return {tokens, ppl, logit_history, prob_history};
}
-static std::vector<float> evaluate_tokens(llama_context * ctx, std::vector<int> & tokens,
- int n_past, int n_batch, int n_vocab) {
- std::vector<float> result;
- result.reserve(tokens.size() * n_vocab);
- size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
- for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
- size_t n_tokens = tokens.size() - i_chunk * n_batch;
- n_tokens = std::min(n_tokens, size_t(n_batch));
- llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
- if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return {};
+static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
+ for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
+ const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
+
+ llama_batch batch_view = {
+ n_tokens,
+ batch.token + i,
+ nullptr,
+ batch.pos + i,
+ batch.n_seq_id + i,
+ batch.seq_id + i,
+ batch.logits + i,
+ 0, 0, 0, // unused
+ };
+
+ const int ret = llama_decode(ctx, batch_view);
+ if (ret != 0) {
+ LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
+ return false;
}
- const auto logits = llama_get_logits(ctx);
- result.insert(result.end(), logits, logits + n_tokens * n_vocab);
-
- n_past += n_tokens;
+ memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float));
}
- return result;
+
+ return true;
}
static void hellaswag_compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
// determine the common prefix of the endings
hs_cur.common_prefix = 0;
- hs_cur.required_tokens = 0;
for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;
- const int max_tasks_per_batch = params.n_parallel;
+ const int max_tasks_per_batch = 32;
const int max_seq = 4*max_tasks_per_batch;
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
std::vector<float> tok_logits(n_vocab);
- std::vector<float> batch_logits(n_ctx*n_vocab);
+ std::vector<float> batch_logits(n_vocab*n_ctx);
std::vector<std::pair<size_t, llama_token>> eval_pairs;
std::vector<float> eval_results;
std::vector<std::thread> workers(std::thread::hardware_concurrency());
- auto decode_helper = [&](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
- const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
-
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
-
- const int ret = llama_decode(ctx, batch_view);
- if (ret != 0) {
- LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
- return false;
- }
-
- memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float));
- }
-
- return true;
- };
-
for (size_t i0 = 0; i0 < hs_task_count; i0++) {
int n_cur = 0;
llama_kv_cache_clear(ctx);
// decode all tasks [i0, i1)
- if (!decode_helper(ctx, batch, n_batch)) {
+ if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
return;
}
std::string second;
std::array<std::string, 2> choices;
int answer;
+
+ size_t i_batch;
+ size_t common_prefix;
+ size_t required_tokens;
+ size_t n_base1; // number of tokens for context + choice 1
+ size_t n_base2; // number of tokens for context + choice 2
+ std::vector<llama_token> seq_tokens[2];
};
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) {
data = std::move(selected);
}
+ fprintf(stderr, "%s : tokenizing selected tasks\n", __func__);
+
// This is needed as usual for LLaMA models
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
+ for (auto & task : data) {
+ task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, add_bos);
+ task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, add_bos);
+
+ task.common_prefix = 0;
+ for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
+ if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
+ break;
+ }
+ task.common_prefix++;
+ }
+
+ task.required_tokens = task.common_prefix +
+ task.seq_tokens[0].size() - task.common_prefix +
+ task.seq_tokens[1].size() - task.common_prefix;
+
+ task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos).size();
+ task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos).size();
