t t_start_us = ggml_time_us();
+
+ ctx->t_start_us = t_start_us;
+
+ if (!whisper_model_load(path_model, *ctx)) {
+ fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
+ return NULL;
+ }
+
+ ctx->t_load_us = ggml_time_us() - t_start_us;
+
+ return ctx;
+}
+
+void whisper_free(struct whisper_context * ctx) {
+ if (ctx) {
+ delete ctx;
+ }
+}
+
+int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, ctx->mel)) {
+ fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__);
+ return -1;
+ }
+
+ ctx->t_mel_us = ggml_time_us() - t_start_us;
+
+ return 0;
+}
+
+int whisper_set_mel(
+ struct whisper_context * ctx,
+ const float * data,
+ int n_len,
+ int n_mel) {
+ if (n_mel != WHISPER_N_MEL) {
+ fprintf(stderr, "%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL);
+ return -1;
+ }
+
+ ctx->mel.n_len = n_len;
+ ctx->mel.n_mel = n_mel;
+
+ ctx->mel.data.resize(n_len*n_mel);
+ memcpy(ctx->mel.data.data(), data, n_len*n_mel*sizeof(float));
+
+ return 0;
+}
+
+int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!whisper_encode(*ctx, n_threads, offset)) {
+ fprintf(stderr, "%s: failed to eval\n", __func__);
+ return -1;
+ }
+
+ ctx->t_encode_us += ggml_time_us() - t_start_us;
+
+ return 0;
+}
+
+int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) {
+ fprintf(stderr, "%s: failed to eval\n", __func__);
+ return 1;
+ }
+
+ ctx->t_decode_us += ggml_time_us() - t_start_us;
+
+ return 0;
+}
+
+whisper_token whisper_sample_best(struct whisper_context * ctx, bool need_timestamp) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // TODO: simplify
+ auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), need_timestamp);
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+
+ return res;
+}
+
+whisper_token whisper_sample_timestamp(struct whisper_context * ctx) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // TODO: simplify
+ auto res = whisper_sample_timestamp(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab));
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+
+ return res;
+}
+
+int whisper_lang_id(const char * lang) {
+ if (!g_lang.count(lang)) {
+ fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang);
+ return -1;
+ }
+
+ return g_lang.at(lang).first;
+}
+
+int whisper_n_len(struct whisper_context * ctx) {
+ return ctx->mel.n_len;
+}
+
+int whisper_n_vocab(struct whisper_context * ctx) {
+ return ctx->vocab.n_vocab;
+}
+
+int whisper_n_text_ctx(struct whisper_context * ctx) {
+ return ctx->model.hparams.n_text_ctx;
+}
+
+int whisper_is_multilingual(struct whisper_context * ctx) {
+ return ctx->vocab.is_multilingual() ? 1 : 0;
+}
+
+float * whisper_get_probs(struct whisper_context * ctx) {
+ return ctx->probs.data();
+}
+
+const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) {
+ return ctx->vocab.id_to_token.at(token).c_str();
+}
+
+whisper_token whisper_token_eot(struct whisper_context * ctx) {
+ return ctx->vocab.token_eot;
+}
+
+whisper_token whisper_token_sot(struct whisper_context * ctx) {
+ return ctx->vocab.token_sot;
+}
+
+whisper_token whisper_token_prev(struct whisper_context * ctx) {
+ return ctx->vocab.token_prev;
+}
+
+whisper_token whisper_token_solm(struct whisper_context * ctx) {
+ return ctx->vocab.token_solm;
+}
+
+whisper_token whisper_token_not(struct whisper_context * ctx) {
+ return ctx->vocab.token_not;
+}
+
+whisper_token whisper_token_beg(struct whisper_context * ctx) {
+ return ctx->vocab.token_beg;
+}
+
+whisper_token whisper_token_translate() {
+ return whisper_vocab::token_translate;
+}
+
+whisper_token whisper_token_transcribe() {
+ return whisper_vocab::token_transcribe;
+}
+
+void whisper_print_timings(struct whisper_context * ctx) {
+ const int64_t t_end_us = ggml_time_us();
+
+ printf("\n\n");
+ printf("%s: load time = %8.2f ms\n", __func__, ctx->t_load_us/1000.0f);
+ printf("%s: mel time = %8.2f ms\n", __func__, ctx->t_mel_us/1000.0f);
+ printf("%s: sample time = %8.2f ms\n", __func__, ctx->t_sample_us/1000.0f);
+ printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_encode_us/1000.0f, ctx->t_encode_us/1000.0f/ctx->model.hparams.n_audio_layer);
