static const size_t kB = 1024;
static const size_t MB = kB*kB;
+static const size_t GB = kB*kB*kB;
// default hparams (LLaMA 7B)
struct llama_hparams {
int n_created = 0;
int64_t n_elements = 0;
+ size_t n_bytes = 0;
bool use_mmap = false;
const char * name = gguf_get_tensor_name(ctx_gguf, i);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
n_elements += ggml_nelements(t);
+ n_bytes += ggml_nbytes(t);
}
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
- LLAMA_LOG_INFO("%s: model size = %.2f B\n", __func__, ml.n_elements*1e-9);
+ LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
+ if (ml.n_bytes < GB) {
+ LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
+ } else {
+ LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
+ }
// general kv
LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
ggml_allocr_alloc(lctx.alloc, token);
if (!ggml_allocr_is_measure(lctx.alloc)) {
- memcpy(token->data, embd, N * n_embd * ggml_element_size(inpL));
+ memcpy(token->data, embd, N * n_embd * ggml_element_size(token));
}
}