+ }
+
fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
- const int n_ctx = llama_n_ctx(ctx);
+ const int n_ctx = llama_n_ctx(ctx);
+ const int n_batch = params.n_batch;
+
+ const int max_tasks_per_batch = 128;
+ const int max_seq = 2*max_tasks_per_batch;
+
+ llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
std::vector<float> tok_logits(n_vocab);
+ std::vector<float> batch_logits(n_vocab*n_ctx);
int n_correct = 0;
int n_done = 0;
- for (size_t task_idx = 0; task_idx < data.size(); task_idx++) {
- const auto& task = data[task_idx];
+ for (size_t i0 = 0; i0 < data.size(); i0++) {
+ int n_cur = 0;
- auto base_context = ::llama_tokenize(ctx, task.first, add_bos);
- auto base_ctx_1st = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos);
- auto base_ctx_2nd = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos);
+ size_t i1 = i0;
+ size_t i_batch = 0;
- auto sentence_1st = task.first + task.choices[0] + task.second;
- auto sentence_2nd = task.first + task.choices[1] + task.second;
- auto query_1st = ::llama_tokenize(ctx, sentence_1st, add_bos);
- auto query_2nd = ::llama_tokenize(ctx, sentence_2nd, add_bos);
+ llama_batch_clear(batch);
- if (query_1st.size() > (size_t)n_ctx || query_2nd.size() > (size_t)n_ctx) {
- fprintf(stderr, "%s : number of tokens in queries %zu, %zu > n_ctxl\n", __func__, query_1st.size(), query_2nd.size());
- return;
- }
+ while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
+ const int s0 = 2*(i1 - i0);
+ if (s0 + 2 > max_seq) {
+ break;
+ }
+
+ for (size_t i = 0; i < data[i1].common_prefix; ++i) {
+ llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1}, false);
+ }
+ batch.logits[batch.n_tokens - 1] = true;
- auto query_1st_size = query_1st.size();
- auto query_2nd_size = query_2nd.size();
+ for (int s = 0; s < 2; ++s) {
+ for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
+ llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
+ }
+ }
- // Speedup small evaluations by evaluating atleast 32 tokens
- // For Winogrande this seems to slow it down rather than speed it up.
- //if (query_1st.size() < 32) query_1st.resize(32);
- //if (query_2nd.size() < 32) query_2nd.resize(32);
+ data[i1].i_batch = i_batch;
+ i_batch += data[i1].required_tokens;
- llama_kv_cache_clear(ctx);
- auto logits_1st = evaluate_tokens(ctx, query_1st, 0, params.n_batch, n_vocab);
+ n_cur += data[i1].required_tokens;
+ if (++i1 == data.size()) {
+ break;
+ }
+ }
+
+ if (i0 == i1) {
+ fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
+ return;
+ }
llama_kv_cache_clear(ctx);
- auto logits_2nd = evaluate_tokens(ctx, query_2nd, 0, params.n_batch, n_vocab);
- if (logits_1st.empty() || logits_2nd.empty()) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
+ // decode all tasks [i0, i1)
+ if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
+ fprintf(stderr, "%s: llama_decode() failed\n", __func__);
return;
}
- bool skip_choice = query_1st_size - base_ctx_1st.size() > k_min_trailing_ctx &&
- query_2nd_size - base_ctx_2nd.size() > k_min_trailing_ctx;
-
- float score_1st = 0;
- bool is_nan_1st = false;
- const auto& base_1 = skip_choice ? base_ctx_1st : base_context;
- const int last_1st = query_1st_size - base_1.size() > 1 ? 1 : 0;
- for (size_t j = base_1.size()-1; j < query_1st_size-1-last_1st; ++j) {
- std::memcpy(tok_logits.data(), logits_1st.data() + j*n_vocab, n_vocab*sizeof(float));
- const float prob = softmax(tok_logits)[query_1st[j+1]];
- if (std::isnan(prob) || !prob) {
- fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
- prob, j, sentence_1st.c_str(), base_context.size());
- is_nan_1st = true;
- break;
+ for (size_t i = i0; i < i1; ++i) {
+ auto & task = data[i];
+
+ const bool skip_choice =
+ task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
+ task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
+
+ float score_1st = 0;
+ bool is_nan_1st = false;