+ printf("%s: decode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_decode_us/1000.0f, ctx->t_decode_us/1000.0f/ctx->model.hparams.n_text_layer);
+ printf("%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
+}
+
+////////////////////////////////////////////////////////////////////////////
+
+struct whisper_full_params whisper_full_default_params(enum whisper_decode_strategy strategy) {
+ struct whisper_full_params result;
+
+ switch (strategy) {
+ case WHISPER_DECODE_GREEDY:
+ {
+ result = (struct whisper_full_params) {
+ .strategy = WHISPER_DECODE_GREEDY,
+ .n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()),
+
+ .translate = false,
+ .print_special_tokens = false,
+ .print_progress = true,
+ .print_realtime = false,
+ .print_timestamps = true,
+
+ .language = "en",
+
+ .greedy = {
+ .n_past = 0,
+ },
+ };
+ } break;
+ case WHISPER_DECODE_BEAM_SEARCH:
+ {
+ result = (struct whisper_full_params) {
+ .strategy = WHISPER_DECODE_GREEDY,
+ .n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()),
+
+ .translate = false,
+ .print_special_tokens = false,
+ .print_progress = true,
+ .print_realtime = false,
+ .print_timestamps = true,
+
+ .language = "en",
+
+ .beam_search = {
+ .n_past = 0,
+ .beam_width = 10,
+ .n_best = 5,
+ },
+ };
+ } break;
+ }
+
+ return result;
+}
+int whisper_full(
+ struct whisper_context * ctx,
+ struct whisper_full_params params,
+ const float * samples,
+ int n_samples) {
+ // compute log mel spectrogram
+ if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) {
+ fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__);
+ return -1;
+ }
+
+ // the accumulated text context so far
+ std::vector<whisper_token> prompt_past = { };
+
+ // these tokens determine the task that will be performed
+ std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx) };
+ if (whisper_is_multilingual(ctx)) {
+ prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language));
+ if (params.translate) {
+ prompt_init.push_back(whisper_token_translate());
+ } else {
+ prompt_init.push_back(whisper_token_transcribe());
+ }
+ }
+
+ auto & result_all = ctx->result_all;
+ auto & result_cur = ctx->result_cur;
+
+ result_all.clear();
+
+ int progress_prev = 0;
+ int progress_step = 5;
+
+ // main loop
+ int seek = 0;
+ while (true) {
+ int progress_cur = (100*seek)/whisper_n_len(ctx);
+ while (progress_cur >= progress_prev + progress_step) {
+ progress_prev += progress_step;
+ if (params.print_progress) {
+ printf("%s: progress = %3d%%\n", __func__, progress_prev);
+ }
+ }
+
+ if (seek >= whisper_n_len(ctx)) {
+ break;
+ }
+
+ // encode audio features starting at offset seek
+ if (whisper_encode(ctx, seek, params.n_threads) != 0) {
+ fprintf(stderr, "%s: failed to encode\n", __func__);
+ return 7;
+ }
+
+ std::vector<whisper_token> prompt;
+
+ int n_past = 0;
+
+ // if we have already generated some text, use it as a prompt to condition the next generation
+ if (prompt_past.size() > 0) {
+ int n_take = std::min(whisper_n_text_ctx(ctx)/2, int(prompt_past.size()));
+
+ prompt = { whisper_token_prev(ctx) };
+ prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
+
+ prompt_past.clear();
+ prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
+ }
+
+ prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
+
+ bool done = false;
+ int seek_delta = 100*WHISPER_CHUNK_SIZE;
+ whisper_token last_id = 0;
+
+ // print the prompt
+ //printf("\n\n");
+ //for (int i = 0; i < prompt.size(); i++) {
+ // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str());
+ //}
+ //printf("\n\n");
+
+ // the accumulated transcription in the current interation
+ int result_len = 0;
+ result_cur.clear();
+
+ for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) {
+ if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) {
+ fprintf(stderr, "%s: failed to decode\n", __func__);
+ return 8;
+ }
+
+ n_past += prompt.size();
+ prompt.clear();
+
+ // very basic greedy sampling strategy:
+ //
+ // - always take the most probable token
+ //
+ // more sophisticated sampling strategies could be implemented here, but we keep it simple
+ // feel free to experiment!