+ const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
+ const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
+ size_t li = n_base1 - 1;
+ for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
+ std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(task.i_batch + li++), n_vocab*sizeof(float));
+ const float prob = softmax(tok_logits)[task.seq_tokens[0][j+1]];
+ if (std::isnan(prob) || !prob) {
+ fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
+ prob, j, (task.first + task.choices[0] + task.second).c_str(), n_base1);
+ is_nan_1st = true;
+ break;
+ }
+ score_1st += std::log(prob);
}
- score_1st += std::log(prob);
- }
- score_1st /= (query_1st_size - base_1.size() - last_1st);
-
- float score_2nd = 0;
- bool is_nan_2nd = false;
- const auto& base_2 = skip_choice ? base_ctx_2nd : base_context;
- const int last_2nd = query_2nd_size - base_2.size() > 1 ? 1 : 0;
- for (size_t j = base_2.size()-1; j < query_2nd_size-1-last_2nd; ++j) {
- std::memcpy(tok_logits.data(), logits_2nd.data() + j*n_vocab, n_vocab*sizeof(float));
- const float prob = softmax(tok_logits)[query_2nd[j+1]];
- if (std::isnan(prob) || !prob) {
- fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
- prob, j, sentence_2nd.c_str(), base_context.size());
- is_nan_2nd = true;
- break;
+ score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
+
+ float score_2nd = 0;
+ bool is_nan_2nd = false;
+ const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
+ const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
+ li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1;
+ for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
+ std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(task.i_batch + li++), n_vocab*sizeof(float));
+ const float prob = softmax(tok_logits)[task.seq_tokens[1][j+1]];
+ if (std::isnan(prob) || !prob) {
+ fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
+ prob, j, (task.first + task.choices[1] + task.second).c_str(), n_base2);
+ is_nan_2nd = true;
+ break;
+ }
+ score_2nd += std::log(prob);
}
- score_2nd += std::log(prob);
- }
- score_2nd /= (query_2nd_size - base_2.size() - last_2nd);
+ score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
- if (is_nan_1st || is_nan_2nd) {
- continue;
- }
+ if (is_nan_1st || is_nan_2nd) {
+ continue;
+ }
- if (std::isnan(score_1st) || std::isnan(score_2nd)) {
- printf("================== NaN score %g, %g) for:\n", score_1st, score_2nd);
- printf("Q1: <%s> - %zu tokens\n", sentence_1st.c_str(), query_1st_size);
- printf("Q2: <%s> - %zu tokens\n", sentence_2nd.c_str(), query_2nd_size);
- printf("B : <%s> - %zu tokens\n", task.first.c_str(), base_context.size());
- printf("base_1 has %zu tokens, base_2 has %zu tokens, skip_choice = %d\n", base_1.size(), base_2.size(), skip_choice);
- continue;
- }
+ if (std::isnan(score_1st) || std::isnan(score_2nd)) {
+ printf("================== NaN score %g, %g) for:\n", score_1st, score_2nd);
+ printf("Q1: <%s> - %zu tokens\n", (task.first + task.choices[0] + task.second).c_str(), task.seq_tokens[0].size());
+ printf("Q2: <%s> - %zu tokens\n", (task.first + task.choices[1] + task.second).c_str(), task.seq_tokens[1].size());
+ printf("B : <%s> - %zu tokens\n", task.first.c_str(), task.common_prefix);
+ printf("base_1 has %zu tokens, base_2 has %zu tokens, skip_choice = %d\n", n_base1, n_base2, skip_choice);
+ continue;
+ }
- int result = score_1st > score_2nd ? 1 : 2;
+ int result = score_1st > score_2nd ? 1 : 2;
+
+ if (result == task.answer) {
+ ++n_correct;
+ }
+ ++n_done;
- if (result == task.answer) {
- ++n_correct;
+ // Print the accumulated accuracy mean x 100
+ printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
+ fflush(stdout);
}
- ++n_done;
- // Print the accumulated accuracy mean x 100
- printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n",task_idx+1, 100.0 * n_correct/n_done,score_1st,score_2nd,result,task.answer);
- fflush(stdout);
+ i0 = i1 - 1;
}
printf("\n");