+ //
+ {
+ const int n_vocab = whisper_n_vocab(ctx);
+
+ whisper_token id = 0;
+ whisper_token tid = whisper_token_beg(ctx);
+
+ id = whisper_sample_best(ctx, result_len == 0);
+ if (i > 0) {
+ tid = whisper_sample_timestamp(ctx);
+ }
+
+ // update sliding window
+ if (id > whisper_token_beg(ctx)) {
+ seek_delta = 2*(id - whisper_token_beg(ctx));
+ result_len = i + 1;
+ }
+ last_id = id;
+
+ // add it to the context
+ prompt.push_back(id);
+ result_cur.push_back({ seek + 2*(tid - whisper_token_beg(ctx)), id });
+
+ //printf("%s: %s\n", __func__, ctx->vocab.id_to_token[id].c_str());
+
+ // end of text token
+ if (id == whisper_token_eot(ctx)) {
+ if (result_len == 0) {
+ result_len = i + 1;
+ }
+ break;
+ }
+ }
+
+ if (done) {
+ break;
+ }
+ }
+
+ result_cur.resize(result_len);
+
+ for (const auto & r : result_cur) {
+ prompt_past.push_back(r.id);
+ }
+
+ // store the text from this iteration
+ if (result_cur.size() > 0) {
+ auto t0 = result_cur.front().t;
+
+ std::string text = "";
+
+ for (int i = 0; i < result_cur.size(); i++) {
+ if (params.print_special_tokens == false && result_cur[i].id >= whisper_token_eot(ctx)) {
+ } else {
+ text += whisper_token_to_str(ctx, result_cur[i].id);
+ }
+ if (result_cur[i].id > whisper_token_beg(ctx)) {
+ const auto t1 = result_cur[i].t;
+ if (!text.empty()) {
+ if (params.print_realtime) {
+ if (params.print_timestamps) {
+ printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
+ } else {
+ printf("%s", text.c_str());
+ fflush(stdout);
+ }
+ }
+
+ result_all.push_back({ t0, t1, text });
+ }
+ text = "";
+ while (result_cur[i].id > whisper_token_beg(ctx) && i < result_cur.size()) {
+ i++;
+ }
+ i--;
+ t0 = result_cur[i].t;
+ }
+ }
+
+ if (!text.empty()) {
+ const auto t1 = seek + seek_delta;
+
+ if (params.print_realtime) {
+ if (params.print_timestamps) {
+ printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
+ } else {
+ printf("%s", text.c_str());
+ fflush(stdout);
+ }
+ }
+
+ result_all.push_back({ t0, t1, text });
+ }
+ }
+
+ seek += seek_delta;
+ }
+
+ return 0;
+}
+
+int whisper_full_n_segments(struct whisper_context * ctx) {
+ return ctx->result_all.size();
+}
+
+int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {
+ return ctx->result_all[i_segment].t0;
+}
+
+int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) {
+ return ctx->result_all[i_segment].t1;
+}
+
+const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) {
+ return ctx->result_all[i_segment].text.c_str();
+}
--- /dev/null
+#ifndef WHISPER_H
+#define WHISPER_H
+
+#include <stdint.h>
+
+#ifdef WHISPER_SHARED
+# ifdef _WIN32
+# ifdef WHISPER_BUILD
+# define WHISPER_API __declspec(dllexport)
+# else
+# define WHISPER_API __declspec(dllimport)
+# endif
+# else
+# define WHISPER_API __attribute__ ((visibility ("default")))
+# endif
+#else
+# define WHISPER_API
+#endif
+
+#define WHISPER_SAMPLE_RATE 16000
+#define WHISPER_N_FFT 400
+#define WHISPER_N_MEL 80
+#define WHISPER_HOP_LENGTH 160
+#define WHISPER_CHUNK_SIZE 30
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+ //
+ // C interface
+ //
+
+ // TODO: documentation will come soon
+
+ struct whisper_context;
+
+ typedef int whisper_token;
+
+ WHISPER_API struct whisper_context * whisper_init(const char * path_model);
+ WHISPER_API void whisper_free(struct whisper_context * ctx);
+
+ WHISPER_API int whisper_pcm_to_mel(
+ struct whisper_context * ctx,
+ const float * samples,
+ int n_samples,
+ int n_threads);
+
+ // n_mel must be 80
+ WHISPER_API int whisper_set_mel(
+ struct whisper_context * ctx,
+ const float * data,
+ int n_len,
+ int n_mel);
+
+ WHISPER_API int whisper_encode(
+ struct whisper_context * ctx,
+ int offset,
+ int n_threads);
+
+ WHISPER_API int whisper_decode(
+ struct whisper_context * ctx,
+ const whisper_token * tokens,
+ int n_tokens,
+ int n_past,
+ int n_threads);
+
+ WHISPER_API whisper_token whisper_sample_best(struct whisper_context * ctx, bool need_timestamp);
+ WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx);
+
+ // return the id of the specified language, returns -1 if not found
+ WHISPER_API int whisper_lang_id(const char * lang);
+
+ WHISPER_API int whisper_n_len (struct whisper_context * ctx); // mel length
+ WHISPER_API int whisper_n_vocab (struct whisper_context * ctx);
+ WHISPER_API int whisper_n_text_ctx (struct whisper_context * ctx);
+ WHISPER_API int whisper_is_multilingual(struct whisper_context * ctx);
+ WHISPER_API float * whisper_get_probs (struct whisper_context * ctx);
+
+ WHISPER_API const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token);
+
+ WHISPER_API whisper_token whisper_token_eot (struct whisper_context * ctx);
+ WHISPER_API whisper_token whisper_token_sot (struct whisper_context * ctx);
+ WHISPER_API whisper_token whisper_token_prev(struct whisper_context * ctx);
+ WHISPER_API whisper_token whisper_token_solm(struct whisper_context * ctx);
+ WHISPER_API whisper_token whisper_token_not (struct whisper_context * ctx);
+ WHISPER_API whisper_token whisper_token_beg (struct whisper_context * ctx);
+
+ WHISPER_API whisper_token whisper_token_translate ();
+ WHISPER_API whisper_token whisper_token_transcribe();
+
+ WHISPER_API void whisper_print_timings(struct whisper_context * ctx);
+
+ ////////////////////////////////////////////////////////////////////////////
+
+ enum whisper_decode_strategy {
+ WHISPER_DECODE_GREEDY,
+ WHISPER_DECODE_BEAM_SEARCH,
+ };
+
+ struct whisper_full_params {
+ enum whisper_decode_strategy strategy;
+
+ int n_threads;
+
+ bool translate;
+ bool print_special_tokens;
+ bool print_progress;
+ bool print_realtime;
+ bool print_timestamps;
+
+ const char * language;
+
+ union {
+ struct {
+ int n_past;
+ } greedy;
+
+ struct {
+ int n_past;
+ int beam_width;
+ int n_best;
+ } beam_search;
+ };
+ };
+
+ WHISPER_API struct whisper_full_params whisper_full_default_params(enum whisper_decode_strategy strategy);
+
+ // full whisper run - encode + decode
+ WHISPER_API int whisper_full(
+ struct whisper_context * ctx,
+ struct whisper_full_params params,
+ const float * samples,
+ int n_samples);
+
+ WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx);
+
+ WHISPER_API int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment);
+ WHISPER_API int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment);
+
+ WHISPER_API const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif