]> git.djapps.eu Git - pkg/ggml/sources/whisper.cpp/commitdiff
src : relocate new backend sources
authorGeorgi Gerganov <redacted>
Sat, 10 Feb 2024 07:50:24 +0000 (09:50 +0200)
committerGeorgi Gerganov <redacted>
Sat, 10 Feb 2024 07:55:47 +0000 (09:55 +0200)
ggml-kompute.cpp [new file with mode: 0644]
ggml-kompute.h [new file with mode: 0644]
ggml-sycl.cpp [new file with mode: 0644]
ggml-sycl.h [new file with mode: 0644]
ggml-vulkan.cpp [new file with mode: 0644]
ggml-vulkan.h [new file with mode: 0644]

diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp
new file mode 100644 (file)
index 0000000..51c5af8
--- /dev/null
@@ -0,0 +1,1990 @@
+#include "ggml.h"
+#include "ggml-backend.h"
+#include "ggml-backend-impl.h"
+#include "ggml-kompute.h"
+
+// These are generated at build time by cmake custom command
+#include "shaderop_scale.h"
+#include "shaderop_scale_8.h"
+#include "shaderop_add.h"
+#include "shaderop_addrow.h"
+#include "shaderop_mul.h"
+#include "shaderop_silu.h"
+#include "shaderop_relu.h"
+#include "shaderop_gelu.h"
+#include "shaderop_softmax.h"
+#include "shaderop_norm.h"
+#include "shaderop_rmsnorm.h"
+#include "shaderop_diagmask.h"
+#include "shaderop_mul_mat_f16.h"
+#include "shaderop_mul_mat_q8_0.h"
+#include "shaderop_mul_mat_q4_0.h"
+#include "shaderop_mul_mat_q4_1.h"
+#include "shaderop_mul_mat_q6_k.h"
+#include "shaderop_mul_mat_mat_f32.h"
+#include "shaderop_getrows_f16.h"
+#include "shaderop_getrows_q4_0.h"
+#include "shaderop_getrows_q4_1.h"
+#include "shaderop_getrows_q6_k.h"
+#include "shaderop_rope_f16.h"
+#include "shaderop_rope_f32.h"
+#include "shaderop_cpy_f16_f16.h"
+#include "shaderop_cpy_f16_f32.h"
+#include "shaderop_cpy_f32_f16.h"
+#include "shaderop_cpy_f32_f32.h"
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cstdint>
+#include <cstdio>
+#include <cstring>
+#include <iostream>
+#include <memory>
+#include <stdexcept>
+#include <string>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+#include <kompute/Kompute.hpp>
+#include <vulkan/vulkan.hpp>
+
+#ifdef __linux__
+#include <cstdlib> // for setenv
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QK_NL 16
+
+typedef ggml_fp16_t half;
+
+static std::string ggml_kompute_format_name(int device) {
+    return "Kompute" + std::to_string(device);
+}
+
+struct ggml_kompute_context {
+    int device;
+    std::string name;
+    std::shared_ptr<vk::DescriptorPool> pool;
+
+    ggml_kompute_context(int device)
+        : device(device), name(ggml_kompute_format_name(device)) {}
+};
+
+// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
+// and consolidate the init functions and simplify object lifetime management. As it currently stands,
+// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
+// is only created when a device is set and vulkan is explicitly turned on.
+static ggml_kompute_context *s_kompute_context = nullptr;
+
+class kompute_manager {
+    kp::Manager *s_mgr = nullptr;
+
+public:
+    kp::Manager *operator()() {
+        if (s_mgr && !s_mgr->hasInstance()) {
+            destroy();
+        }
+        if (!s_mgr) {
+            s_mgr = new kp::Manager;
+        }
+        return s_mgr;
+    }
+
+    void destroy() {
+        delete s_mgr;
+        s_mgr = nullptr;
+    }
+};
+
+static kompute_manager komputeManager;
+
+struct ggml_vk_memory {
+    void *data = nullptr;
+    size_t size = 0;
+    vk::DeviceMemory *primaryMemory = nullptr;
+    vk::Buffer *primaryBuffer = nullptr;
+    vk::DeviceMemory *stagingMemory = nullptr;
+    vk::Buffer *stagingBuffer = nullptr;
+};
+
+#ifdef __linux__
+__attribute__((constructor))
+static void enable_sam() {
+    setenv("RADV_PERFTEST", "sam", false);
+}
+#endif
+
+static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
+    vk::PhysicalDeviceFeatures availableFeatures;
+    physical_device.getFeatures(&availableFeatures);
+
+    if (!availableFeatures.shaderInt16)
+        return false;
+
+    vk::PhysicalDeviceVulkan11Features availableFeatures11;
+    vk::PhysicalDeviceVulkan12Features availableFeatures12;
+
+    availableFeatures11.pNext = &availableFeatures12;
+    availableFeatures12.pNext = nullptr;
+
+    vk::PhysicalDeviceFeatures2 features2;
+    features2.pNext = &availableFeatures11;
+
+    physical_device.getFeatures2(&features2);
+
+    if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
+        !availableFeatures11.storageBuffer16BitAccess) {
+        return false;
+    }
+
+    if (!availableFeatures12.storageBuffer8BitAccess ||
+        !availableFeatures12.uniformAndStorageBuffer8BitAccess ||
+        !availableFeatures12.shaderFloat16 ||
+        !availableFeatures12.shaderInt8) {
+        return false;
+    }
+
+    return true;
+}
+
+static const char * ggml_vk_getVendorName(uint32_t vendorID) {
+    switch (vendorID) {
+        case 0x10DE:
+            return "nvidia";
+        case 0x1002:
+            return "amd";
+        case 0x8086:
+            return "intel";
+        default:
+            return "unknown";
+    }
+}
+
+static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
+    std::vector<ggml_vk_device> results;
+    if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
+        return results;
+
+    std::vector<vk::PhysicalDevice> physical_devices;
+    try {
+        physical_devices = komputeManager()->listDevices();
+    } catch (vk::SystemError & err) {
+        std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
+        return results;
+    }
+
+    uint32_t deviceCount = physical_devices.size();
+    if (deviceCount == 0)
+        return results;
+
+    std::unordered_map<std::string, size_t> count_by_name;
+
+    for (uint32_t i = 0; i < deviceCount; i++) {
+        const auto & physical_device = physical_devices[i];
+
+        VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
+        VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
+        const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
+        const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
+        if (major < 1 || minor < 2)
+            continue;
+
+        if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
+            continue;
+
+        size_t heapSize = 0;
+        for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
+            VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
+            if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
+                heapSize = heap.size;
+                break;
+            }
+        }
+
+        if (heapSize < memoryRequired)
+            continue;
+
+        auto ext_props = physical_device.enumerateDeviceExtensionProperties();
+        bool has_maintenance4 = false;
+
+        // Check if maintenance4 is supported
+        for (const auto & properties : ext_props) {
+            if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
+                has_maintenance4 = true;
+            }
+        }
+
+        vk::PhysicalDeviceSubgroupProperties subgroup_props;
+        vk::PhysicalDeviceProperties2 dev_props2;
+        vk::PhysicalDeviceMaintenance3Properties dev_props3;
+        vk::PhysicalDeviceMaintenance4Properties dev_props4;
+        dev_props2.pNext = &dev_props3;
+        dev_props3.pNext = &subgroup_props;
+        if (has_maintenance4) {
+            subgroup_props.pNext = &dev_props4;
+        }
+        physical_device.getProperties2(&dev_props2);
+
+        if (subgroup_props.subgroupSize < 32)
+            continue;
+
+        ggml_vk_device d;
+        d.index = i;
+        d.type = dev_props.deviceType;
+        d.heapSize = heapSize;
+        d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
+        d.subgroupSize = subgroup_props.subgroupSize;
+        d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
+
+        if (has_maintenance4) {
+            d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
+        } else {
+            d.maxAlloc = dev_props3.maxMemoryAllocationSize;
+        }
+
+        std::string name(dev_props.deviceName);
+        size_t n_idx = ++count_by_name[name];
+        if (n_idx > 1) {
+            name += " (" + std::to_string(n_idx) + ")";
+        }
+        d.name = strdup(name.c_str());
+
+        results.push_back(d);
+    }
+
+    std::stable_sort(results.begin(), results.end(),
+        [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
+            if (lhs.type != rhs.type) {
+                if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
+                if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
+
+                if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
+                if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
+            }
+            return lhs.heapSize < rhs.heapSize;
+        }
+    );
+
+    return results;
+}
+
+// public API returns a C-style array
+ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
+    auto devices = ggml_vk_available_devices_internal(memoryRequired);
+    *count = devices.size();
+    if (devices.empty()) {
+        return nullptr;
+    }
+
+    size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
+    auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
+    memcpy(arr, devices.data(), nbytes);
+    return arr;
+}
+
+static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
+    devices.erase(
+        std::remove_if(devices.begin(), devices.end(),
+            [&targetVendor](const ggml_vk_device& device) {
+                return device.vendor != targetVendor;
+            }),
+        devices.end()
+    );
+}
+
+static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
+    devices.erase(
+        std::remove_if(devices.begin(), devices.end(),
+            [&targetName](const ggml_vk_device& device) {
+                return device.name != targetName;
+            }),
+        devices.end()
+    );
+}
+
+static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
+    if (name.empty())
+        return false;
+
+    auto devices = ggml_vk_available_devices_internal(memoryRequired);
+    if (name == "amd" || name == "nvidia" || name == "intel") {
+        ggml_vk_filterByVendor(devices, name);
+    } else if (name != "gpu") {
+        ggml_vk_filterByName(devices, name);
+    }
+
+    if (devices.empty())
+        return false;
+
+    *device = devices.front();
+    return true;
+}
+
+bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
+    return ggml_vk_get_device(device, memoryRequired, std::string(name));
+}
+
+bool ggml_vk_has_vulkan() {
+    return komputeManager()->hasVulkan();
+}
+
+bool ggml_vk_has_device() {
+    return komputeManager()->hasDevice();
+}
+
+ggml_vk_device ggml_vk_current_device() {
+    if (!komputeManager()->hasDevice())
+        return ggml_vk_device();
+
+    auto devices = ggml_vk_available_devices_internal(0);
+    ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
+    GGML_ASSERT(!devices.empty());
+    return devices.front();
+}
+
+static
+void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
+    std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
+        vk::DescriptorPoolSize(
+          vk::DescriptorType::eStorageBuffer,
+          3 * size // Descriptor count is number of possible tensors to pass into an algorithm
+          )
+    };
+
+    vk::DescriptorPoolCreateInfo descriptorPoolInfo(
+      vk::DescriptorPoolCreateFlags(),
+      size, // Max sets
+      static_cast<uint32_t>(descriptorPoolSizes.size()),
+      descriptorPoolSizes.data());
+
+    ctx->pool = std::make_shared<vk::DescriptorPool>();
+    vk::Result r = komputeManager()->device()->createDescriptorPool(
+      &descriptorPoolInfo, nullptr, ctx->pool.get());
+    if (r != vk::Result::eSuccess)
+        std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
+}
+
+static
+void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
+    if (ctx->pool) {
+        komputeManager()->device()->destroy(
+          *ctx->pool,
+          (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+        ctx->pool = nullptr;
+    }
+}
+
+static
+vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
+    vk::BufferCreateInfo bufferCreateInfo;
+    bufferCreateInfo.size = size;
+    bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
+                             vk::BufferUsageFlagBits::eTransferSrc |
+                             vk::BufferUsageFlagBits::eTransferDst;
+    bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
+
+    vk::Buffer *vkBuffer = new vk::Buffer;
+    vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
+    if (r != vk::Result::eSuccess)
+        std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
+    return vkBuffer;
+}
+
+static
+vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
+
+    uint32_t memoryTypeIndex = -1;
+    bool memoryTypeIndexFound = false;
+    vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
+    for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
+        const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
+        const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
+        if (memoryHeap.size < size) {
+            continue;
+        }
+
+        if (requirements.memoryTypeBits & (1 << i)) {
+            if (((memoryProperties.memoryTypes[i]).propertyFlags &
+                 flags) == flags) {
+                memoryTypeIndex = i;
+                memoryTypeIndexFound = true;
+                if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
+                    *isHostVisible = true;
+                }
+                break;
+            }
+        }
+    }
+    if (!memoryTypeIndexFound) {
+        throw std::runtime_error(
+          "Memory type index for buffer creation not found");
+    }
+
+    vk::MemoryAllocateInfo allocInfo;
+    allocInfo.allocationSize = size;
+    allocInfo.memoryTypeIndex = memoryTypeIndex;
+    vk::DeviceMemory *vkDeviceMemory =  new vk::DeviceMemory;
+    vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
+    if (r != vk::Result::eSuccess) {
+        std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
+        throw std::runtime_error("Error allocating vulkan memory.");
+    }
+    return vkDeviceMemory;
+}
+
+static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
+    size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
+
+    // If offset is already aligned, return it directly
+    if (offset % minStorageBufferOffsetAlignment == 0) {
+        return offset;
+    }
+
+    // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
+    return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
+}
+
+static ggml_vk_memory ggml_vk_allocate(size_t size) {
+    ggml_vk_memory memory;
+    bool isHostVisible = false;
+    {
+        memory.primaryBuffer = ggml_vk_allocate_buffer(size);
+        vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
+        vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
+        memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
+        komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
+        if (isHostVisible) {
+            vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
+            if (r != vk::Result::eSuccess)
+                std::cerr << "Error mapping memory" << vk::to_string(r);
+        }
+    }
+
+    if (!isHostVisible) {
+        memory.stagingBuffer = ggml_vk_allocate_buffer(size);
+        vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
+        vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
+                                                      vk::MemoryPropertyFlagBits::eHostCoherent |
+                                                      vk::MemoryPropertyFlagBits::eHostCached;
+        memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
+        komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
+        vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
+        if (r != vk::Result::eSuccess)
+            std::cerr << "Error mapping memory" << vk::to_string(r);
+    }
+
+    memory.size = size;
+    return memory;
+}
+
+static void ggml_vk_free_memory(ggml_vk_memory &memory)
+{
+    komputeManager()->device()->destroy(
+      *memory.primaryBuffer,
+      (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+    if (memory.stagingBuffer) {
+        komputeManager()->device()->destroy(
+          *memory.stagingBuffer,
+          (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+    }
+    komputeManager()->device()->freeMemory(
+      *memory.primaryMemory,
+      (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+    if (memory.stagingMemory) {
+        komputeManager()->device()->freeMemory(
+          *memory.stagingMemory,
+          (vk::Optional<const vk::AllocationCallbacks>)nullptr);
+    }
+}
+
+static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
+
+static
+ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
+    ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
+
+    // compatibility with ggml-backend
+    GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
+
+    ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
+
+    const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
+
+    GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
+
+    offset = uint64_t(ioffs);
+    return buf_ctx;
+}
+
+static
+const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
+    uint64_t originalOffset = 0;
+    auto * res = ggml_vk_find_tensor(t, originalOffset);
+    if (!res) {
+        static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
+        return nullTensor;
+    }
+
+    // Create a tensor whose memory will be composed of our buffers at the correct offset
+    const size_t nelements = ggml_nelements(t);
+    size_t nbytes = ggml_nbytes(t);
+
+    size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
+    if (alignedOffset) {
+        *alignedOffset = originalOffset - vulkanOffset;
+        nbytes += *alignedOffset;
+    }
+
+    return komputeManager()->tensor(
+        t->data,
+        nelements,
+        nbytes, kp::Tensor::TensorDataTypes::eFloat,
+        res->primaryMemory, res->primaryBuffer,
+        res->stagingMemory, res->stagingBuffer,
+        vulkanOffset);
+}
+
+static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
+    if (size % sizeof(uint32_t) != 0) {
+        throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
+    }
+
+    const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
+    size_t count = size / sizeof(uint32_t);
+    return std::vector<uint32_t>(data_ptr, data_ptr + count);
+}
+
+inline static
+uint32_t safe_divide(uint32_t a, uint32_t b) {
+    if (b <= 1) {
+        return a;
+    }
+    if ((a % b) != 0) {
+        fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
+        GGML_ASSERT(!"safe_divide result would've had remainder");
+    }
+    return a / b;
+}
+
+static void ggml_vk_add(
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+    int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
+    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+    int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
+    int32_t ne0,
+    int32_t nb0,  int32_t nb1,  int32_t nb2,  int32_t nb3
+) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
+        kp::shader_data::op_add_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00;
+        int32_t nb00, nb01, nb02, nb03;
+        int32_t ne10, ne11, ne12, ne13;
+        int32_t nb10, nb11, nb12, nb13;
+        int32_t ne0;
+        int32_t nb0, nb1, nb2, nb3;
+    } const pushConsts {
+        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00,
+        nb00, nb01, nb02, nb03,
+        ne10, ne11, ne12, ne13,
+        nb10, nb11, nb12, nb13,
+        ne0,
+        nb0, nb1, nb2, nb3
+    };
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__)) {
+        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_addrow(kp::Sequence& seq,
+                 const std::shared_ptr<kp::Tensor>& inA,
+                 const std::shared_ptr<kp::Tensor>& inB,
+                 const std::shared_ptr<kp::Tensor>& out,
+                 uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+                 uint32_t size, uint32_t row = 0) {
+
+    const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
+        kp::shader_data::op_addrow_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        uint32_t row;
+    } const pushConsts {
+        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        row
+    };
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__))
+        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
+    else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({size});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul(
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+    int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
+    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+    int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
+    int32_t ne0,
+    int32_t nb0,  int32_t nb1,  int32_t nb2,  int32_t nb3
+) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
+        kp::shader_data::op_mul_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00;
+        int32_t nb00, nb01, nb02, nb03;
+        int32_t ne10, ne11, ne12, ne13;
+        int32_t nb10, nb11, nb12, nb13;
+        int32_t ne0;
+        int32_t nb0, nb1, nb2, nb3;
+    } const pushConsts {
+        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00,
+        nb00, nb01, nb02, nb03,
+        ne10, ne11, ne12, ne13,
+        nb10, nb11, nb12, nb13,
+        ne0,
+        nb0, nb1, nb2, nb3
+    };
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__)) {
+        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_scale(kp::Sequence& seq,
+                   const std::shared_ptr<kp::Tensor>& in,
+                   const std::shared_ptr<kp::Tensor>& out,
+                   uint32_t inOff, uint32_t outOff,
+                   uint32_t size, float scale) {
+    const static auto spirv_1 = getSpirvShader(
+        kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
+    );
+    const static auto spirv_8 = getSpirvShader(
+        kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
+    );
+
+    struct PushConstants {
+        uint32_t inOff, outOff;
+        float scale;
+    } const pushConsts {
+        safe_divide(inOff, 4), safe_divide(outOff, 4),
+        scale
+    };
+
+    const auto * spirv = &spirv_1;
+    std::string name(__func__);
+    if (size % 8 == 0) {
+        size /= 8;
+        name += "_8";
+        spirv = &spirv_8;
+    }
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(name)) {
+        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(name);
+        s_algo->setTensors({in, out});
+        s_algo->setWorkgroup({size});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_xxlu(
+    const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& in,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inOff, uint32_t outOff,
+    uint32_t size
+) {
+    struct PushConstants {
+        uint32_t inOff, outOff;
+    } const pushConsts {
+        safe_divide(inOff, 4), safe_divide(outOff, 4),
+    };
+
+    auto name = std::string(__func__) + "_" + suffix;
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(name)) {
+        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(name);
+        s_algo->setTensors({in, out});
+        s_algo->setWorkgroup({size});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_silu(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
+        kp::shader_data::op_silu_comp_spv_len);
+
+    ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_relu(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
+        kp::shader_data::op_relu_comp_spv_len);
+
+    ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_gelu(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
+        kp::shader_data::op_gelu_comp_spv_len);
+
+    ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
+}
+
+static void ggml_vk_soft_max(
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
+    float scale
+) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
+        kp::shader_data::op_softmax_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00, ne01, ne02;
+        float scale;
+        int32_t mask;
+    } pushConsts {
+        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00, ne01, ne02,
+        scale,
+        bool(inB)
+    };
+
+    auto & inB_ = inB ? inB : inA;
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__)) {
+        // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
+        const uint32_t local_x = 32;
+        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({inA, inB_, out});
+        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_norm_(
+    const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& in,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inOff, uint32_t outOff,
+    int32_t ne00, int32_t nb01,
+    int32_t nrows, float epsilon
+) {
+    GGML_ASSERT(nb01%sizeof(float) == 0);
+    GGML_ASSERT(ne00%sizeof(float) == 0);
+
+    struct PushConstants {
+        uint32_t inOff, outOff;
+        uint32_t ne00, nb01;
+        float eps;
+    } pushConsts {
+        safe_divide(inOff, 4), safe_divide(outOff, 4),
+        (uint32_t)ne00, (uint32_t)nb01, epsilon
+    };
+
+    auto name = std::string(__func__) + "_" + suffix;
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(name)) {
+        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(name);
+        s_algo->setTensors({in, out});
+        s_algo->setWorkgroup({(uint32_t)nrows});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_norm(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
+        kp::shader_data::op_norm_comp_spv_len);
+
+    ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_rms_norm(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
+        kp::shader_data::op_rmsnorm_comp_spv_len);
+
+    ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
+}
+
+static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
+                           const std::shared_ptr<kp::Tensor>& in,
+                           const std::shared_ptr<kp::Tensor>& out,
+                           uint32_t inOff, uint32_t outOff,
+                           uint32_t n_past,
+                           int32_t ne00, int32_t ne01, int32_t ne02) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
+        kp::shader_data::op_diagmask_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inOff, outOff;
+        uint32_t n_past;
+        int32_t ne00, ne01;
+    } pushConsts {
+        safe_divide(inOff, 4), safe_divide(outOff, 4),
+        n_past,
+        ne00, ne01
+    };
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__))
+        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
+    else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({in, out});
+        s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_f16(
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    int32_t ne00, int32_t ne01, int32_t ne02,
+    uint32_t nb00, uint32_t nb01, uint32_t nb02,
+    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+    uint32_t nb10, uint32_t nb11, uint32_t nb12,
+    int32_t ne0, int32_t ne1,
+    uint32_t r2, uint32_t r3
+) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
+        kp::shader_data::op_mul_mat_f16_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00, ne01, ne02;
+        uint32_t nb00, nb01, nb02;
+        int32_t ne10, ne11, ne12;
+        uint32_t nb10, nb11, nb12;
+        int32_t ne0, ne1;
+        uint32_t r2, r3;
+    } pushConsts {
+        safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00, ne01, ne02,
+        nb00, nb01, nb02,
+        ne10, ne11, ne12,
+        nb10, nb11, nb12,
+        ne0, ne1,
+        r2, r3
+    };
+
+    const unsigned ny = unsigned((ne11 + 4 - 1)/4);
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__)) {
+        const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
+                         const std::shared_ptr<kp::Tensor>& inA,
+                         const std::shared_ptr<kp::Tensor>& inB,
+                         const std::shared_ptr<kp::Tensor>& out,
+                         uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+                         int32_t ne00, int32_t ne01, int32_t ne02,
+                         uint32_t nb01, uint32_t nb02,
+                         int32_t ne11, int32_t ne12,
+                         uint32_t nb11, uint32_t nb12,
+                         uint32_t nb1, uint32_t nb2) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
+        kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00, ne01, ne02, ne11, ne12;
+        uint32_t nb01, nb02;
+        uint32_t nb11, nb12;
+        uint32_t nb1, nb2;
+    } pushConsts {
+        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00, ne01, ne02, ne11, ne12,
+        nb01, nb02, nb11, nb12,
+        nb1, nb2
+    };
+
+    const uint32_t local_x = ggml_vk_current_device().subgroupSize;
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__)) {
+        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
+        {inA, inB, out}, spirv,
+        {unsigned(ne01),
+         unsigned(ne11),
+         unsigned(std::max(ne12, ne02))
+         },
+        {local_x},
+        {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({unsigned(ne01),
+                              unsigned(ne11),
+                              unsigned(std::max(ne12, ne02)),
+                              });
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_mul_mat_impl(
+    const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    int32_t ne00, int32_t ne01, int32_t ne02,
+    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
+    int32_t ne0, int32_t ne1,
+    uint32_t r2, uint32_t r3
+) {
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00, ne01, ne02;
+        int32_t ne10, ne12;
+        int32_t ne0, ne1;
+        uint32_t r2, r3;
+    } pushConsts {
+        safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00, ne01, ne02,
+        ne10, ne12,
+        ne0, ne1,
+        r2, r3
+    };
+
+    auto name = std::string(__func__) + "_" + suffix;
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(name)) {
+        const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(name);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q4_0(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
+        kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
+
+    ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q4_1(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
+        kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
+
+    ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_mul_mat_q8_0(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
+        kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
+
+    ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
+}
+
+static void ggml_vk_mul_mat_q6_k(
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
+    int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
+) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
+        kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00, ne10, ne0, ne1, ne01, gqa;
+    } pushConsts {
+        inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00, ne10, ne0, ne1, ne01, ne12/ne02
+    };
+
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(__func__)) {
+        const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
+        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(__func__);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_get_rows(
+    const std::vector<uint32_t>& spirv,
+    const char * suffix,
+    unsigned element_size, unsigned qk,
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    int32_t ne00, int32_t nb01, int32_t nb1,
+    uint32_t size
+) {
+    GGML_ASSERT(nb01%element_size == 0);
+    GGML_ASSERT(nb1%sizeof(float) == 0);
+    if (qk) GGML_ASSERT(ne00%qk == 0);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t ne00, nb01, nb1;
+    } pushConsts {
+        safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
+        ne00, nb01, nb1
+    };
+
+    auto name = std::string(__func__) + "_" + suffix;
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(name)) {
+        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
+    } else {
+        s_algo = komputeManager()->getAlgorithm(name);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({size});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_f16(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
+        kp::shader_data::op_getrows_f16_comp_spv_len);
+
+    ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q4_0(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
+        kp::shader_data::op_getrows_q4_0_comp_spv_len);
+
+    ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q4_1(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
+        kp::shader_data::op_getrows_q4_1_comp_spv_len);
+
+    ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_get_rows_q6_k(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
+        kp::shader_data::op_getrows_q6_k_comp_spv_len);
+    ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
+}
+
+static void ggml_vk_rope(
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& inA,
+    const std::shared_ptr<kp::Tensor>& inB,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
+    ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx,
+    float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
+    int32_t ne01, int32_t ne02, int32_t ne03,
+    uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
+    int32_t ne0,
+    uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
+) {
+    GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
+
+    static const auto spirv_f16 = getSpirvShader(
+        kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
+    );
+    static const auto spirv_f32 = getSpirvShader(
+        kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
+    );
+
+    int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
+
+    GGML_ASSERT(nb03 % type_size == 0);
+    GGML_ASSERT(nb02 % type_size == 0);
+    GGML_ASSERT(nb01 % type_size == 0);
+    GGML_ASSERT(nb00 % type_size == 0);
+    GGML_ASSERT(nb3  % type_size == 0);
+    GGML_ASSERT(nb2  % type_size == 0);
+    GGML_ASSERT(nb1  % type_size == 0);
+    GGML_ASSERT(nb0  % type_size == 0);
+
+    struct PushConstants {
+        uint32_t inAOff, inBOff, outOff;
+        int32_t n_dims, mode, n_orig_ctx;
+        float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+        uint32_t nb00, nb01, nb02, nb03;
+        int32_t ne0;
+        uint32_t nb0, nb1, nb2, nb3;
+    } pushConsts {
+        safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
+        n_dims, mode, n_orig_ctx,
+        freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
+        nb00, nb01, nb02, nb03,
+        ne0,
+        nb0, nb1, nb2, nb3
+    };
+
+    auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(name)) {
+        s_algo = komputeManager()->algorithm<float, PushConstants>(
+            name, s_kompute_context->pool.get(), {inA, inB, out},
+            src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
+            {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
+        );
+    } else {
+        s_algo = komputeManager()->getAlgorithm(name);
+        s_algo->setTensors({inA, inB, out});
+        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+static void ggml_vk_cpy(
+    const std::vector<uint32_t>& spirv,
+    uint32_t in_element_size, uint32_t out_element_size,
+    kp::Sequence& seq,
+    const std::shared_ptr<kp::Tensor>& in,
+    const std::shared_ptr<kp::Tensor>& out,
+    uint32_t inOff, uint32_t outOff,
+    int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
+    uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
+    int32_t ne0, int32_t ne1, int32_t ne2,
+    uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
+) {
+    struct PushConstants {
+        uint32_t inOff, outOff;
+        int32_t ne00, ne01, ne02;
+        uint32_t nb00, nb01, nb02, nb03;
+        int32_t ne0, ne1, ne2;
+        uint32_t nb0, nb1, nb2, nb3;
+    } pushConsts {
+        safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
+        ne00, ne01, ne02,
+        nb00, nb01, nb02, nb03,
+        ne0, ne1, ne2,
+        nb0, nb1, nb2, nb3
+    };
+
+    std::string name = std::string(__func__)
+                       + "_i_" + std::to_string(in_element_size)
+                       + "_o_" + std::to_string(out_element_size);
+    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
+    if (!komputeManager()->hasAlgorithm(name))
+        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
+    else {
+        s_algo = komputeManager()->getAlgorithm(name);
+        s_algo->setTensors({in, out});
+        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
+        s_algo->setPushConstants<PushConstants>({pushConsts});
+        s_algo->updateDescriptors(s_kompute_context->pool.get());
+    }
+    seq.record<kp::OpAlgoDispatch>(s_algo);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f32_f16(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
+        kp::shader_data::op_cpy_f32_f16_comp_spv_len);
+    ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f32_f32(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
+        kp::shader_data::op_cpy_f32_f32_comp_spv_len);
+    ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f16_f16(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
+        kp::shader_data::op_cpy_f16_f16_comp_spv_len);
+    ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
+}
+
+template <typename... Args>
+static void ggml_vk_cpy_f16_f32(Args&&... args) {
+    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
+        kp::shader_data::op_cpy_f16_f32_comp_spv_len);
+    ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
+}
+
+static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
+    switch (op->type) {
+        case GGML_TYPE_F16:
+        case GGML_TYPE_F32:
+        case GGML_TYPE_Q4_0:
+        case GGML_TYPE_Q4_1:
+            break;
+        default:
+            return false;
+    }
+
+    switch (op->op) {
+        case GGML_OP_UNARY:
+            switch (ggml_get_unary_op(op)) {
+                case GGML_UNARY_OP_RELU:
+                case GGML_UNARY_OP_GELU:
+                case GGML_UNARY_OP_SILU:
+                    return true;
+                default:
+                    ;
+            }
+            break;
+        case GGML_OP_NONE:
+        case GGML_OP_RESHAPE:
+        case GGML_OP_VIEW:
+        case GGML_OP_TRANSPOSE:
+        case GGML_OP_PERMUTE:
+        case GGML_OP_ADD:
+        case GGML_OP_MUL:
+        case GGML_OP_SCALE:
+        case GGML_OP_SOFT_MAX:
+        case GGML_OP_RMS_NORM:
+        case GGML_OP_NORM:
+        case GGML_OP_ROPE:
+            return true;
+        case GGML_OP_DUP:
+        case GGML_OP_CPY:
+        case GGML_OP_CONT:
+            switch (op->src[0]->type) {
+                case GGML_TYPE_F32:
+                case GGML_TYPE_F16:
+                    break;
+                default:
+                    return false;
+            }
+            switch (op->type) {
+                case GGML_TYPE_F32:
+                case GGML_TYPE_F16:
+                    break;
+                default:
+                    return false;
+            }
+            return true;
+        case GGML_OP_DIAG_MASK_INF:
+            return op->ne[3] == 1;
+        case GGML_OP_GET_ROWS:
+            switch (op->src[0]->type) {
+                case GGML_TYPE_F16:
+                case GGML_TYPE_Q4_0:
+                case GGML_TYPE_Q4_1:
+                case GGML_TYPE_Q6_K:
+                    return op->ne[2] == 1 && op->ne[3] == 1;
+                default:
+                    ;
+            }
+            return false;
+        case GGML_OP_MUL_MAT:
+            if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
+                return false;
+
+            switch (op->src[0]->type) {
+                case GGML_TYPE_F32:
+                case GGML_TYPE_Q6_K:
+                    return op->ne[3] == 1;
+                case GGML_TYPE_F16:
+                case GGML_TYPE_Q8_0:
+                case GGML_TYPE_Q4_0:
+                case GGML_TYPE_Q4_1:
+                    return true;
+                default:
+                    ;
+            }
+        default:
+            ;
+    }
+    return false;
+}
+
+static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
+    const int n_seq = 8;
+
+    // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
+    // it to the size of the graph, but I think it can be made smaller?
+    ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
+
+    std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
+
+    for (auto& sequence : sequences) {
+        sequence = komputeManager()->sequence();
+    }
+    for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
+        const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
+
+        auto& seq = *sequences[seq_idx];
+
+        const int node_start = (seq_idx + 0) * n_nodes_per_seq;
+        const int node_end   = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
+
+        bool any_commands_recorded = false;
+
+        for (int i = node_start; i < node_end; ++i) {
+            struct ggml_tensor * src0 = gf->nodes[i]->src[0];
+            struct ggml_tensor * src1 = gf->nodes[i]->src[1];
+            struct ggml_tensor * dst = gf->nodes[i];
+            GGML_ASSERT(dst->data != nullptr);
+
+            switch (dst->op) {
+                case GGML_OP_NONE:
+                case GGML_OP_RESHAPE:
+                case GGML_OP_VIEW:
+                case GGML_OP_TRANSPOSE:
+                case GGML_OP_PERMUTE:
+                    continue; // noop -> next node
+                default:
+                    break;
+            }
+
+            any_commands_recorded = true;
+
+            if (!ggml_vk_supports_op(dst)) {
+                 fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
+                 GGML_ASSERT(!"unsupported op");
+            }
+
+            const int32_t ne00 = src0 ? src0->ne[0] : 0;
+            const int32_t ne01 = src0 ? src0->ne[1] : 0;
+            const int32_t ne02 = src0 ? src0->ne[2] : 0;
+            const int32_t ne03 = src0 ? src0->ne[3] : 0;
+
+            const uint32_t nb00 = src0 ? src0->nb[0] : 0;
+            const uint32_t nb01 = src0 ? src0->nb[1] : 0;
+            const uint32_t nb02 = src0 ? src0->nb[2] : 0;
+            const uint32_t nb03 = src0 ? src0->nb[3] : 0;
+
+            const int32_t ne10 = src1 ? src1->ne[0] : 0;
+            const int32_t ne11 = src1 ? src1->ne[1] : 0;
+            const int32_t ne12 = src1 ? src1->ne[2] : 0;
+            const int32_t ne13 = src1 ? src1->ne[3] : 0;
+
+            const uint32_t nb10 = src1 ? src1->nb[0] : 0;
+            const uint32_t nb11 = src1 ? src1->nb[1] : 0;
+            const uint32_t nb12 = src1 ? src1->nb[2] : 0;
+            const uint32_t nb13 = src1 ? src1->nb[3] : 0;
+
+            const int32_t ne0 = dst ? dst->ne[0] : 0;
+            const int32_t ne1 = dst ? dst->ne[1] : 0;
+            const int32_t ne2 = dst ? dst->ne[2] : 0;
+//            const int32_t ne3 = dst ? dst->ne[3] : 0;
+
+            const uint32_t nb0 = dst ? dst->nb[0] : 0;
+            const uint32_t nb1 = dst ? dst->nb[1] : 0;
+            const uint32_t nb2 = dst ? dst->nb[2] : 0;
+            const uint32_t nb3 = dst ? dst->nb[3] : 0;
+
+            const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
+            const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
+            const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
+
+            const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
+            uint32_t off_src0 = 0;
+            uint32_t off_src1 = 0;
+            uint32_t off_dst  = 0;
+            const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
+            const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
+            const std::shared_ptr<kp::Tensor>& id_dst  = dst  ? ggml_vk_get_tensor(dst,  &off_dst)  : nullTensor;
+
+            switch (dst->op) {
+                case GGML_OP_ADD:
+                    {
+                        if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
+                            // src1 is a row
+                            ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
+                        } else {
+                            ggml_vk_add(
+                                seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                                ne00, ne01, ne02, ne03,
+                                nb00, nb01, nb02, nb03,
+                                ne10, ne11, ne12, ne13,
+                                nb10, nb11, nb12, nb13,
+                                ne0,
+                                nb0, nb1, nb2, nb3
+                            );
+                        }
+                    } break;
+                case GGML_OP_MUL:
+                    {
+                        ggml_vk_mul(
+                            seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                            ne00, ne01, ne02, ne03,
+                            nb00, nb01, nb02, nb03,
+                            ne10, ne11, ne12, ne13,
+                            nb10, nb11, nb12, nb13,
+                            ne0,
+                            nb0, nb1, nb2, nb3
+                        );
+                    } break;
+                case GGML_OP_SCALE:
+                    {
+                        float scale; memcpy(&scale, dst->op_params, sizeof(float));
+
+                        ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
+                    } break;
+                case GGML_OP_UNARY:
+                    {
+                        int64_t n = ggml_nelements(dst);
+                        GGML_ASSERT(n % 4 == 0);
+                        switch (ggml_get_unary_op(gf->nodes[i])) {
+                            case GGML_UNARY_OP_SILU:
+                                {
+                                    ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
+                                } break;
+                            case GGML_UNARY_OP_RELU:
+                                {
+                                    ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
+                                } break;
+                            case GGML_UNARY_OP_GELU:
+                                {
+                                    GGML_ASSERT(n % 8 == 0);
+                                    ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
+                                } break;
+                            default:
+                                {
+                                    fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
+                                    GGML_ASSERT(false);
+                                }
+                        }
+                    } break;
+                case GGML_OP_SOFT_MAX:
+                    {
+                        float scale;
+                        memcpy(&scale, dst->op_params, sizeof(float));
+                        ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
+                    } break;
+                case GGML_OP_DIAG_MASK_INF:
+                    {
+                        const int n_past = ((int32_t *)(dst->op_params))[0];
+                        ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
+                    } break;
+                case GGML_OP_NORM:
+                    {
+                        float eps;
+                        memcpy(&eps, dst->op_params, sizeof(float));
+                        ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
+                    } break;
+                case GGML_OP_RMS_NORM:
+                    {
+                        GGML_ASSERT(ne00 % 4 == 0);
+
+                        float eps;
+                        memcpy(&eps, dst->op_params, sizeof(float));
+                        ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
+                    } break;
+                case GGML_OP_MUL_MAT:
+                    {
+                        GGML_ASSERT(ne00 == ne10);
+
+                        // TODO: assert that dim2 and dim3 are contiguous
+                        GGML_ASSERT(ne12 % ne02 == 0);
+                        GGML_ASSERT(ne13 % ne03 == 0);
+
+                        const uint32_t r2 = ne12/ne02;
+                        const uint32_t r3 = ne13/ne03;
+
+                        if (src1t != GGML_TYPE_F32) {
+                            fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+                            goto not_implemented;
+                        }
+
+                        if (ggml_is_transposed(src0) ||
+                            ggml_is_transposed(src1)) {
+                            fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+                            goto not_implemented;
+                        }
+
+                        switch (src0t) {
+                            case GGML_TYPE_F32:
+                                ggml_vk_mul_mat_mat_f32(
+                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                                    ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
+                                );
+                                break;
+                            case GGML_TYPE_F16:
+                                ggml_vk_mul_mat_f16(
+                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                                    ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
+                                    ne0, ne1, r2, r3
+                                );
+                                break;
+                            case GGML_TYPE_Q8_0:
+                                ggml_vk_mul_mat_q8_0(
+                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                                    ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+                                );
+                                break;
+                            case GGML_TYPE_Q4_0:
+                                ggml_vk_mul_mat_q4_0(
+                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                                    ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+                                );
+                                break;
+                            case GGML_TYPE_Q4_1:
+                                ggml_vk_mul_mat_q4_1(
+                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                                    ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
+                                );
+                                break;
+                            case GGML_TYPE_Q6_K:
+                                ggml_vk_mul_mat_q6_k(
+                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
+                                    ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
+                                );
+                                break;
+                            default: {
+                                fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
+                                goto not_implemented;
+                            }
+                        }
+
+                    } break;
+                case GGML_OP_GET_ROWS:
+                    {
+                        if (src0t == GGML_TYPE_F16) {
+                            ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+                        } else if (src0t == GGML_TYPE_Q4_0) {
+                            ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+                        } else if (src0t == GGML_TYPE_Q4_1) {
+                            ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+                        } else if (src0t == GGML_TYPE_Q6_K) {
+                            ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
+                        } else {
+                            fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
+                            goto not_implemented;
+                        }
+                    } break;
+                case GGML_OP_ROPE:
+                    {
+                        GGML_ASSERT(ne10 == ne02);
+                        GGML_ASSERT(src0t == dstt);
+                        // const int n_past = ((int32_t *) dst->op_params)[0];
+                        const int n_dims     = ((int32_t *) dst->op_params)[1];
+                        const int mode       = ((int32_t *) dst->op_params)[2];
+                        // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
+                        const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
+
+                        float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+                        memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
+                        memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
+                        memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
+                        memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
+                        memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
+                        memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
+                        ggml_vk_rope(
+                            seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx,
+                            freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
+                            ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
+                        );
+                    } break;
+                case GGML_OP_DUP:
+                case GGML_OP_CPY:
+                case GGML_OP_CONT:
+                    {
+                        switch (src0t) {
+                            case GGML_TYPE_F32:
+                                {
+                                    switch (dstt) {
+                                        case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+                                        case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+                                        default: goto not_implemented;
+                                    }
+                                } break;
+                            case GGML_TYPE_F16:
+                                {
+                                    switch (dstt) {
+                                        case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+                                        case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
+                                    default: goto not_implemented;
+                                } break;
+                            default: goto not_implemented;
+                            }
+                        }
+                    } break;
+                default: goto not_implemented;
+            }
+            continue;
+            not_implemented: {}
+            fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
+            //GGML_ASSERT(false);
+        }
+
+        // Evaluate sequence
+        if (any_commands_recorded) {
+            seq.evalAsync();
+        }
+    }
+
+    // Wait for all sequences to finish
+    for (auto& sequence : sequences) {
+        if (sequence->isRunning())
+            sequence->evalAwait();
+    }
+
+    ggml_vk_free_descriptor_pool(ctx);
+}
+
+template<>
+kp::Tensor::TensorDataTypes
+kp::TensorT<half>::dataType()
+{
+    return TensorDataTypes::eFloat;
+}
+
+template<>
+kp::Tensor::TensorDataTypes
+kp::TensorT<uint8_t>::dataType()
+{
+    return TensorDataTypes::eUnsignedInt;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// backend interface
+
+struct ggml_backend_kompute_buffer_type_context {
+    int         device;
+    int         device_ref = 0;
+    uint64_t    buffer_alignment;
+    uint64_t    max_alloc;
+    std::string name;
+
+    ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
+        : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
+};
+
+static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
+    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+
+    if (!ctx->device_ref) {
+        komputeManager()->initializeDevice(
+            ctx->device, {}, {
+                "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
+                "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
+            }
+        );
+    }
+
+    assert(ggml_vk_has_device());
+    ctx->device_ref++;
+}
+
+static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
+    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+
+    assert(ctx->device_ref > 0);
+
+    ctx->device_ref--;
+
+    if (!ctx->device_ref) {
+        komputeManager.destroy();
+    }
+}
+
+static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
+    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
+    return ctx->name.c_str();
+}
+
+static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    auto * memory = (ggml_vk_memory *)buffer->context;
+    if (ggml_vk_has_device()) {
+        ggml_vk_free_memory(*memory);
+    }
+    delete memory;
+}
+
+static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
+    return ((ggml_vk_memory *)buffer->context)->data;
+}
+
+static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+    GGML_UNUSED(buffer);
+
+    const auto res = ggml_vk_get_tensor(tensor);
+    GGML_ASSERT(res);
+
+    memcpy((char *)tensor->data + offset, data, size);
+
+    komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
+}
+
+static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+    GGML_UNUSED(buffer);
+
+    const auto res = ggml_vk_get_tensor(tensor);
+    GGML_ASSERT(res);
+
+    komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
+
+    memcpy(data, (const char *)tensor->data + offset, size);
+}
+
+static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+    auto * memory = (ggml_vk_memory *)buffer->context;
+    memset(memory->data, value, buffer->size);
+
+    if (memory->stagingBuffer)
+        komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
+}
+
+static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
+    /* .get_name        = */ ggml_backend_kompute_buffer_get_name,
+    /* .free_buffer     = */ ggml_backend_kompute_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_kompute_buffer_get_base,
+    /* .init_tensor     = */ NULL,
+    /* .set_tensor      = */ ggml_backend_kompute_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_kompute_buffer_get_tensor,
+    /* .cpy_tensor      = */ NULL,
+    /* .clear           = */ ggml_backend_kompute_buffer_clear,
+    /* .reset           = */ NULL,
+};
+
+// default buffer type
+
+static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+    return ctx->name.c_str();
+}
+
+static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    ggml_backend_kompute_device_ref(buft);
+    auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
+    return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
+}
+
+static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+    return ctx->buffer_alignment;
+}
+
+static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
+    return ctx->max_alloc;
+}
+
+static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    GGML_UNUSED(buft);
+    return ggml_backend_is_kompute(backend);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
+    /* .get_name         = */ ggml_backend_kompute_buffer_type_get_name,
+    /* .alloc_buffer     = */ ggml_backend_kompute_buffer_type_alloc_buffer,
+    /* .get_alignment    = */ ggml_backend_kompute_buffer_type_get_alignment,
+    /* .get_max_size     = */ ggml_backend_vk_buffer_type_get_max_size,
+    /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
+    /* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend,
+    /* .is_host          = */ NULL,
+};
+
+ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
+    static std::vector<ggml_backend_buffer_type> bufts = []() {
+        std::vector<ggml_backend_buffer_type> vec;
+        auto devices = ggml_vk_available_devices_internal(0);
+        vec.reserve(devices.size());
+
+        for (const auto & dev : devices) {
+            vec.push_back({
+                /* .iface   = */ ggml_backend_kompute_buffer_type_interface,
+                /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
+            });
+        }
+        return vec;
+    }();
+
+    auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
+        return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
+    });
+    return it < bufts.end() ? &*it : nullptr;
+}
+
+// backend
+
+static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
+    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+    return ctx->name.c_str();
+}
+
+static void ggml_backend_kompute_free(ggml_backend_t backend) {
+    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+
+    assert(ctx == s_kompute_context);
+    s_kompute_context = nullptr;
+    if (ctx != nullptr) {
+        delete ctx;
+    }
+
+    delete backend;
+}
+
+static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
+    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+    return ggml_backend_kompute_buffer_type(ctx->device);
+}
+
+static bool ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
+    ggml_vk_graph_compute(ctx, cgraph);
+    return true;
+}
+
+static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+    GGML_UNUSED(backend);
+    return ggml_vk_supports_op(op);
+}
+
+static struct ggml_backend_i kompute_backend_i = {
+    /* .get_name                = */ ggml_backend_kompute_name,
+    /* .free                    = */ ggml_backend_kompute_free,
+    /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
+    /* .set_tensor_async        = */ NULL,
+    /* .get_tensor_async        = */ NULL,
+    /* .cpy_tensor_async        = */ NULL,
+    /* .synchronize             = */ NULL,
+    /* .graph_plan_create       = */ NULL,
+    /* .graph_plan_free         = */ NULL,
+    /* .graph_plan_compute      = */ NULL,
+    /* .graph_compute           = */ ggml_backend_kompute_graph_compute,
+    /* .supports_op             = */ ggml_backend_kompute_supports_op,
+};
+
+ggml_backend_t ggml_backend_kompute_init(int device) {
+    GGML_ASSERT(s_kompute_context == nullptr);
+    s_kompute_context = new ggml_kompute_context(device);
+
+    ggml_backend_t kompute_backend = new ggml_backend {
+        /* .interface = */ kompute_backend_i,
+        /* .context   = */ s_kompute_context,
+    };
+
+    return kompute_backend;
+}
+
+bool ggml_backend_is_kompute(ggml_backend_t backend) {
+    return backend && backend->iface.get_name == ggml_backend_kompute_name;
+}
+
+static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
+    GGML_UNUSED(params);
+    return ggml_backend_kompute_init(intptr_t(user_data));
+}
+
+extern "C" int ggml_backend_kompute_reg_devices();
+
+int ggml_backend_kompute_reg_devices() {
+    auto devices = ggml_vk_available_devices_internal(0);
+    for (const auto & device : devices) {
+        ggml_backend_register(
+            ggml_kompute_format_name(device.index).c_str(),
+            ggml_backend_reg_kompute_init,
+            ggml_backend_kompute_buffer_type(device.index),
+            reinterpret_cast<void *>(intptr_t(device.index))
+        );
+    }
+    return devices.size();
+}
diff --git a/ggml-kompute.h b/ggml-kompute.h
new file mode 100644 (file)
index 0000000..1714654
--- /dev/null
@@ -0,0 +1,46 @@
+#pragma once
+
+#include "ggml.h"
+#include "ggml-backend.h"
+
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct ggml_vk_device {
+    int index;
+    int type; // same as VkPhysicalDeviceType
+    size_t heapSize;
+    const char * name;
+    const char * vendor;
+    int subgroupSize;
+    uint64_t bufferAlignment;
+    uint64_t maxAlloc;
+};
+
+struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
+bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
+bool ggml_vk_has_vulkan(void);
+bool ggml_vk_has_device(void);
+struct ggml_vk_device ggml_vk_current_device(void);
+
+//
+// backend API
+//
+
+// forward declaration
+typedef struct ggml_backend * ggml_backend_t;
+
+GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
+
+GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
+
+GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
+
+#ifdef __cplusplus
+}
+#endif
diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp
new file mode 100644 (file)
index 0000000..dd562a8
--- /dev/null
@@ -0,0 +1,15296 @@
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#include <algorithm>
+#include <assert.h>
+#include <atomic>
+#include <cinttypes>
+#include <cstddef>
+#include <cstdint>
+#include <float.h>
+#include <limits>
+#include <stdint.h>
+#include <stdio.h>
+#include <vector>
+#include <cmath>
+#include <iostream>
+#include <fstream>
+
+#include <stdio.h>
+#include <stdlib.h>
+
+
+#include <sycl/sycl.hpp>
+#include <sycl/half_type.hpp>
+
+#include "ggml-sycl.h"
+#include "ggml.h"
+#include "ggml-backend-impl.h"
+
+/*
+Following definition copied from DPCT head files, which are used by ggml-sycl.cpp
+*/
+// COPY from DPCT head files
+#include <sycl/sycl.hpp>
+#include <oneapi/mkl.hpp>
+#include <map>
+
+#if defined(__linux__)
+#include <sys/mman.h>
+#elif defined(_WIN64)
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
+#include <windows.h>
+#else
+#error "Only support Windows and Linux."
+#endif
+
+#if defined(__linux__)
+#include <unistd.h>
+#include <sys/syscall.h>
+#endif
+#if defined(_WIN64)
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
+#define DPCT_COMPATIBILITY_TEMP (900)
+
+#if defined(_MSC_VER)
+#define __dpct_align__(n) __declspec(align(n))
+#define __dpct_inline__ __forceinline
+#else
+#define __dpct_align__(n) __attribute__((aligned(n)))
+#define __dpct_inline__ __inline__ __attribute__((always_inline))
+#endif
+
+#if defined(_MSC_VER)
+#define __dpct_noinline__ __declspec(noinline)
+#else
+#define __dpct_noinline__ __attribute__((noinline))
+#endif
+
+namespace dpct
+{
+    typedef sycl::queue *queue_ptr;
+    typedef sycl::event *event_ptr;
+    typedef char *device_ptr;
+    typedef uint8_t byte_t;
+    typedef sycl::buffer<byte_t> buffer_t;
+
+    /// SYCL default exception handler
+    inline auto exception_handler = [](sycl::exception_list exceptions)
+    {
+        for (std::exception_ptr const &e : exceptions)
+        {
+            try
+            {
+                std::rethrow_exception(e);
+            }
+            catch (sycl::exception const &e)
+            {
+                std::cerr << "Caught asynchronous SYCL exception:" << std::endl
+                          << e.what() << std::endl
+                          << "Exception caught at file:" << __FILE__
+                          << ", line:" << __LINE__ << std::endl;
+            }
+        }
+    };
+
+    enum error_code
+    {
+        success = 0,
+        default_error = 999
+    };
+
+    enum memcpy_direction
+    {
+        host_to_host,
+        host_to_device,
+        device_to_host,
+        device_to_device,
+        automatic
+    };
+
+    enum memory_region
+    {
+        global = 0, // device global memory
+        constant,   // device constant memory
+        local,      // device local memory
+        shared,     // memory which can be accessed by host and device
+    };
+
+    enum class library_data_t : unsigned char
+    {
+        real_float = 0,
+        complex_float,
+        real_double,
+        complex_double,
+        real_half,
+        complex_half,
+        real_bfloat16,
+        complex_bfloat16,
+        real_int4,
+        complex_int4,
+        real_uint4,
+        complex_uint4,
+        real_int8,
+        complex_int8,
+        real_uint8,
+        complex_uint8,
+        real_int16,
+        complex_int16,
+        real_uint16,
+        complex_uint16,
+        real_int32,
+        complex_int32,
+        real_uint32,
+        complex_uint32,
+        real_int64,
+        complex_int64,
+        real_uint64,
+        complex_uint64,
+        real_int8_4,
+        real_int8_32,
+        real_uint8_4,
+        library_data_t_size
+    };
+
+    template <typename T>
+    struct DataType
+    {
+        using T2 = T;
+    };
+    template <typename T>
+    struct DataType<sycl::vec<T, 2>>
+    {
+        using T2 = std::complex<T>;
+    };
+
+    static void destroy_event(event_ptr event)
+    {
+        delete event;
+    }
+
+    static inline unsigned int get_tid()
+    {
+#if defined(__linux__)
+        return syscall(SYS_gettid);
+#elif defined(_WIN64)
+        return GetCurrentThreadId();
+#else
+#error "Only support Windows and Linux."
+#endif
+    }
+
+    namespace detail
+    {
+        static void get_version(const sycl::device &dev, int &major, int &minor)
+        {
+            // Version string has the following format:
+            // a. OpenCL<space><major.minor><space><vendor-specific-information>
+            // b. <major.minor>
+            std::string ver;
+            ver = dev.get_info<sycl::info::device::version>();
+            std::string::size_type i = 0;
+            while (i < ver.size())
+            {
+                if (isdigit(ver[i]))
+                    break;
+                i++;
+            }
+            major = std::stoi(&(ver[i]));
+            while (i < ver.size())
+            {
+                if (ver[i] == '.')
+                    break;
+                i++;
+            }
+            i++;
+            minor = std::stoi(&(ver[i]));
+        }
+
+        template <typename tag, typename T>
+        class generic_error_type
+        {
+        public:
+            generic_error_type() = default;
+            generic_error_type(T value) : value{value} {}
+            operator T() const { return value; }
+
+        private:
+            T value;
+        };
+
+    } // namespace detail
+
+    /// Pitched 2D/3D memory data.
+    class pitched_data
+    {
+    public:
+        pitched_data() : pitched_data(nullptr, 0, 0, 0) {}
+        pitched_data(void *data, size_t pitch, size_t x, size_t y)
+            : _data(data), _pitch(pitch), _x(x), _y(y) {}
+
+        void *get_data_ptr() { return _data; }
+        void set_data_ptr(void *data) { _data = data; }
+
+        size_t get_pitch() { return _pitch; }
+        void set_pitch(size_t pitch) { _pitch = pitch; }
+
+        size_t get_x() { return _x; }
+        void set_x(size_t x) { _x = x; };
+
+        size_t get_y() { return _y; }
+        void set_y(size_t y) { _y = y; }
+
+    private:
+        void *_data;
+        size_t _pitch, _x, _y;
+    };
+
+    class device_info
+    {
+    public:
+        // get interface
+        const char *get_name() const { return _name; }
+        char *get_name() { return _name; }
+        template <typename WorkItemSizesTy = sycl::range<3>,
+                  std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
+                                       std::is_same_v<WorkItemSizesTy, int *>,
+                                   int> = 0>
+        auto get_max_work_item_sizes() const
+        {
+            if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
+                return sycl::range<3>(_max_work_item_sizes_i[0],
+                                      _max_work_item_sizes_i[1],
+                                      _max_work_item_sizes_i[2]);
+            else
+            {
+                return _max_work_item_sizes_i;
+            }
+        }
+        template <typename WorkItemSizesTy = sycl::range<3>,
+                  std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
+                                       std::is_same_v<WorkItemSizesTy, int *>,
+                                   int> = 0>
+        auto get_max_work_item_sizes()
+        {
+            if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
+                return sycl::range<3>(_max_work_item_sizes_i[0],
+                                      _max_work_item_sizes_i[1],
+                                      _max_work_item_sizes_i[2]);
+            else
+            {
+                return _max_work_item_sizes_i;
+            }
+        }
+        bool get_host_unified_memory() const { return _host_unified_memory; }
+        int get_major_version() const { return _major; }
+        int get_minor_version() const { return _minor; }
+        int get_integrated() const { return _integrated; }
+        int get_max_clock_frequency() const { return _frequency; }
+        int get_max_compute_units() const { return _max_compute_units; }
+        int get_max_work_group_size() const { return _max_work_group_size; }
+        int get_max_sub_group_size() const { return _max_sub_group_size; }
+        int get_max_work_items_per_compute_unit() const
+        {
+            return _max_work_items_per_compute_unit;
+        }
+        int get_max_register_size_per_work_group() const
+        {
+            return _max_register_size_per_work_group;
+        }
+        template <typename NDRangeSizeTy = size_t *,
+                  std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
+                                       std::is_same_v<NDRangeSizeTy, int *>,
+                                   int> = 0>
+        auto get_max_nd_range_size() const
+        {
+            if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
+                return _max_nd_range_size;
+            else
+                return _max_nd_range_size_i;
+        }
+        template <typename NDRangeSizeTy = size_t *,
+                  std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
+                                       std::is_same_v<NDRangeSizeTy, int *>,
+                                   int> = 0>
+        auto get_max_nd_range_size()
+        {
+            if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
+                return _max_nd_range_size;
+            else
+                return _max_nd_range_size_i;
+        }
+        size_t get_global_mem_size() const { return _global_mem_size; }
+        size_t get_local_mem_size() const { return _local_mem_size; }
+        size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
+        /// Returns the maximum clock rate of device's global memory in kHz. If
+        /// compiler does not support this API then returns default value 3200000 kHz.
+        unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
+        /// Returns the maximum bus width between device and memory in bits. If
+        /// compiler does not support this API then returns default value 64 bits.
+        unsigned int get_memory_bus_width() const { return _memory_bus_width; }
+        uint32_t get_device_id() const { return _device_id; }
+        std::array<unsigned char, 16> get_uuid() const { return _uuid; }
+        /// Returns global memory cache size in bytes.
+        unsigned int get_global_mem_cache_size() const
+        {
+            return _global_mem_cache_size;
+        }
+
+        // set interface
+        void set_name(const char *name)
+        {
+            size_t length = strlen(name);
+            if (length < 256)
+            {
+                std::memcpy(_name, name, length + 1);
+            }
+            else
+            {
+                std::memcpy(_name, name, 255);
+                _name[255] = '\0';
+            }
+        }
+        void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes)
+        {
+            for (int i = 0; i < 3; ++i)
+                _max_work_item_sizes_i[i] = max_work_item_sizes[i];
+        }
+        [[deprecated]] void
+        set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes)
+        {
+            for (int i = 0; i < 3; ++i)
+            {
+                _max_work_item_sizes_i[i] = max_work_item_sizes[i];
+            }
+        }
+        void set_host_unified_memory(bool host_unified_memory)
+        {
+            _host_unified_memory = host_unified_memory;
+        }
+        void set_major_version(int major) { _major = major; }
+        void set_minor_version(int minor) { _minor = minor; }
+        void set_integrated(int integrated) { _integrated = integrated; }
+        void set_max_clock_frequency(int frequency) { _frequency = frequency; }
+        void set_max_compute_units(int max_compute_units)
+        {
+            _max_compute_units = max_compute_units;
+        }
+        void set_global_mem_size(size_t global_mem_size)
+        {
+            _global_mem_size = global_mem_size;
+        }
+        void set_local_mem_size(size_t local_mem_size)
+        {
+            _local_mem_size = local_mem_size;
+        }
+        void set_max_mem_alloc_size(size_t max_mem_alloc_size)
+        {
+            _max_mem_alloc_size = max_mem_alloc_size;
+        }
+        void set_max_work_group_size(int max_work_group_size)
+        {
+            _max_work_group_size = max_work_group_size;
+        }
+        void set_max_sub_group_size(int max_sub_group_size)
+        {
+            _max_sub_group_size = max_sub_group_size;
+        }
+        void
+        set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit)
+        {
+            _max_work_items_per_compute_unit = max_work_items_per_compute_unit;
+        }
+        void set_max_nd_range_size(int max_nd_range_size[])
+        {
+            for (int i = 0; i < 3; i++)
+            {
+                _max_nd_range_size[i] = max_nd_range_size[i];
+                _max_nd_range_size_i[i] = max_nd_range_size[i];
+            }
+        }
+        void set_memory_clock_rate(unsigned int memory_clock_rate)
+        {
+            _memory_clock_rate = memory_clock_rate;
+        }
+        void set_memory_bus_width(unsigned int memory_bus_width)
+        {
+            _memory_bus_width = memory_bus_width;
+        }
+        void
+        set_max_register_size_per_work_group(int max_register_size_per_work_group)
+        {
+            _max_register_size_per_work_group = max_register_size_per_work_group;
+        }
+        void set_device_id(uint32_t device_id)
+        {
+            _device_id = device_id;
+        }
+        void set_uuid(std::array<unsigned char, 16> uuid)
+        {
+            _uuid = std::move(uuid);
+        }
+        void set_global_mem_cache_size(unsigned int global_mem_cache_size)
+        {
+            _global_mem_cache_size = global_mem_cache_size;
+        }
+
+    private:
+        char _name[256];
+        int _max_work_item_sizes_i[3];
+        bool _host_unified_memory = false;
+        int _major;
+        int _minor;
+        int _integrated = 0;
+        int _frequency;
+        // Set estimated value 3200000 kHz as default value.
+        unsigned int _memory_clock_rate = 3200000;
+        // Set estimated value 64 bits as default value.
+        unsigned int _memory_bus_width = 64;
+        unsigned int _global_mem_cache_size;
+        int _max_compute_units;
+        int _max_work_group_size;
+        int _max_sub_group_size;
+        int _max_work_items_per_compute_unit;
+        int _max_register_size_per_work_group;
+        size_t _global_mem_size;
+        size_t _local_mem_size;
+        size_t _max_mem_alloc_size;
+        size_t _max_nd_range_size[3];
+        int _max_nd_range_size_i[3];
+        uint32_t _device_id;
+        std::array<unsigned char, 16> _uuid;
+    };
+
+    static int get_major_version(const sycl::device &dev)
+    {
+        int major, minor;
+        detail::get_version(dev, major, minor);
+        return major;
+    }
+
+    static int get_minor_version(const sycl::device &dev)
+    {
+        int major, minor;
+        detail::get_version(dev, major, minor);
+        return minor;
+    }
+
+    static void get_device_info(device_info &out, const sycl::device &dev)
+    {
+        device_info prop;
+        prop.set_name(dev.get_info<sycl::info::device::name>().c_str());
+
+        int major, minor;
+        detail::get_version(dev, major, minor);
+        prop.set_major_version(major);
+        prop.set_minor_version(minor);
+
+        prop.set_max_work_item_sizes(
+#if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
+            // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes
+            // is an enum class element
+            dev.get_info<sycl::info::device::max_work_item_sizes>());
+#else
+            // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by
+            // an int
+            dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
+#endif
+        prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));
+
+        prop.set_max_clock_frequency(
+            dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);
+
+        prop.set_max_compute_units(
+            dev.get_info<sycl::info::device::max_compute_units>());
+        prop.set_max_work_group_size(
+            dev.get_info<sycl::info::device::max_work_group_size>());
+        prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
+        prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
+        prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
+
+#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
+        if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
+        {
+            unsigned int tmp =
+                dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
+            if (tmp != 0)
+                prop.set_memory_clock_rate(1000 * tmp);
+        }
+        if (dev.has(sycl::aspect::ext_intel_memory_bus_width))
+        {
+            prop.set_memory_bus_width(
+                dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
+        }
+        if (dev.has(sycl::aspect::ext_intel_device_id))
+        {
+            prop.set_device_id(
+                dev.get_info<sycl::ext::intel::info::device::device_id>());
+        }
+        if (dev.has(sycl::aspect::ext_intel_device_info_uuid))
+        {
+            prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
+        }
+#elif defined(_MSC_VER) && !defined(__clang__)
+#pragma message("get_device_info: querying memory_clock_rate and \
+        memory_bus_width are not supported by the compiler used. \
+        Use 3200000 kHz as memory_clock_rate default value. \
+        Use 64 bits as memory_bus_width default value.")
+#else
+#warning "get_device_info: querying memory_clock_rate and \
+        memory_bus_width are not supported by the compiler used. \
+        Use 3200000 kHz as memory_clock_rate default value. \
+        Use 64 bits as memory_bus_width default value."
+#endif
+
+        size_t max_sub_group_size = 1;
+        std::vector<size_t> sub_group_sizes =
+            dev.get_info<sycl::info::device::sub_group_sizes>();
+
+        for (const auto &sub_group_size : sub_group_sizes)
+        {
+            if (max_sub_group_size < sub_group_size)
+                max_sub_group_size = sub_group_size;
+        }
+
+        prop.set_max_sub_group_size(max_sub_group_size);
+
+        prop.set_max_work_items_per_compute_unit(
+            dev.get_info<sycl::info::device::max_work_group_size>());
+        int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
+        prop.set_max_nd_range_size(max_nd_range_size);
+
+        // Estimates max register size per work group, feel free to update the value
+        // according to device properties.
+        prop.set_max_register_size_per_work_group(65536);
+
+        prop.set_global_mem_cache_size(
+            dev.get_info<sycl::info::device::global_mem_cache_size>());
+        out = prop;
+    }
+
+    /// dpct device extension
+    class device_ext : public sycl::device
+    {
+        typedef std::mutex mutex_type;
+
+    public:
+        device_ext() : sycl::device(), _ctx(*this) {}
+        ~device_ext()
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            clear_queues();
+        }
+        device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this)
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            init_queues();
+        }
+
+        int is_native_atomic_supported() { return 0; }
+        int get_major_version() const
+        {
+            return dpct::get_major_version(*this);
+        }
+
+        int get_minor_version() const
+        {
+            return dpct::get_minor_version(*this);
+        }
+
+        int get_max_compute_units() const
+        {
+            return get_device_info().get_max_compute_units();
+        }
+
+        /// Return the maximum clock frequency of this device in KHz.
+        int get_max_clock_frequency() const
+        {
+            return get_device_info().get_max_clock_frequency();
+        }
+
+        int get_integrated() const { return get_device_info().get_integrated(); }
+
+        int get_max_sub_group_size() const
+        {
+            return get_device_info().get_max_sub_group_size();
+        }
+
+        int get_max_register_size_per_work_group() const
+        {
+            return get_device_info().get_max_register_size_per_work_group();
+        }
+
+        int get_max_work_group_size() const
+        {
+            return get_device_info().get_max_work_group_size();
+        }
+
+        int get_mem_base_addr_align() const
+        {
+            return get_info<sycl::info::device::mem_base_addr_align>();
+        }
+
+        size_t get_global_mem_size() const
+        {
+            return get_device_info().get_global_mem_size();
+        }
+
+        size_t get_max_mem_alloc_size() const
+        {
+            return get_device_info().get_max_mem_alloc_size();
+        }
+
+        /// Get the number of bytes of free and total memory on the SYCL device.
+        /// \param [out] free_memory The number of bytes of free memory on the SYCL device.
+        /// \param [out] total_memory The number of bytes of total memory on the SYCL device.
+        void get_memory_info(size_t &free_memory, size_t &total_memory)
+        {
+#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
+            if (!has(sycl::aspect::ext_intel_free_memory))
+            {
+                std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl;
+                free_memory = 0;
+            }
+            else
+            {
+                free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
+            }
+#else
+            std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl;
+            free_memory = 0;
+#if defined(_MSC_VER) && !defined(__clang__)
+#pragma message("Querying the number of bytes of free memory is not supported")
+#else
+#warning "Querying the number of bytes of free memory is not supported"
+#endif
+#endif
+            total_memory = get_device_info().get_global_mem_size();
+        }
+
+        void get_device_info(device_info &out) const
+        {
+            dpct::get_device_info(out, *this);
+        }
+
+        device_info get_device_info() const
+        {
+            device_info prop;
+            dpct::get_device_info(prop, *this);
+            return prop;
+        }
+
+        void reset()
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            clear_queues();
+            init_queues();
+        }
+
+        sycl::queue &in_order_queue() { return *_q_in_order; }
+
+        sycl::queue &out_of_order_queue() { return *_q_out_of_order; }
+
+        sycl::queue &default_queue()
+        {
+#ifdef DPCT_USM_LEVEL_NONE
+            return out_of_order_queue();
+#else
+            return in_order_queue();
+#endif // DPCT_USM_LEVEL_NONE
+        }
+
+        void queues_wait_and_throw()
+        {
+            std::unique_lock<mutex_type> lock(m_mutex);
+            std::vector<std::shared_ptr<sycl::queue>> current_queues(
+                _queues);
+            lock.unlock();
+            for (const auto &q : current_queues)
+            {
+                q->wait_and_throw();
+            }
+            // Guard the destruct of current_queues to make sure the ref count is safe.
+            lock.lock();
+        }
+
+        sycl::queue *create_queue(bool enable_exception_handler = false)
+        {
+#ifdef DPCT_USM_LEVEL_NONE
+            return create_out_of_order_queue(enable_exception_handler);
+#else
+            return create_in_order_queue(enable_exception_handler);
+#endif // DPCT_USM_LEVEL_NONE
+        }
+
+        sycl::queue *create_in_order_queue(bool enable_exception_handler = false)
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            return create_queue_impl(enable_exception_handler,
+                                     sycl::property::queue::in_order());
+        }
+
+        sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false)
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            return create_queue_impl(enable_exception_handler);
+        }
+
+        void destroy_queue(sycl::queue *&queue)
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            _queues.erase(std::remove_if(_queues.begin(), _queues.end(),
+                                         [=](const std::shared_ptr<sycl::queue> &q) -> bool
+                                         {
+                                             return q.get() == queue;
+                                         }),
+                          _queues.end());
+            queue = nullptr;
+        }
+        void set_saved_queue(sycl::queue *q)
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            _saved_queue = q;
+        }
+        sycl::queue *get_saved_queue() const
+        {
+            std::lock_guard<mutex_type> lock(m_mutex);
+            return _saved_queue;
+        }
+        sycl::context get_context() const { return _ctx; }
+
+    private:
+        void clear_queues()
+        {
+            _queues.clear();
+            _q_in_order = _q_out_of_order = _saved_queue = nullptr;
+        }
+
+        void init_queues()
+        {
+            _q_in_order = create_queue_impl(true, sycl::property::queue::in_order());
+            _q_out_of_order = create_queue_impl(true);
+            _saved_queue = &default_queue();
+        }
+
+        /// Caller should acquire resource \p m_mutex before calling this function.
+        template <class... Properties>
+        sycl::queue *create_queue_impl(bool enable_exception_handler,
+                                       Properties... properties)
+        {
+            sycl::async_handler eh = {};
+            if (enable_exception_handler)
+            {
+                eh = exception_handler;
+            }
+            _queues.push_back(std::make_shared<sycl::queue>(
+                _ctx, *this, eh,
+                sycl::property_list(
+#ifdef DPCT_PROFILING_ENABLED
+                    sycl::property::queue::enable_profiling(),
+#endif
+                    properties...)));
+
+            return _queues.back().get();
+        }
+
+        void get_version(int &major, int &minor) const
+        {
+            detail::get_version(*this, major, minor);
+        }
+        sycl::queue *_q_in_order, *_q_out_of_order;
+        sycl::queue *_saved_queue;
+        sycl::context _ctx;
+        std::vector<std::shared_ptr<sycl::queue>> _queues;
+        mutable mutex_type m_mutex;
+    };
+
+    /// device manager
+    class dev_mgr
+    {
+    public:
+        device_ext &current_device()
+        {
+            unsigned int dev_id = current_device_id();
+            check_id(dev_id);
+            return *_devs[dev_id];
+        }
+        device_ext &cpu_device() const
+        {
+            std::lock_guard<std::recursive_mutex> lock(m_mutex);
+            if (_cpu_device == -1)
+            {
+                throw std::runtime_error("no valid cpu device");
+            }
+            else
+            {
+                return *_devs[_cpu_device];
+            }
+        }
+        device_ext &get_device(unsigned int id) const
+        {
+            std::lock_guard<std::recursive_mutex> lock(m_mutex);
+            check_id(id);
+            return *_devs[id];
+        }
+        unsigned int current_device_id() const
+        {
+            std::lock_guard<std::recursive_mutex> lock(m_mutex);
+            auto it = _thread2dev_map.find(get_tid());
+            if (it != _thread2dev_map.end())
+                return it->second;
+            return DEFAULT_DEVICE_ID;
+        }
+
+        /// Select device with a device ID.
+        /// \param [in] id The id of the device which can
+        /// be obtained through get_device_id(const sycl::device).
+        void select_device(unsigned int id)
+        {
+            std::lock_guard<std::recursive_mutex> lock(m_mutex);
+            check_id(id);
+            _thread2dev_map[get_tid()] = id;
+        }
+        unsigned int device_count() { return _devs.size(); }
+
+        unsigned int get_device_id(const sycl::device &dev)
+        {
+            unsigned int id = 0;
+            for (auto dev_item : _devs)
+            {
+                if (*dev_item == dev)
+                {
+                    break;
+                }
+                id++;
+            }
+            return id;
+        }
+
+        template <class DeviceSelector>
+        std::enable_if_t<
+            std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
+        select_device(const DeviceSelector &selector = sycl::gpu_selector_v)
+        {
+            sycl::device selected_device = sycl::device(selector);
+            unsigned int selected_device_id = get_device_id(selected_device);
+            select_device(selected_device_id);
+        }
+
+        /// Returns the instance of device manager singleton.
+        static dev_mgr &instance()
+        {
+            static dev_mgr d_m;
+            return d_m;
+        }
+        dev_mgr(const dev_mgr &) = delete;
+        dev_mgr &operator=(const dev_mgr &) = delete;
+        dev_mgr(dev_mgr &&) = delete;
+        dev_mgr &operator=(dev_mgr &&) = delete;
+
+    private:
+        mutable std::recursive_mutex m_mutex;
+        dev_mgr()
+        {
+            sycl::device default_device =
+                sycl::device(sycl::default_selector_v);
+            _devs.push_back(std::make_shared<device_ext>(default_device));
+
+            std::vector<sycl::device> sycl_all_devs =
+                sycl::device::get_devices(sycl::info::device_type::all);
+            // Collect other devices except for the default device.
+            if (default_device.is_cpu())
+                _cpu_device = 0;
+            for (auto &dev : sycl_all_devs)
+            {
+                if (dev == default_device)
+                {
+                    continue;
+                }
+                _devs.push_back(std::make_shared<device_ext>(dev));
+                if (_cpu_device == -1 && dev.is_cpu())
+                {
+                    _cpu_device = _devs.size() - 1;
+                }
+            }
+        }
+        void check_id(unsigned int id) const
+        {
+            if (id >= _devs.size())
+            {
+                throw std::runtime_error("invalid device id");
+            }
+        }
+        std::vector<std::shared_ptr<device_ext>> _devs;
+        /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
+        /// thread id in _thread2dev_map, which means default device should be used
+        /// for the current thread.
+        const unsigned int DEFAULT_DEVICE_ID = 0;
+        /// thread-id to device-id map.
+        std::map<unsigned int, unsigned int> _thread2dev_map;
+        int _cpu_device = -1;
+    };
+
+    static inline sycl::queue &get_default_queue()
+    {
+        return dev_mgr::instance().current_device().default_queue();
+    }
+
+    namespace detail
+    {
+        enum class pointer_access_attribute
+        {
+            host_only = 0,
+            device_only,
+            host_device,
+            end
+        };
+
+        static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
+                                                              const void *ptr)
+        {
+#ifdef DPCT_USM_LEVEL_NONE
+            return mem_mgr::instance().is_device_ptr(ptr)
+                       ? pointer_access_attribute::device_only
+                       : pointer_access_attribute::host_only;
+#else
+            switch (sycl::get_pointer_type(ptr, q.get_context()))
+            {
+            case sycl::usm::alloc::unknown:
+                return pointer_access_attribute::host_only;
+            case sycl::usm::alloc::device:
+                return pointer_access_attribute::device_only;
+            case sycl::usm::alloc::shared:
+            case sycl::usm::alloc::host:
+                return pointer_access_attribute::host_device;
+            }
+#endif
+        }
+
+        template <typename ArgT>
+        inline constexpr std::uint64_t get_type_combination_id(ArgT Val)
+        {
+            static_assert((unsigned char)library_data_t::library_data_t_size <=
+                              std::numeric_limits<unsigned char>::max() &&
+                          "library_data_t size exceeds limit.");
+            static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
+            return (std::uint64_t)Val;
+        }
+
+        template <typename FirstT, typename... RestT>
+        inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
+                                                               RestT... RestVal)
+        {
+            static_assert((std::uint8_t)library_data_t::library_data_t_size <=
+                              std::numeric_limits<unsigned char>::max() &&
+                          "library_data_t size exceeds limit.");
+            static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
+            static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
+            return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
+        }
+
+        class mem_mgr
+        {
+            mem_mgr()
+            {
+                // Reserved address space, no real memory allocation happens here.
+#if defined(__linux__)
+                mapped_address_space =
+                    (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE,
+                                   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+#elif defined(_WIN64)
+                mapped_address_space = (byte_t *)VirtualAlloc(
+                    NULL,               // NULL specified as the base address parameter
+                    mapped_region_size, // Size of allocation
+                    MEM_RESERVE,        // Allocate reserved pages
+                    PAGE_NOACCESS);     // Protection = no access
+#else
+#error "Only support Windows and Linux."
+#endif
+                next_free = mapped_address_space;
+            };
+
+        public:
+            using buffer_id_t = int;
+
+            struct allocation
+            {
+                buffer_t buffer;
+                byte_t *alloc_ptr;
+                size_t size;
+            };
+
+            ~mem_mgr()
+            {
+#if defined(__linux__)
+                munmap(mapped_address_space, mapped_region_size);
+#elif defined(_WIN64)
+                VirtualFree(mapped_address_space, 0, MEM_RELEASE);
+#else
+#error "Only support Windows and Linux."
+#endif
+            };
+
+            mem_mgr(const mem_mgr &) = delete;
+            mem_mgr &operator=(const mem_mgr &) = delete;
+            mem_mgr(mem_mgr &&) = delete;
+            mem_mgr &operator=(mem_mgr &&) = delete;
+
+            /// Allocate
+            void *mem_alloc(size_t size)
+            {
+                if (!size)
+                    return nullptr;
+                std::lock_guard<std::mutex> lock(m_mutex);
+                if (next_free + size > mapped_address_space + mapped_region_size)
+                {
+                    throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool");
+                }
+                // Allocation
+                sycl::range<1> r(size);
+                buffer_t buf(r);
+                allocation A{buf, next_free, size};
+                // Map allocation to device pointer
+                void *result = next_free;
+                m_map.emplace(next_free + size, A);
+                // Update pointer to the next free space.
+                next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1);
+
+                return result;
+            }
+
+            /// Deallocate
+            void mem_free(const void *ptr)
+            {
+                if (!ptr)
+                    return;
+                std::lock_guard<std::mutex> lock(m_mutex);
+                auto it = get_map_iterator(ptr);
+                m_map.erase(it);
+            }
+
+            /// map: device pointer -> allocation(buffer, alloc_ptr, size)
+            allocation translate_ptr(const void *ptr)
+            {
+                std::lock_guard<std::mutex> lock(m_mutex);
+                auto it = get_map_iterator(ptr);
+                return it->second;
+            }
+
+            /// Check if the pointer represents device pointer or not.
+            bool is_device_ptr(const void *ptr) const
+            {
+                std::lock_guard<std::mutex> lock(m_mutex);
+                return (mapped_address_space <= ptr) &&
+                       (ptr < mapped_address_space + mapped_region_size);
+            }
+
+            /// Returns the instance of memory manager singleton.
+            static mem_mgr &instance()
+            {
+                static mem_mgr m;
+                return m;
+            }
+
+        private:
+            std::map<byte_t *, allocation> m_map;
+            mutable std::mutex m_mutex;
+            byte_t *mapped_address_space;
+            byte_t *next_free;
+            const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024;
+            const size_t alignment = 256;
+            /// This padding may be defined to some positive value to debug
+            /// out of bound accesses.
+            const size_t extra_padding = 0;
+
+            std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
+            {
+                auto it = m_map.upper_bound((byte_t *)ptr);
+                if (it == m_map.end())
+                {
+                    // Not a virtual pointer.
+                    throw std::runtime_error("can not get buffer from non-virtual pointer");
+                }
+                const allocation &alloc = it->second;
+                if (ptr < alloc.alloc_ptr)
+                {
+                    // Out of bound.
+                    // This may happen if there's a gap between allocations due to alignment
+                    // or extra padding and pointer points to this gap.
+                    throw std::runtime_error("invalid virtual pointer");
+                }
+                return it;
+            }
+        };
+
+        template <class T, memory_region Memory, size_t Dimension>
+        class accessor;
+        template <memory_region Memory, class T = byte_t>
+        class memory_traits
+        {
+        public:
+            static constexpr sycl::access::target target =
+                sycl::access::target::device;
+            static constexpr sycl::access_mode mode =
+                (Memory == constant) ? sycl::access_mode::read
+                                     : sycl::access_mode::read_write;
+            static constexpr size_t type_size = sizeof(T);
+            using element_t =
+                typename std::conditional<Memory == constant, const T, T>::type;
+            using value_t = typename std::remove_cv<T>::type;
+            template <size_t Dimension = 1>
+            using accessor_t = typename std::conditional<
+                Memory == local, sycl::local_accessor<value_t, Dimension>,
+                sycl::accessor<T, Dimension, mode, target>>::type;
+            using pointer_t = T *;
+        };
+
+        static inline void *dpct_malloc(size_t size, sycl::queue &q)
+        {
+#ifdef DPCT_USM_LEVEL_NONE
+            return mem_mgr::instance().mem_alloc(size * sizeof(byte_t));
+#else
+            return sycl::malloc_device(size, q.get_device(), q.get_context());
+#endif // DPCT_USM_LEVEL_NONE
+        }
+
+#define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
+        static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z,
+                                        sycl::queue &q)
+        {
+            pitch = PITCH_DEFAULT_ALIGN(x);
+            return dpct_malloc(pitch * y * z, q);
+        }
+
+        /**
+         * @brief Sets \p value to the first \p size elements starting from \p dev_ptr in \p q.
+         * @tparam valueT The type of the element to be set.
+         * @param [in] q The queue in which the operation is done.
+         * @param [in] dev_ptr Pointer to the virtual device memory address.
+         * @param [in] value The value to be set.
+         * @param [in] size Number of elements to be set to the value.
+         * @return An event representing the memset operation.
+         */
+        template <typename valueT>
+        static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
+                                              valueT value, size_t size)
+        {
+#ifdef DPCT_USM_LEVEL_NONE
+            auto &mm = mem_mgr::instance();
+            assert(mm.is_device_ptr(dev_ptr));
+            auto alloc = mm.translate_ptr(dev_ptr);
+            size_t offset = (valueT *)dev_ptr - (valueT *)alloc.alloc_ptr;
+
+            return q.submit([&](sycl::handler &cgh)
+                            {
+    auto r = sycl::range<1>(size);
+    auto o = sycl::id<1>(offset);
+    auto new_buffer = alloc.buffer.reinterpret<valueT>(
+        sycl::range<1>(alloc.size / sizeof(valueT)));
+    sycl::accessor<valueT, 1, sycl::access_mode::write,
+                sycl::access::target::device>
+        acc(new_buffer, cgh, r, o);
+    cgh.fill(acc, value); });
+#else
+            return q.fill(dev_ptr, value, size);
+#endif // DPCT_USM_LEVEL_NONE
+        }
+
+        /**
+         * @brief Sets \p value to the 3D memory region pointed by \p data in \p q.
+         * @tparam valueT The type of the element to be set.
+         * @param [in] q The queue in which the operation is done.
+         * @param [in] data Pointer to the pitched device memory region.
+         * @param [in] value The value to be set.
+         * @param [in] size 3D memory region by number of elements.
+         * @return An event list representing the memset operations.
+         */
+        template <typename valueT>
+        static inline std::vector<sycl::event>
+        dpct_memset(sycl::queue &q, pitched_data data, valueT value,
+                    sycl::range<3> size)
+        {
+            std::vector<sycl::event> event_list;
+            size_t slice = data.get_pitch() * data.get_y();
+            unsigned char *data_surface = (unsigned char *)data.get_data_ptr();
+            for (size_t z = 0; z < size.get(2); ++z)
+            {
+                unsigned char *data_ptr = data_surface;
+                for (size_t y = 0; y < size.get(1); ++y)
+                {
+                    event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0)));
+                    data_ptr += data.get_pitch();
+                }
+                data_surface += slice;
+            }
+            return event_list;
+        }
+
+        /**
+         * @brief Sets \p val to the pitched 2D memory region pointed by \p ptr in \p q.
+         * @tparam valueT The type of the element to be set.
+         * @param [in] q The queue in which the operation is done.
+         * @param [in] ptr Pointer to the virtual device memory.
+         * @param [in] pitch The pitch size by number of elements, including padding.
+         * @param [in] val The value to be set.
+         * @param [in] x The width of memory region by number of elements.
+         * @param [in] y The height of memory region by number of elements.
+         * @return An event list representing the memset operations.
+         */
+        template <typename valueT>
+        static inline std::vector<sycl::event>
+        dpct_memset(sycl::queue &q, void *ptr, size_t pitch, valueT val, size_t x,
+                    size_t y)
+        {
+            return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val,
+                               sycl::range<3>(x, y, 1));
+        }
+
+        static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr,
+                                                        const void *from_ptr,
+                                                        memcpy_direction dir)
+        {
+            switch (dir)
+            {
+            case memcpy_direction::host_to_host:
+            case memcpy_direction::host_to_device:
+            case memcpy_direction::device_to_host:
+            case memcpy_direction::device_to_device:
+                return dir;
+            case memcpy_direction::automatic:
+            {
+                // table[to_attribute][from_attribute]
+                static const memcpy_direction
+                    direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
+                                   [static_cast<unsigned>(pointer_access_attribute::end)] =
+                                       {{memcpy_direction::host_to_host,
+                                         memcpy_direction::device_to_host,
+                                         memcpy_direction::host_to_host},
+                                        {memcpy_direction::host_to_device,
+                                         memcpy_direction::device_to_device,
+                                         memcpy_direction::device_to_device},
+                                        {memcpy_direction::host_to_host,
+                                         memcpy_direction::device_to_device,
+                                         memcpy_direction::device_to_device}};
+                return direction_table[static_cast<unsigned>(get_pointer_attribute(
+                    q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
+            }
+            default:
+                throw std::runtime_error("dpct_memcpy: invalid direction value");
+            }
+        }
+
+        static sycl::event
+        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
+                    memcpy_direction direction,
+                    const std::vector<sycl::event> &dep_events = {})
+        {
+            if (!size)
+                return sycl::event{};
+#ifdef DPCT_USM_LEVEL_NONE
+            auto &mm = mem_mgr::instance();
+            auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
+
+            switch (real_direction)
+            {
+            case host_to_host:
+                return q.submit([&](sycl::handler &cgh)
+                                {
+    cgh.depends_on(dep_events);
+    cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
+            case host_to_device:
+            {
+                auto alloc = mm.translate_ptr(to_ptr);
+                size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
+                return q.submit([&](sycl::handler &cgh)
+                                {
+    cgh.depends_on(dep_events);
+    auto r = sycl::range<1>(size);
+    auto o = sycl::id<1>(offset);
+    sycl::accessor<byte_t, 1, sycl::access_mode::write,
+                        sycl::access::target::device>
+        acc(alloc.buffer, cgh, r, o);
+    cgh.copy(from_ptr, acc); });
+            }
+            case device_to_host:
+            {
+                auto alloc = mm.translate_ptr(from_ptr);
+                size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
+                return q.submit([&](sycl::handler &cgh)
+                                {
+    cgh.depends_on(dep_events);
+    auto r = sycl::range<1>(size);
+    auto o = sycl::id<1>(offset);
+    sycl::accessor<byte_t, 1, sycl::access_mode::read,
+                        sycl::access::target::device>
+        acc(alloc.buffer, cgh, r, o);
+    cgh.copy(acc, to_ptr); });
+            }
+            case device_to_device:
+            {
+                auto to_alloc = mm.translate_ptr(to_ptr);
+                auto from_alloc = mm.translate_ptr(from_ptr);
+                size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
+                size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
+                return q.submit([&](sycl::handler &cgh)
+                                {
+    cgh.depends_on(dep_events);
+    auto r = sycl::range<1>(size);
+    auto to_o = sycl::id<1>(to_offset);
+    auto from_o = sycl::id<1>(from_offset);
+    sycl::accessor<byte_t, 1, sycl::access_mode::write,
+                        sycl::access::target::device>
+        to_acc(to_alloc.buffer, cgh, r, to_o);
+    sycl::accessor<byte_t, 1, sycl::access_mode::read,
+                        sycl::access::target::device>
+        from_acc(from_alloc.buffer, cgh, r, from_o);
+    cgh.copy(from_acc, to_acc); });
+            }
+            default:
+                throw std::runtime_error("dpct_memcpy: invalid direction value");
+            }
+#else
+            return q.memcpy(to_ptr, from_ptr, size, dep_events);
+            GGML_UNUSED(direction);
+#endif // DPCT_USM_LEVEL_NONE
+        }
+
+        // Get actual copy range and make sure it will not exceed range.
+        static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
+                                            size_t pitch)
+        {
+            return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
+        }
+
+        static inline size_t get_offset(sycl::id<3> id, size_t slice,
+                                        size_t pitch)
+        {
+            return slice * id.get(2) + pitch * id.get(1) + id.get(0);
+        }
+
+        /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
+        /// and \p from_range to another specified by \p to_ptr and \p to_range.
+        static inline std::vector<sycl::event>
+        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+                    sycl::range<3> to_range, sycl::range<3> from_range,
+                    sycl::id<3> to_id, sycl::id<3> from_id,
+                    sycl::range<3> size, memcpy_direction direction,
+                    const std::vector<sycl::event> &dep_events = {})
+        {
+            // RAII for host pointer
+            class host_buffer
+            {
+                void *_buf;
+                size_t _size;
+                sycl::queue &_q;
+                const std::vector<sycl::event> &_deps; // free operation depends
+
+            public:
+                host_buffer(size_t size, sycl::queue &q,
+                            const std::vector<sycl::event> &deps)
+                    : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
+                void *get_ptr() const { return _buf; }
+                size_t get_size() const { return _size; }
+                ~host_buffer()
+                {
+                    if (_buf)
+                    {
+                        _q.submit([&](sycl::handler &cgh)
+                                  {
+        cgh.depends_on(_deps);
+        cgh.host_task([buf = _buf] { std::free(buf); }); });
+                    }
+                }
+            };
+            std::vector<sycl::event> event_list;
+
+            size_t to_slice = to_range.get(1) * to_range.get(0),
+                   from_slice = from_range.get(1) * from_range.get(0);
+            unsigned char *to_surface =
+                (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
+            const unsigned char *from_surface =
+                (const unsigned char *)from_ptr +
+                get_offset(from_id, from_slice, from_range.get(0));
+
+            if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
+            {
+                return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
+                                    direction, dep_events)};
+            }
+            direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
+            size_t size_slice = size.get(1) * size.get(0);
+            switch (direction)
+            {
+            case host_to_host:
+                for (size_t z = 0; z < size.get(2); ++z)
+                {
+                    unsigned char *to_ptr = to_surface;
+                    const unsigned char *from_ptr = from_surface;
+                    if (to_range.get(0) == from_range.get(0) &&
+                        to_range.get(0) == size.get(0))
+                    {
+                        event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
+                                                         direction, dep_events));
+                    }
+                    else
+                    {
+                        for (size_t y = 0; y < size.get(1); ++y)
+                        {
+                            event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
+                                                             direction, dep_events));
+                            to_ptr += to_range.get(0);
+                            from_ptr += from_range.get(0);
+                        }
+                    }
+                    to_surface += to_slice;
+                    from_surface += from_slice;
+                }
+                break;
+            case host_to_device:
+            {
+                host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
+                                event_list);
+                std::vector<sycl::event> host_events;
+                if (to_slice == size_slice)
+                {
+                    // Copy host data to a temp host buffer with the shape of target.
+                    host_events =
+                        dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
+                                    sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
+                                    host_to_host, dep_events);
+                }
+                else
+                {
+                    // Copy host data to a temp host buffer with the shape of target.
+                    host_events = dpct_memcpy(
+                        q, buf.get_ptr(), from_surface, to_range, from_range,
+                        sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
+                        // If has padding data, not sure whether it is useless. So fill temp
+                        // buffer with it.
+                        std::vector<sycl::event>{
+                            dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
+                                        device_to_host, dep_events)});
+                }
+                // Copy from temp host buffer to device with only one submit.
+                event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
+                                                 buf.get_size(), host_to_device,
+                                                 host_events));
+                break;
+            }
+            case device_to_host:
+            {
+                host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
+                                event_list);
+                // Copy from host temp buffer to host target with reshaping.
+                event_list = dpct_memcpy(
+                    q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
+                    sycl::id<3>(0, 0, 0), size, host_to_host,
+                    // Copy from device to temp host buffer with only one submit.
+                    std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
+                                                         buf.get_size(),
+                                                         device_to_host, dep_events)});
+                break;
+            }
+            case device_to_device:
+#ifdef DPCT_USM_LEVEL_NONE
+            {
+                auto &mm = mem_mgr::instance();
+                auto to_alloc = mm.translate_ptr(to_surface);
+                auto from_alloc = mm.translate_ptr(from_surface);
+                size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
+                size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
+                event_list.push_back(q.submit([&](sycl::handler &cgh)
+                                              {
+    cgh.depends_on(dep_events);
+    auto to_o = sycl::id<1>(to_offset);
+    auto from_o = sycl::id<1>(from_offset);
+    sycl::accessor<byte_t, 1, sycl::access_mode::write,
+                        sycl::access::target::device>
+        to_acc(to_alloc.buffer, cgh,
+                get_copy_range(size, to_slice, to_range.get(0)), to_o);
+    sycl::accessor<byte_t, 1, sycl::access_mode::read,
+                        sycl::access::target::device>
+        from_acc(from_alloc.buffer, cgh,
+                get_copy_range(size, from_slice, from_range.get(0)), from_o);
+    cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
+        size,
+        [=](sycl::id<3> id) {
+            to_acc[get_offset(id, to_slice, to_range.get(0))] =
+                from_acc[get_offset(id, from_slice, from_range.get(0))];
+        }); }));
+            }
+#else
+                event_list.push_back(q.submit([&](sycl::handler &cgh)
+                                              {
+    cgh.depends_on(dep_events);
+    cgh.parallel_for<class dpct_memcpy_3d_detail>(
+        size,
+        [=](sycl::id<3> id) {
+            to_surface[get_offset(id, to_slice, to_range.get(0))] =
+                from_surface[get_offset(id, from_slice, from_range.get(0))];
+        }); }));
+#endif
+            break;
+            default:
+                throw std::runtime_error("dpct_memcpy: invalid direction value");
+            }
+            return event_list;
+        }
+
+        /// memcpy 2D/3D matrix specified by pitched_data.
+        static inline std::vector<sycl::event>
+        dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
+                    pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
+                    memcpy_direction direction = automatic)
+        {
+            return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
+                               sycl::range<3>(to.get_pitch(), to.get_y(), 1),
+                               sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
+                               size, direction);
+        }
+
+        /// memcpy 2D matrix with pitch.
+        static inline std::vector<sycl::event>
+        dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+                    size_t to_pitch, size_t from_pitch, size_t x, size_t y,
+                    memcpy_direction direction = automatic)
+        {
+            return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
+                               sycl::range<3>(from_pitch, y, 1),
+                               sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
+                               sycl::range<3>(x, y, 1), direction);
+        }
+
+        namespace deprecated
+        {
+
+            template <typename T, sycl::usm::alloc AllocKind>
+            class usm_allocator
+            {
+            private:
+                using Alloc = sycl::usm_allocator<T, AllocKind>;
+                Alloc _impl;
+
+            public:
+                using value_type = typename std::allocator_traits<Alloc>::value_type;
+                using pointer = typename std::allocator_traits<Alloc>::pointer;
+                using const_pointer = typename std::allocator_traits<Alloc>::const_pointer;
+                using void_pointer = typename std::allocator_traits<Alloc>::void_pointer;
+                using const_void_pointer =
+                    typename std::allocator_traits<Alloc>::const_void_pointer;
+                using reference = typename std::allocator_traits<Alloc>::value_type &;
+                using const_reference =
+                    const typename std::allocator_traits<Alloc>::value_type &;
+                using difference_type =
+                    typename std::allocator_traits<Alloc>::difference_type;
+                using size_type = typename std::allocator_traits<Alloc>::size_type;
+                using propagate_on_container_copy_assignment = typename std::allocator_traits<
+                    Alloc>::propagate_on_container_copy_assignment;
+                using propagate_on_container_move_assignment = typename std::allocator_traits<
+                    Alloc>::propagate_on_container_move_assignment;
+                using propagate_on_container_swap =
+                    typename std::allocator_traits<Alloc>::propagate_on_container_swap;
+                using is_always_equal =
+                    typename std::allocator_traits<Alloc>::is_always_equal;
+
+                template <typename U>
+                struct rebind
+                {
+                    typedef usm_allocator<U, AllocKind> other;
+                };
+
+                usm_allocator() : _impl(dpct::get_default_queue()) {}
+                ~usm_allocator() {}
+                usm_allocator(const usm_allocator &other) : _impl(other._impl) {}
+                usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {}
+                pointer address(reference r) { return &r; }
+                const_pointer address(const_reference r) { return &r; }
+                pointer allocate(size_type cnt, const_void_pointer hint = nullptr)
+                {
+                    return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint);
+                }
+                void deallocate(pointer p, size_type cnt)
+                {
+                    std::allocator_traits<Alloc>::deallocate(_impl, p, cnt);
+                }
+                size_type max_size() const
+                {
+                    return std::allocator_traits<Alloc>::max_size(_impl);
+                }
+                bool operator==(const usm_allocator &other) const { return _impl == other._impl; }
+                bool operator!=(const usm_allocator &other) const { return _impl != other._impl; }
+            };
+
+        } // namespace deprecated
+
+        inline void dpct_free(void *ptr,
+                              const sycl::queue &q)
+        {
+            if (ptr)
+            {
+#ifdef DPCT_USM_LEVEL_NONE
+                detail::mem_mgr::instance().mem_free(ptr);
+#else
+                sycl::free(ptr, q.get_context());
+#endif // DPCT_USM_LEVEL_NONE
+            }
+        }
+
+        template <typename T>
+        inline auto get_memory(const void *x)
+        {
+            T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
+#ifdef DPCT_USM_LEVEL_NONE
+            return dpct::get_buffer<std::remove_cv_t<T>>(new_x);
+#else
+            return new_x;
+#endif
+        }
+
+        template <typename T>
+        inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q)
+        {
+            using Ty = typename DataType<T>::T2;
+            Ty s_h;
+            if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
+                detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
+                    .wait();
+            else
+                s_h = *reinterpret_cast<const Ty *>(s);
+            return s_h;
+        }
+
+    } // namespace detail
+
+    template <typename T>
+    inline auto get_value(const T *s, sycl::queue &q)
+    {
+        return detail::get_value(s, q);
+    }
+
+    namespace detail
+    {
+        template <class Ta, class Tb, class Tc, class Ts>
+        inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
+                              oneapi::mkl::transpose b_trans, int m, int n, int k,
+                              const void *alpha, const void *a, int lda, const void *b,
+                              int ldb, const void *beta, void *c, int ldc)
+        {
+#ifndef __INTEL_MKL__
+            GGML_UNUSED(q);
+            GGML_UNUSED(a_trans);
+            GGML_UNUSED(b_trans);
+            GGML_UNUSED(m);
+            GGML_UNUSED(n);
+            GGML_UNUSED(k);
+            GGML_UNUSED(alpha);
+            GGML_UNUSED(a);
+            GGML_UNUSED(lda);
+            GGML_UNUSED(b);
+            GGML_UNUSED(ldb);
+            GGML_UNUSED(beta);
+            GGML_UNUSED(c);
+            GGML_UNUSED(ldc);
+            throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces "
+                                     "Project does not support this API.");
+#else
+            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
+            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
+            auto data_a = get_memory<const Ta>(a);
+            auto data_b = get_memory<const Tb>(b);
+            auto data_c = get_memory<Tc>(c);
+            oneapi::mkl::blas::column_major::gemm(
+                q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
+                data_b, ldb, beta_value, data_c, ldc);
+#endif
+        }
+
+        template <typename VecT, class BinaryOperation, class = void>
+        class vectorized_binary
+        {
+        public:
+            inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
+            {
+                VecT v4;
+                for (size_t i = 0; i < v4.size(); ++i)
+                {
+                    v4[i] = binary_op(a[i], b[i]);
+                }
+                return v4;
+            }
+        };
+
+        template <typename VecT, class BinaryOperation>
+        class vectorized_binary<
+            VecT, BinaryOperation,
+            std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>>
+        {
+        public:
+            inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
+            {
+                return binary_op(a, b).template as<VecT>();
+            }
+        };
+
+        template <class Ta, class Tb, class Tc, class Ts>
+        inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
+                                    oneapi::mkl::transpose b_trans, int m, int n, int k,
+                                    const void *alpha, const void **a, int lda,
+                                    const void **b, int ldb, const void *beta, void **c,
+                                    int ldc, int batch_size)
+        {
+            struct matrix_info_t
+            {
+                oneapi::mkl::transpose transpose_info[2];
+                Ts value_info[2];
+                std::int64_t size_info[3];
+                std::int64_t ld_info[3];
+                std::int64_t groupsize_info;
+            };
+
+            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
+            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
+
+            matrix_info_t *matrix_info =
+                (matrix_info_t *)std::malloc(sizeof(matrix_info_t));
+            matrix_info->transpose_info[0] = a_trans;
+            matrix_info->transpose_info[1] = b_trans;
+            matrix_info->value_info[0] = alpha_value;
+            matrix_info->value_info[1] = beta_value;
+            matrix_info->size_info[0] = m;
+            matrix_info->size_info[1] = n;
+            matrix_info->size_info[2] = k;
+            matrix_info->ld_info[0] = lda;
+            matrix_info->ld_info[1] = ldb;
+            matrix_info->ld_info[2] = ldc;
+            matrix_info->groupsize_info = batch_size;
+
+            sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
+                q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
+                matrix_info->size_info, matrix_info->size_info + 1,
+                matrix_info->size_info + 2, matrix_info->value_info,
+                reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
+                reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
+                matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
+                matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
+
+            q.submit([&](sycl::handler &cgh)
+                     {
+    cgh.depends_on(e);
+    cgh.host_task([=] { std::free(matrix_info); }); });
+        }
+
+        template <class Ta, class Tb, class Tc, class Ts>
+        inline void
+        gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
+                        oneapi::mkl::transpose b_trans, int m, int n,
+                        int k, const void *alpha, const void *a, int lda,
+                        long long int stride_a, const void *b, int ldb,
+                        long long int stride_b, const void *beta, void *c,
+                        int ldc, long long int stride_c, int batch_size)
+        {
+            Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
+            Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
+            auto data_a = get_memory<const Ta>(a);
+            auto data_b = get_memory<const Tb>(b);
+            auto data_c = get_memory<Tc>(c);
+            oneapi::mkl::blas::column_major::gemm_batch(
+                q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
+                stride_a, data_b, ldb, stride_b, beta_value,
+                data_c, ldc, stride_c, batch_size);
+        }
+
+    } // namespace detail
+
+    template <typename VecT, class BinaryOperation>
+    inline unsigned vectorized_binary(unsigned a, unsigned b,
+                                      const BinaryOperation binary_op)
+    {
+        sycl::vec<unsigned, 1> v0{a}, v1{b};
+        auto v2 = v0.as<VecT>();
+        auto v3 = v1.as<VecT>();
+        auto v4 =
+            detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
+        v0 = v4.template as<sycl::vec<unsigned, 1>>();
+        return v0;
+    }
+
+    static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size,
+                                  memcpy_direction direction = automatic,
+                                  sycl::queue &q = dpct::get_default_queue())
+    {
+        detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction);
+    }
+
+    static inline unsigned int select_device(unsigned int id)
+    {
+        dev_mgr::instance().select_device(id);
+        return id;
+    }
+
+    template <typename T>
+    T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
+                               unsigned int logical_sub_group_size = 32)
+    {
+        unsigned int id = g.get_local_linear_id();
+        unsigned int start_index =
+            id / logical_sub_group_size * logical_sub_group_size;
+        unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
+        return sycl::select_from_group(g, x,
+                                       target_offset < logical_sub_group_size
+                                           ? start_index + target_offset
+                                           : id);
+    }
+
+    template <typename T>
+    sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val)
+    {
+        return sycl::vec<T, 1>(val)
+            .template as<sycl::vec<
+                std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
+            .template convert<T>();
+    }
+
+    template <typename T1, typename T2>
+    using dot_product_acc_t =
+        std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
+                           uint32_t, int32_t>;
+
+    template <typename T1, typename T2, typename T3>
+    inline auto dp4a(T1 a, T2 b, T3 c)
+    {
+        dot_product_acc_t<T1, T2> res = c;
+        auto va = extract_and_sign_or_zero_extend4(a);
+        auto vb = extract_and_sign_or_zero_extend4(b);
+        res += va[0] * vb[0];
+        res += va[1] * vb[1];
+        res += va[2] * vb[2];
+        res += va[3] * vb[3];
+        return res;
+    }
+
+    struct sub_sat
+    {
+        template <typename T>
+        auto operator()(const T x, const T y) const
+        {
+            return sycl::sub_sat(x, y);
+        }
+    };
+
+    template <typename S, typename T>
+    inline T vectorized_min(T a, T b)
+    {
+        sycl::vec<T, 1> v0{a}, v1{b};
+        auto v2 = v0.template as<S>();
+        auto v3 = v1.template as<S>();
+        auto v4 = sycl::min(v2, v3);
+        v0 = v4.template as<sycl::vec<T, 1>>();
+        return v0;
+    }
+
+    inline float pow(const float a, const int b) { return sycl::pown(a, b); }
+    inline double pow(const double a, const int b) { return sycl::pown(a, b); }
+    inline float pow(const float a, const float b) { return sycl::pow(a, b); }
+    inline double pow(const double a, const double b) { return sycl::pow(a, b); }
+    template <typename T, typename U>
+    inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
+    pow(const T a, const U b)
+    {
+        return sycl::pow(a, static_cast<T>(b));
+    }
+    template <typename T, typename U>
+    inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
+    pow(const T a, const U b)
+    {
+        return sycl::pow(static_cast<double>(a), static_cast<double>(b));
+    }
+
+    inline double min(const double a, const float b)
+    {
+        return sycl::fmin(a, static_cast<double>(b));
+    }
+    inline double min(const float a, const double b)
+    {
+        return sycl::fmin(static_cast<double>(a), b);
+    }
+    inline float min(const float a, const float b) { return sycl::fmin(a, b); }
+    inline double min(const double a, const double b) { return sycl::fmin(a, b); }
+    inline std::uint32_t min(const std::uint32_t a, const std::int32_t b)
+    {
+        return sycl::min(a, static_cast<std::uint32_t>(b));
+    }
+    inline std::uint32_t min(const std::int32_t a, const std::uint32_t b)
+    {
+        return sycl::min(static_cast<std::uint32_t>(a), b);
+    }
+    inline std::int32_t min(const std::int32_t a, const std::int32_t b)
+    {
+        return sycl::min(a, b);
+    }
+    inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b)
+    {
+        return sycl::min(a, b);
+    }
+    inline std::uint64_t min(const std::uint64_t a, const std::int64_t b)
+    {
+        return sycl::min(a, static_cast<std::uint64_t>(b));
+    }
+    inline std::uint64_t min(const std::int64_t a, const std::uint64_t b)
+    {
+        return sycl::min(static_cast<std::uint64_t>(a), b);
+    }
+    inline std::int64_t min(const std::int64_t a, const std::int64_t b)
+    {
+        return sycl::min(a, b);
+    }
+    inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b)
+    {
+        return sycl::min(a, b);
+    }
+    inline std::uint64_t min(const std::uint64_t a, const std::int32_t b)
+    {
+        return sycl::min(a, static_cast<std::uint64_t>(b));
+    }
+    inline std::uint64_t min(const std::int32_t a, const std::uint64_t b)
+    {
+        return sycl::min(static_cast<std::uint64_t>(a), b);
+    }
+    inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b)
+    {
+        return sycl::min(a, static_cast<std::uint64_t>(b));
+    }
+    inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b)
+    {
+        return sycl::min(static_cast<std::uint64_t>(a), b);
+    }
+    // max function overloads.
+    // For floating-point types, `float` or `double` arguments are acceptable.
+    // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
+    // `std::int64_t` type arguments are acceptable.
+    inline double max(const double a, const float b)
+    {
+        return sycl::fmax(a, static_cast<double>(b));
+    }
+    inline double max(const float a, const double b)
+    {
+        return sycl::fmax(static_cast<double>(a), b);
+    }
+    inline float max(const float a, const float b) { return sycl::fmax(a, b); }
+    inline double max(const double a, const double b) { return sycl::fmax(a, b); }
+    inline std::uint32_t max(const std::uint32_t a, const std::int32_t b)
+    {
+        return sycl::max(a, static_cast<std::uint32_t>(b));
+    }
+    inline std::uint32_t max(const std::int32_t a, const std::uint32_t b)
+    {
+        return sycl::max(static_cast<std::uint32_t>(a), b);
+    }
+    inline std::int32_t max(const std::int32_t a, const std::int32_t b)
+    {
+        return sycl::max(a, b);
+    }
+    inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b)
+    {
+        return sycl::max(a, b);
+    }
+    inline std::uint64_t max(const std::uint64_t a, const std::int64_t b)
+    {
+        return sycl::max(a, static_cast<std::uint64_t>(b));
+    }
+    inline std::uint64_t max(const std::int64_t a, const std::uint64_t b)
+    {
+        return sycl::max(static_cast<std::uint64_t>(a), b);
+    }
+    inline std::int64_t max(const std::int64_t a, const std::int64_t b)
+    {
+        return sycl::max(a, b);
+    }
+    inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b)
+    {
+        return sycl::max(a, b);
+    }
+    inline std::uint64_t max(const std::uint64_t a, const std::int32_t b)
+    {
+        return sycl::max(a, static_cast<std::uint64_t>(b));
+    }
+    inline std::uint64_t max(const std::int32_t a, const std::uint64_t b)
+    {
+        return sycl::max(static_cast<std::uint64_t>(a), b);
+    }
+    inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b)
+    {
+        return sycl::max(a, static_cast<std::uint64_t>(b));
+    }
+    inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b)
+    {
+        return sycl::max(static_cast<std::uint64_t>(a), b);
+    }
+
+    inline void
+    has_capability_or_fail(const sycl::device &dev,
+                           const std::initializer_list<sycl::aspect> &props)
+    {
+        for (const auto &it : props)
+        {
+            if (dev.has(it))
+                continue;
+            switch (it)
+            {
+            case sycl::aspect::fp64:
+                throw std::runtime_error("'double' is not supported in '" +
+                                         dev.get_info<sycl::info::device::name>() +
+                                         "' device");
+                break;
+            case sycl::aspect::fp16:
+                throw std::runtime_error("'half' is not supported in '" +
+                                         dev.get_info<sycl::info::device::name>() +
+                                         "' device");
+                break;
+            default:
+#define __SYCL_ASPECT(ASPECT, ID) \
+    case sycl::aspect::ASPECT:    \
+        return #ASPECT;
+#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
+#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
+                auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string
+                {
+                    switch (AspectNum)
+                    {
+#include <sycl/info/aspects.def>
+#include <sycl/info/aspects_deprecated.def>
+                    default:
+                        return "unknown aspect";
+                    }
+                };
+#undef __SYCL_ASPECT_DEPRECATED_ALIAS
+#undef __SYCL_ASPECT_DEPRECATED
+#undef __SYCL_ASPECT
+                throw std::runtime_error(
+                    "'" + getAspectNameStr(it) + "' is not supported in '" +
+                    dev.get_info<sycl::info::device::name>() + "' device");
+            }
+            break;
+        }
+    }
+
+    static inline unsigned int get_current_device_id()
+    {
+        return dev_mgr::instance().current_device_id();
+    }
+
+    static inline device_ext &get_current_device()
+    {
+        return dev_mgr::instance().current_device();
+    }
+
+    static inline sycl::queue &get_in_order_queue()
+    {
+        return dev_mgr::instance().current_device().in_order_queue();
+    }
+
+    static sycl::event
+    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
+                memcpy_direction direction,
+                const std::vector<sycl::event> &dep_events = {})
+    {
+        if (!size)
+            return sycl::event{};
+#ifdef DPCT_USM_LEVEL_NONE
+        auto &mm = mem_mgr::instance();
+        auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
+
+        switch (real_direction)
+        {
+        case host_to_host:
+            return q.submit([&](sycl::handler &cgh)
+                            {
+        cgh.depends_on(dep_events);
+        cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
+        case host_to_device:
+        {
+            auto alloc = mm.translate_ptr(to_ptr);
+            size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
+            return q.submit([&](sycl::handler &cgh)
+                            {
+        cgh.depends_on(dep_events);
+        auto r = sycl::range<1>(size);
+        auto o = sycl::id<1>(offset);
+        sycl::accessor<byte_t, 1, sycl::access_mode::write,
+                            sycl::access::target::device>
+            acc(alloc.buffer, cgh, r, o);
+        cgh.copy(from_ptr, acc); });
+        }
+        case device_to_host:
+        {
+            auto alloc = mm.translate_ptr(from_ptr);
+            size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
+            return q.submit([&](sycl::handler &cgh)
+                            {
+        cgh.depends_on(dep_events);
+        auto r = sycl::range<1>(size);
+        auto o = sycl::id<1>(offset);
+        sycl::accessor<byte_t, 1, sycl::access_mode::read,
+                            sycl::access::target::device>
+            acc(alloc.buffer, cgh, r, o);
+        cgh.copy(acc, to_ptr); });
+        }
+        case device_to_device:
+        {
+            auto to_alloc = mm.translate_ptr(to_ptr);
+            auto from_alloc = mm.translate_ptr(from_ptr);
+            size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
+            size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
+            return q.submit([&](sycl::handler &cgh)
+                            {
+        cgh.depends_on(dep_events);
+        auto r = sycl::range<1>(size);
+        auto to_o = sycl::id<1>(to_offset);
+        auto from_o = sycl::id<1>(from_offset);
+        sycl::accessor<byte_t, 1, sycl::access_mode::write,
+                            sycl::access::target::device>
+            to_acc(to_alloc.buffer, cgh, r, to_o);
+        sycl::accessor<byte_t, 1, sycl::access_mode::read,
+                            sycl::access::target::device>
+            from_acc(from_alloc.buffer, cgh, r, from_o);
+        cgh.copy(from_acc, to_acc); });
+        }
+        default:
+            throw std::runtime_error("dpct_memcpy: invalid direction value");
+        }
+#else
+        return q.memcpy(to_ptr, from_ptr, size, dep_events);
+        GGML_UNUSED(direction);
+#endif // DPCT_USM_LEVEL_NONE
+    }
+
+    // Get actual copy range and make sure it will not exceed range.
+    static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
+                                        size_t pitch)
+    {
+        return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
+    }
+
+    static inline size_t get_offset(sycl::id<3> id, size_t slice,
+                                    size_t pitch)
+    {
+        return slice * id.get(2) + pitch * id.get(1) + id.get(0);
+    }
+
+    /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
+    /// and \p from_range to another specified by \p to_ptr and \p to_range.
+    static inline std::vector<sycl::event>
+    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+                sycl::range<3> to_range, sycl::range<3> from_range,
+                sycl::id<3> to_id, sycl::id<3> from_id,
+                sycl::range<3> size, memcpy_direction direction,
+                const std::vector<sycl::event> &dep_events = {})
+    {
+        // RAII for host pointer
+        class host_buffer
+        {
+            void *_buf;
+            size_t _size;
+            sycl::queue &_q;
+            const std::vector<sycl::event> &_deps; // free operation depends
+
+        public:
+            host_buffer(size_t size, sycl::queue &q,
+                        const std::vector<sycl::event> &deps)
+                : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
+            void *get_ptr() const { return _buf; }
+            size_t get_size() const { return _size; }
+            ~host_buffer()
+            {
+                if (_buf)
+                {
+                    _q.submit([&](sycl::handler &cgh)
+                              {
+            cgh.depends_on(_deps);
+            cgh.host_task([buf = _buf] { std::free(buf); }); });
+                }
+            }
+        };
+        std::vector<sycl::event> event_list;
+
+        size_t to_slice = to_range.get(1) * to_range.get(0),
+               from_slice = from_range.get(1) * from_range.get(0);
+        unsigned char *to_surface =
+            (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
+        const unsigned char *from_surface =
+            (const unsigned char *)from_ptr +
+            get_offset(from_id, from_slice, from_range.get(0));
+
+        if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
+        {
+            return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
+                                direction, dep_events)};
+        }
+        direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
+        size_t size_slice = size.get(1) * size.get(0);
+        switch (direction)
+        {
+        case host_to_host:
+            for (size_t z = 0; z < size.get(2); ++z)
+            {
+                unsigned char *to_ptr = to_surface;
+                const unsigned char *from_ptr = from_surface;
+                if (to_range.get(0) == from_range.get(0) &&
+                    to_range.get(0) == size.get(0))
+                {
+                    event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
+                                                     direction, dep_events));
+                }
+                else
+                {
+                    for (size_t y = 0; y < size.get(1); ++y)
+                    {
+                        event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
+                                                         direction, dep_events));
+                        to_ptr += to_range.get(0);
+                        from_ptr += from_range.get(0);
+                    }
+                }
+                to_surface += to_slice;
+                from_surface += from_slice;
+            }
+            break;
+        case host_to_device:
+        {
+            host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
+                            event_list);
+            std::vector<sycl::event> host_events;
+            if (to_slice == size_slice)
+            {
+                // Copy host data to a temp host buffer with the shape of target.
+                host_events =
+                    dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
+                                sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
+                                host_to_host, dep_events);
+            }
+            else
+            {
+                // Copy host data to a temp host buffer with the shape of target.
+                host_events = dpct_memcpy(
+                    q, buf.get_ptr(), from_surface, to_range, from_range,
+                    sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
+                    // If has padding data, not sure whether it is useless. So fill temp
+                    // buffer with it.
+                    std::vector<sycl::event>{
+                        dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
+                                    device_to_host, dep_events)});
+            }
+            // Copy from temp host buffer to device with only one submit.
+            event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
+                                             buf.get_size(), host_to_device,
+                                             host_events));
+            break;
+        }
+        case device_to_host:
+        {
+            host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
+                            event_list);
+            // Copy from host temp buffer to host target with reshaping.
+            event_list = dpct_memcpy(
+                q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
+                sycl::id<3>(0, 0, 0), size, host_to_host,
+                // Copy from device to temp host buffer with only one submit.
+                std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
+                                                     buf.get_size(),
+                                                     device_to_host, dep_events)});
+            break;
+        }
+        case device_to_device:
+#ifdef DPCT_USM_LEVEL_NONE
+        {
+            auto &mm = mem_mgr::instance();
+            auto to_alloc = mm.translate_ptr(to_surface);
+            auto from_alloc = mm.translate_ptr(from_surface);
+            size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
+            size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
+            event_list.push_back(q.submit([&](sycl::handler &cgh)
+                                          {
+        cgh.depends_on(dep_events);
+        auto to_o = sycl::id<1>(to_offset);
+        auto from_o = sycl::id<1>(from_offset);
+        sycl::accessor<byte_t, 1, sycl::access_mode::write,
+                            sycl::access::target::device>
+            to_acc(to_alloc.buffer, cgh,
+                    get_copy_range(size, to_slice, to_range.get(0)), to_o);
+        sycl::accessor<byte_t, 1, sycl::access_mode::read,
+                            sycl::access::target::device>
+            from_acc(from_alloc.buffer, cgh,
+                    get_copy_range(size, from_slice, from_range.get(0)), from_o);
+        cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
+            size,
+            [=](sycl::id<3> id) {
+                to_acc[get_offset(id, to_slice, to_range.get(0))] =
+                    from_acc[get_offset(id, from_slice, from_range.get(0))];
+            }); }));
+        }
+#else
+            event_list.push_back(q.submit([&](sycl::handler &cgh)
+                                          {
+        cgh.depends_on(dep_events);
+        cgh.parallel_for<class dpct_memcpy_3d_detail>(
+            size,
+            [=](sycl::id<3> id) {
+                to_surface[get_offset(id, to_slice, to_range.get(0))] =
+                    from_surface[get_offset(id, from_slice, from_range.get(0))];
+            }); }));
+#endif
+        break;
+        default:
+            throw std::runtime_error("dpct_memcpy: invalid direction value");
+        }
+        return event_list;
+    }
+
+    /// memcpy 2D/3D matrix specified by pitched_data.
+    static inline std::vector<sycl::event>
+    dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
+                pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
+                memcpy_direction direction = automatic)
+    {
+        return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
+                           sycl::range<3>(to.get_pitch(), to.get_y(), 1),
+                           sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
+                           size, direction);
+    }
+
+    /// memcpy 2D matrix with pitch.
+    static inline std::vector<sycl::event>
+    dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+                size_t to_pitch, size_t from_pitch, size_t x, size_t y,
+                memcpy_direction direction = automatic)
+    {
+        return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
+                           sycl::range<3>(from_pitch, y, 1),
+                           sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
+                           sycl::range<3>(x, y, 1), direction);
+    }
+
+    inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
+                     oneapi::mkl::transpose b_trans, int m, int n, int k,
+                     const void *alpha, const void *a, library_data_t a_type,
+                     int lda, const void *b, library_data_t b_type, int ldb,
+                     const void *beta, void *c, library_data_t c_type, int ldc,
+                     library_data_t scaling_type)
+    {
+        if (scaling_type == library_data_t::real_float &&
+            c_type == library_data_t::complex_float)
+        {
+            scaling_type = library_data_t::complex_float;
+        }
+        else if (scaling_type == library_data_t::real_double &&
+                 c_type == library_data_t::complex_double)
+        {
+            scaling_type = library_data_t::complex_double;
+        }
+
+        std::uint64_t key =
+            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
+        switch (key)
+        {
+        case detail::get_type_combination_id(
+            library_data_t::real_float, library_data_t::real_float,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_impl<float, float, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_double, library_data_t::real_double,
+            library_data_t::real_double, library_data_t::real_double):
+        {
+            detail::gemm_impl<double, double, double, double>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::complex_float, library_data_t::complex_float,
+            library_data_t::complex_float, library_data_t::complex_float):
+        {
+            detail::gemm_impl<std::complex<float>, std::complex<float>,
+                              std::complex<float>, std::complex<float>>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::complex_double, library_data_t::complex_double,
+            library_data_t::complex_double, library_data_t::complex_double):
+        {
+            detail::gemm_impl<std::complex<double>, std::complex<double>,
+                              std::complex<double>, std::complex<double>>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_half, library_data_t::real_half):
+        {
+            detail::gemm_impl<sycl::half, sycl::half, sycl::half,
+                              sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a,
+                                          lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
+                              float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
+                                     ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_impl<sycl::half, sycl::half, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_half, library_data_t::real_float):
+        {
+            float alpha_value =
+                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
+            float beta_value =
+                dpct::get_value(reinterpret_cast<const float *>(beta), q);
+            sycl::half alpha_half(alpha_value);
+            sycl::half beta_half(beta_value);
+            detail::gemm_impl<sycl::half, sycl::half, sycl::half,
+                              sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half,
+                                          a, lda, b, ldb, &beta_half, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_int8, library_data_t::real_int8,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+            library_data_t::real_bfloat16, library_data_t::real_float):
+        {
+            detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
+                              oneapi::mkl::bfloat16, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_int8, library_data_t::real_int8,
+            library_data_t::real_int32, library_data_t::real_int32):
+        {
+            float alpha_float =
+                dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
+            float beta_float =
+                dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
+            detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
+                q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc);
+            break;
+        }
+        default:
+            throw std::runtime_error("the combination of data type is unsupported");
+        }
+    } // gemm()
+
+    /// Computes a batch of matrix-matrix product with general matrices.
+    /// \param [in] q The queue where the routine should be executed.
+    /// \param [in] a_trans Specifies the operation applied to A.
+    /// \param [in] b_trans Specifies the operation applied to B.
+    /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
+    /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
+    /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
+    /// \param [in] alpha Scaling factor for the matrix-matrix product.
+    /// \param [in] a Input matrix A.
+    /// \param [in] a_type Data type of the matrix A.
+    /// \param [in] lda Leading dimension of A.
+    /// \param [in] b Input matrix B.
+    /// \param [in] b_type Data type of the matrix B.
+    /// \param [in] ldb Leading dimension of B.
+    /// \param [in] beta Scaling factor for matrix C.
+    /// \param [in, out] c Input/Output matrix C.
+    /// \param [in] c_type Data type of the matrix C.
+    /// \param [in] ldc Leading dimension of C.
+    /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
+    /// \param [in] scaling_type Data type of the scaling factors.
+    inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
+                           oneapi::mkl::transpose b_trans, int m, int n, int k,
+                           const void *alpha, const void *a[],
+                           library_data_t a_type, int lda, const void *b[],
+                           library_data_t b_type, int ldb, const void *beta,
+                           void *c[], library_data_t c_type, int ldc,
+                           int batch_size, library_data_t scaling_type)
+    {
+#ifdef DPCT_USM_LEVEL_NONE
+        throw std::runtime_error("this API is unsupported when USM level is none");
+#else
+        if (scaling_type == library_data_t::real_float &&
+            c_type == library_data_t::complex_float)
+        {
+            scaling_type = library_data_t::complex_float;
+        }
+        else if (scaling_type == library_data_t::real_double &&
+                 c_type == library_data_t::complex_double)
+        {
+            scaling_type = library_data_t::complex_double;
+        }
+
+        std::uint64_t key =
+            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
+        switch (key)
+        {
+        case detail::get_type_combination_id(
+            library_data_t::real_float, library_data_t::real_float,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<float, float, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+                batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_double, library_data_t::real_double,
+            library_data_t::real_double, library_data_t::real_double):
+        {
+            detail::gemm_batch_impl<double, double, double, double>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+                batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::complex_float, library_data_t::complex_float,
+            library_data_t::complex_float, library_data_t::complex_float):
+        {
+            detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
+                                    std::complex<float>, std::complex<float>>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+                batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::complex_double, library_data_t::complex_double,
+            library_data_t::complex_double, library_data_t::complex_double):
+        {
+            detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
+                                    std::complex<double>, std::complex<double>>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+                batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_half, library_data_t::real_half):
+        {
+            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
+                                    sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
+                                                a, lda, b, ldb, beta, c, ldc,
+                                                batch_size);
+            break;
+        }
+#ifdef __INTEL_MKL__
+        case detail::get_type_combination_id(
+            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+            library_data_t::real_bfloat16, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
+                                    oneapi::mkl::bfloat16, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+                batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
+                                    float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
+                                           b, ldb, beta, c, ldc, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_int8, library_data_t::real_int8,
+            library_data_t::real_int32, library_data_t::real_int32):
+        {
+            float alpha_float =
+                dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
+            float beta_float =
+                dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
+            detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
+                                    float>(q, a_trans, b_trans, m, n, k, &alpha_float,
+                                           a, lda, b, ldb, &beta_float, c, ldc,
+                                           batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_int8, library_data_t::real_int8,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+                batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+                batch_size);
+            break;
+        }
+#endif
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_half, library_data_t::real_float):
+        {
+            float alpha_value =
+                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
+            float beta_value =
+                dpct::get_value(reinterpret_cast<const float *>(beta), q);
+            sycl::half alpha_half(alpha_value);
+            sycl::half beta_half(beta_value);
+            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
+                q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
+                batch_size);
+            break;
+        }
+        default:
+            throw std::runtime_error("the combination of data type is unsupported");
+        }
+#endif
+    }
+
+    /// Computes a batch of matrix-matrix product with general matrices.
+    /// \param [in] q The queue where the routine should be executed.
+    /// \param [in] a_trans Specifies the operation applied to A.
+    /// \param [in] b_trans Specifies the operation applied to B.
+    /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
+    /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
+    /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
+    /// \param [in] alpha Scaling factor for the matrix-matrix product.
+    /// \param [in] a Input matrix A.
+    /// \param [in] a_type Data type of the matrix A.
+    /// \param [in] lda Leading dimension of A.
+    /// \param [in] stride_a Stride between the different A matrices.
+    /// \param [in] b Input matrix B.
+    /// \param [in] b_type Data type of the matrix B.
+    /// \param [in] ldb Leading dimension of B.
+    /// \param [in] stride_b Stride between the different B matrices.
+    /// \param [in] beta Scaling factor for matrix C.
+    /// \param [in, out] c Input/Output matrix C.
+    /// \param [in] c_type Data type of the matrix C.
+    /// \param [in] ldc Leading dimension of C.
+    /// \param [in] stride_c Stride between the different C matrices.
+    /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
+    /// \param [in] scaling_type Data type of the scaling factors.
+    inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
+                           oneapi::mkl::transpose b_trans, int m, int n, int k,
+                           const void *alpha, const void *a, library_data_t a_type,
+                           int lda, long long int stride_a, const void *b,
+                           library_data_t b_type, int ldb, long long int stride_b,
+                           const void *beta, void *c, library_data_t c_type,
+                           int ldc, long long int stride_c, int batch_size,
+                           library_data_t scaling_type)
+    {
+        if (scaling_type == library_data_t::real_float &&
+            c_type == library_data_t::complex_float)
+        {
+            scaling_type = library_data_t::complex_float;
+        }
+        else if (scaling_type == library_data_t::real_double &&
+                 c_type == library_data_t::complex_double)
+        {
+            scaling_type = library_data_t::complex_double;
+        }
+
+        std::uint64_t key =
+            detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
+        switch (key)
+        {
+        case detail::get_type_combination_id(
+            library_data_t::real_float, library_data_t::real_float,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<float, float, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_double, library_data_t::real_double,
+            library_data_t::real_double, library_data_t::real_double):
+        {
+            detail::gemm_batch_impl<double, double, double, double>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::complex_float, library_data_t::complex_float,
+            library_data_t::complex_float, library_data_t::complex_float):
+        {
+            detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
+                                    std::complex<float>, std::complex<float>>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::complex_double, library_data_t::complex_double,
+            library_data_t::complex_double, library_data_t::complex_double):
+        {
+            detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
+                                    std::complex<double>, std::complex<double>>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_half, library_data_t::real_half):
+        {
+            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
+                                    sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
+                                                a, lda, stride_a, b, ldb, stride_b,
+                                                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+#ifdef __INTEL_MKL__
+        case detail::get_type_combination_id(
+            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+            library_data_t::real_bfloat16, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
+                                    oneapi::mkl::bfloat16, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
+                                    float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
+                                           stride_a, b, ldb, stride_b, beta, c, ldc,
+                                           stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_int8, library_data_t::real_int8,
+            library_data_t::real_int32, library_data_t::real_int32):
+        {
+            detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
+                                    std::int32_t>(q, a_trans, b_trans, m, n, k, alpha,
+                                                  a, lda, stride_a, b, ldb, stride_b,
+                                                  beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_int8, library_data_t::real_int8,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_float, library_data_t::real_float):
+        {
+            detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
+                q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+                beta, c, ldc, stride_c, batch_size);
+            break;
+        }
+#endif
+        case detail::get_type_combination_id(
+            library_data_t::real_half, library_data_t::real_half,
+            library_data_t::real_half, library_data_t::real_float):
+        {
+            float alpha_value =
+                dpct::get_value(reinterpret_cast<const float *>(alpha), q);
+            float beta_value =
+                dpct::get_value(reinterpret_cast<const float *>(beta), q);
+            sycl::half alpha_half(alpha_value);
+            sycl::half beta_half(beta_value);
+            detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
+                q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b,
+                &beta_half, c, ldc, stride_c, batch_size);
+            break;
+        }
+        default:
+            throw std::runtime_error("the combination of data type is unsupported");
+        }
+    }
+
+    static inline void
+    async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr,
+                      size_t from_pitch, size_t x, size_t y,
+                      memcpy_direction direction = automatic,
+                      sycl::queue &q = get_default_queue())
+    {
+        detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y,
+                            direction);
+    }
+
+    using err0 = detail::generic_error_type<struct err0_tag, int>;
+    using err1 = detail::generic_error_type<struct err1_tag, int>;
+
+} // COPY from DPCT head files
+
+
+static int g_ggml_sycl_debug=0;
+#define GGML_SYCL_DEBUG(...) do{if(g_ggml_sycl_debug) printf(__VA_ARGS__);}while(0)
+
+#define CHECK_TRY_ERROR(expr)                                                  \
+  [&]() {                                                                      \
+    try {                                                                      \
+      expr;                                                                    \
+      return dpct::success;                                                    \
+    } catch (std::exception const &e) {                                        \
+      std::cerr << e.what()<< "\nException caught at file:" << __FILE__        \
+        << ", line:" << __LINE__ <<", func:"<<__func__<< std::endl;            \
+      return dpct::default_error;                                              \
+    }                                                                          \
+  }()
+
+// #define DEBUG_SYCL_MALLOC
+
+static int g_work_group_size = 0;
+// typedef sycl::half ggml_fp16_t;
+
+#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
+#define VER_4VEC   610          //todo for hardward optimize.
+#define VER_GEN9      700       //todo for hardward optimize.
+#define VER_GEN12 1000000       //todo for hardward optimize.
+#define VER_GEN13      (VER_GEN12 + 1030)   //todo for hardward optimize.
+
+#define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares
+
+
+//define for XMX in Intel GPU
+//TODO: currently, it's not used for XMX really.
+#define SYCL_USE_XMX
+
+// max batch size to use MMQ kernels when tensor cores are available
+#define XMX_MAX_BATCH_SIZE 32
+
+
+#if defined(_MSC_VER)
+#pragma warning(disable: 4244 4267) // possible loss of data
+#endif
+
+static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
+
+static void crash(){
+    int *ptr = NULL;
+    *ptr = 0;
+}
+
+static void ggml_sycl_error(const char * stmt, const char * func, const char * file, const int line, const char * msg) {
+    fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
+    fprintf(stderr, "  in function %s at %s:%d\n", func, file, line);
+    GGML_ASSERT(!"SYCL error");
+}
+
+#define SYCL_CHECK(err) do {                                                   \
+    auto err_ = (err); if (err_ != 0) ggml_sycl_error(                         \
+        #err, __func__, __FILE__, __LINE__,                                    \
+        "Meet error in this line code!");   \
+} while (0)
+
+#if DPCT_COMPAT_RT_VERSION >= 11100
+#define GGML_SYCL_ASSUME(x) __builtin_assume(x)
+#else
+#define GGML_SYCL_ASSUME(x)
+#endif // DPCT_COMPAT_RT_VERSION >= 11100
+
+#ifdef GGML_SYCL_F16
+typedef sycl::half dfloat; // dequantize float
+typedef sycl::half2 dfloat2;
+#else
+typedef float dfloat; // dequantize float
+typedef sycl::float2 dfloat2;
+#endif //GGML_SYCL_F16
+
+bool   ggml_sycl_loaded(void);
+void * ggml_sycl_host_malloc(size_t size);
+void   ggml_sycl_host_free(void * ptr);
+bool   ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
+void   ggml_sycl_set_tensor_split(const float * tensor_split);
+void   ggml_sycl_transform_tensor(void * data, struct ggml_tensor * tensor);
+void   ggml_sycl_free_data(struct ggml_tensor * tensor);
+void   ggml_sycl_assign_buffers(struct ggml_tensor * tensor);
+void   ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor);
+void   ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor);
+void   ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor);
+void   ggml_sycl_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
+void   ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
+void   ggml_sycl_set_main_device(int main_device);
+void   ggml_sycl_set_mul_mat_q(bool mul_mat_q);
+void   ggml_sycl_set_scratch_size(size_t scratch_size);
+void   ggml_sycl_free_scratch(void);
+void   ggml_sycl_get_device_description(int device, char * description, size_t description_size);
+bool   ggml_backend_is_sycl(ggml_backend_t backend);
+int    ggml_backend_sycl_get_device(ggml_backend_t backend);
+int    get_main_device();
+void   print_ggml_tensor(const char*name, struct ggml_tensor *src);
+void   log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt);
+
+static __dpct_inline__ int get_int_from_int8(const int8_t *x8, const int &i32) {
+    const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+    int x32 = 0;
+    x32 |= x16[0] <<  0;
+    x32 |= x16[1] << 16;
+
+    return x32;
+}
+
+static __dpct_inline__ int get_int_from_uint8(const uint8_t *x8,
+                                              const int &i32) {
+    const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+    int x32 = 0;
+    x32 |= x16[0] <<  0;
+    x32 |= x16[1] << 16;
+
+    return x32;
+}
+
+static __dpct_inline__ int get_int_from_int8_aligned(const int8_t *x8,
+                                                     const int &i32) {
+    return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
+
+static __dpct_inline__ int get_int_from_uint8_aligned(const uint8_t *x8,
+                                                      const int &i32) {
+    return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
+
+template <typename T>
+using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
+                             int k, dpct::queue_ptr stream);
+typedef to_t_sycl_t<float> to_fp32_sycl_t;
+typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
+
+typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
+typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
+typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
+typedef void (*ggml_sycl_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
+typedef void (*ggml_sycl_op_mul_mat_t)(
+    const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+    const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+    float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+    const int64_t src1_ncols, const int64_t src1_padded_row_size,
+    const dpct::queue_ptr &stream);
+typedef void (*ggml_sycl_op_flatten_t)(const ggml_tensor *src0,
+                                       const ggml_tensor *src1,
+                                       ggml_tensor *dst, const float *src0_dd,
+                                       const float *src1_dd, float *dst_dd,
+                                       const dpct::queue_ptr &main_stream);
+
+// QK = number of values after dequantization
+// QR = QK / number of values before dequantization
+// QI = number of 32 bit integers before dequantization
+
+#define QK4_0 32
+#define QR4_0 2
+#define QI4_0 (QK4_0 / (4 * QR4_0))
+typedef struct dpct_type_471834 {
+    sycl::half d;           // delta
+    uint8_t qs[QK4_0 / 2];  // nibbles / quants
+} block_q4_0;
+static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
+
+#define QK4_1 32
+#define QR4_1 2
+#define QI4_1 (QK4_1 / (4 * QR4_1))
+typedef struct dpct_type_143705 {
+    sycl::half2 dm;         // dm.x = delta, dm.y = min
+    uint8_t qs[QK4_1 / 2];  // nibbles / quants
+} block_q4_1;
+static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
+
+#define QK5_0 32
+#define QR5_0 2
+#define QI5_0 (QK5_0 / (4 * QR5_0))
+typedef struct dpct_type_673649 {
+    sycl::half d;           // delta
+    uint8_t qh[4];          // 5-th bit of quants
+    uint8_t qs[QK5_0 / 2];  // nibbles / quants
+} block_q5_0;
+static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
+
+#define QK5_1 32
+#define QR5_1 2
+#define QI5_1 (QK5_1 / (4 * QR5_1))
+typedef struct dpct_type_135589 {
+    sycl::half2 dm;         // dm.x = delta, dm.y = min
+    uint8_t qh[4];          // 5-th bit of quants
+    uint8_t qs[QK5_1 / 2];  // nibbles / quants
+} block_q5_1;
+static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
+
+#define QK8_0 32
+#define QR8_0 1
+#define QI8_0 (QK8_0 / (4 * QR8_0))
+typedef struct dpct_type_122878 {
+    sycl::half d;           // delta
+    int8_t  qs[QK8_0];      // quants
+} block_q8_0;
+static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
+
+#define QK8_1 32
+#define QR8_1 1
+#define QI8_1 (QK8_1 / (4 * QR8_1))
+typedef struct dpct_type_143721 {
+    sycl::half2 ds;         // ds.x = delta, ds.y = sum
+    int8_t  qs[QK8_0];      // quants
+} block_q8_1;
+static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
+
+typedef float (*vec_dot_q_sycl_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
+typedef void (*allocate_tiles_sycl_t)(int **x_ql, sycl::half2 **x_dm,
+                                      int **x_qh, int **x_sc);
+typedef void (*load_tiles_sycl_t)(const void *__restrict__ vx,
+                                  int *__restrict__ x_ql,
+                                  sycl::half2 *__restrict__ x_dm,
+                                  int *__restrict__ x_qh,
+                                  int *__restrict__ x_sc, const int &i_offset,
+                                  const int &i_max, const int &k,
+                                  const int &blocks_per_row);
+typedef float (*vec_dot_q_mul_mat_sycl_t)(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ms,
+    const int &i, const int &j, const int &k);
+
+//================================= k-quants
+
+#ifdef GGML_QKK_64
+#define QK_K 64
+#define K_SCALE_SIZE 4
+#else
+#define QK_K 256
+#define K_SCALE_SIZE 12
+#endif
+
+#define QR2_K 4
+#define QI2_K (QK_K / (4*QR2_K))
+typedef struct dpct_type_619598 {
+    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
+    uint8_t qs[QK_K/4];      // quants
+    sycl::half2 dm;          // super-block scale for quantized scales/mins
+} block_q2_K;
+static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
+
+#define QR3_K 4
+#define QI3_K (QK_K / (4*QR3_K))
+typedef struct dpct_type_138576 {
+    uint8_t hmask[QK_K/8];     // quants - high bit
+    uint8_t qs[QK_K/4];        // quants - low 2 bits
+#ifdef GGML_QKK_64
+    uint8_t scales[2]; // scales, quantized with 8 bits
+#else
+    uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
+#endif
+    sycl::half d; // super-block scale
+} block_q3_K;
+//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
+
+#define QR4_K 2
+#define QI4_K (QK_K / (4*QR4_K))
+#ifdef GGML_QKK_64
+typedef struct {
+    half    dm[2];             // super-block scales/mins
+    uint8_t scales[2];         // 4-bit block scales/mins
+    uint8_t qs[QK_K/2];        // 4--bit quants
+} block_q4_K;
+static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
+#else
+typedef struct dpct_type_154943 {
+    sycl::half2 dm;            // super-block scale for quantized scales/mins
+    uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
+    uint8_t qs[QK_K/2];        // 4--bit quants
+} block_q4_K;
+static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
+#endif
+
+#define QR5_K 2
+#define QI5_K (QK_K / (4*QR5_K))
+#ifdef GGML_QKK_64
+typedef struct {
+    half d;                  // super-block scale
+    int8_t scales[QK_K/16];  // block scales
+    uint8_t qh[QK_K/8];      // quants, high bit
+    uint8_t qs[QK_K/2];      // quants, low 4 bits
+} block_q5_K;
+static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
+#else
+typedef struct dpct_type_866817 {
+    sycl::half2 dm;               // super-block scale for quantized scales/mins
+    uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
+    uint8_t qh[QK_K/8];           // quants, high bit
+    uint8_t qs[QK_K/2];           // quants, low 4 bits
+} block_q5_K;
+static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
+#endif
+
+#define QR6_K 2
+#define QI6_K (QK_K / (4*QR6_K))
+typedef struct dpct_type_107281 {
+    uint8_t ql[QK_K/2];   // quants, lower 4 bits
+    uint8_t qh[QK_K/4];   // quants, upper 2 bits
+    int8_t  scales[QK_K/16]; // scales
+    sycl::half d;            // delta
+} block_q6_K;
+static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
+
+#define WARP_SIZE 32
+#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
+
+#define SYCL_GELU_BLOCK_SIZE 256
+#define SYCL_SILU_BLOCK_SIZE 256
+#define SYCL_TANH_BLOCK_SIZE 256
+#define SYCL_RELU_BLOCK_SIZE 256
+#define SYCL_SQR_BLOCK_SIZE 256
+#define SYCL_CPY_BLOCK_SIZE 32
+#define SYCL_SCALE_BLOCK_SIZE 256
+#define SYCL_CLAMP_BLOCK_SIZE 256
+#define SYCL_ROPE_BLOCK_SIZE 256
+#define SYCL_SOFT_MAX_BLOCK_SIZE 1024
+#define SYCL_ALIBI_BLOCK_SIZE 32
+#define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32
+#define SYCL_QUANTIZE_BLOCK_SIZE 256
+#define SYCL_DEQUANTIZE_BLOCK_SIZE 256
+#define SYCL_GET_ROWS_BLOCK_SIZE 256
+#define SYCL_UPSCALE_BLOCK_SIZE 256
+#define SYCL_CONCAT_BLOCK_SIZE 256
+#define SYCL_PAD_BLOCK_SIZE 256
+#define SYCL_ACC_BLOCK_SIZE 256
+#define SYCL_IM2COL_BLOCK_SIZE 256
+
+// dmmv = dequantize_mul_mat_vec
+#ifndef GGML_SYCL_DMMV_X
+#define GGML_SYCL_DMMV_X 32
+#endif
+#ifndef GGML_SYCL_MMV_Y
+#define GGML_SYCL_MMV_Y 1
+#endif
+
+#ifndef K_QUANTS_PER_ITERATION
+#define K_QUANTS_PER_ITERATION 2
+#else
+static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
+#endif
+
+#ifndef GGML_SYCL_PEER_MAX_BATCH_SIZE
+#define GGML_SYCL_PEER_MAX_BATCH_SIZE 128
+#endif // GGML_SYCL_PEER_MAX_BATCH_SIZE
+
+#define MUL_MAT_SRC1_COL_STRIDE 128
+
+#define MAX_STREAMS 8
+static dpct::queue_ptr g_syclStreams[GGML_SYCL_MAX_DEVICES][MAX_STREAMS] = {
+    {0}};
+
+struct ggml_tensor_extra_gpu {
+    void * data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split tensors
+    dpct::event_ptr
+        events[GGML_SYCL_MAX_DEVICES]
+              [MAX_STREAMS]; // events for synchronizing multiple GPUs
+};
+
+inline dpct::err0 ggml_sycl_set_device(const int device) try {
+    int current_device;
+
+    SYCL_CHECK(CHECK_TRY_ERROR(
+        current_device = dpct::dev_mgr::instance().current_device_id()));
+
+    // GGML_SYCL_DEBUG("ggml_sycl_set_device device=%d, current_device=%d\n", device, current_device);
+    if (device == current_device) {
+        return 0;
+    }
+
+    return CHECK_TRY_ERROR(dpct::select_device(device));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  crash();
+  std::exit(1);
+}
+
+static int g_device_count = -1;
+static int g_all_sycl_device_count = -1;
+static int g_main_device = -1;
+static int g_main_device_index = -1;
+
+static float g_tensor_split[GGML_SYCL_MAX_DEVICES] = {0};
+
+struct sycl_device_capabilities {
+    int     cc;                 // compute capability
+    bool    vmm;                // virtual memory support
+    size_t  vmm_granularity;    // granularity of virtual memory
+    int device_id;
+};
+
+static sycl_device_capabilities g_device_caps[GGML_SYCL_MAX_DEVICES] = { {0, false, 0, -1} };
+
+struct sycl_device_id2index {
+    int index;
+};
+
+static sycl_device_id2index g_sycl_device_id2index[GGML_SYCL_MAX_DEVICES] = { {-1} };
+
+static void * g_scratch_buffer = nullptr;
+static size_t g_scratch_size = 0; // disabled by default
+static size_t g_scratch_offset = 0;
+
+static dpct::queue_ptr g_sycl_handles[GGML_SYCL_MAX_DEVICES] = {nullptr};
+
+int get_main_device(){
+    return g_main_device;
+}
+
+[[noreturn]]
+static void bad_arch(const sycl::stream &stream_ct1) {
+    stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
+                  "current GPU architecture.\n";
+    // __trap();
+    std::exit(1);
+
+    (void) bad_arch; // suppress unused function warning
+}
+
+void log_ggml_var_device(const char*name, float *src, size_t total_elements, bool src_on_device){
+    if(!g_ggml_sycl_debug) return;
+    if(!src){
+        printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
+        return;
+    }
+    char filename[1024];
+    sprintf(filename, "%s.txt", name);
+    printf("GGML Tensor:%s save to %s\n", name, filename);
+
+    size_t total_size = total_elements*sizeof(float);
+    float *local_buf = NULL;
+    // printf("total_size %d2, src_on_device %d\n", total_size, src_on_device);
+    if(src_on_device) {
+        local_buf = (float *) ggml_sycl_host_malloc(total_size);
+        // printf("local buf %p size %d bytes\n", local_buf, total_size);
+        ggml_sycl_set_device(g_main_device);
+        dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
+        main_stream->memcpy(local_buf, src, total_size);
+    }
+    else {
+        local_buf = (float *)src;
+        // printf("local buf from src-> data %p\n", local_buf);
+    }
+
+    std::ofstream logfile;
+    logfile.open(filename);
+    // printf("local buf element %d\n", total_elements);
+    for(size_t i=0; i<total_elements; i++){
+        if((i+1)%20 ==0) logfile <<std::endl;
+        else logfile << local_buf[i] <<" ";
+    }
+    logfile <<std::endl;
+    logfile.close();
+
+    if(src_on_device) ggml_sycl_host_free(local_buf);
+}
+
+//todo: debug for crash in some case
+void print_ggml_tensor(const char*name, struct ggml_tensor *src){
+    if(!g_ggml_sycl_debug) return;
+    if(!src){
+        printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
+        return;
+    }
+
+    size_t total_elements = ggml_nelements(src);
+
+    const bool src_on_device = src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT;
+    float *src_data =NULL;
+    if(src_on_device) {
+        ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *)  src->extra;
+        src_data = (float*)src_extra->data_device[g_main_device_index];
+    }
+    else {
+        src_data = (float *)src->data;
+    }
+
+    log_ggml_var_device(name, src_data, total_elements, src_on_device);
+}
+
+static int log_file_name_idx=0;
+void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt) {
+    stop_cnt = 4;
+    if(log_file_name_idx>=stop_cnt) return;
+    char filename[1280];
+    sprintf(filename, "%s_%07d", name, log_file_name_idx);
+    log_file_name_idx++;
+    print_ggml_tensor(filename, src);
+    // print_ggml_tensor("ggml_sycl_rms_norm_src0", (ggml_tensor *)src0);
+    // print_ggml_tensor("ggml_sycl_rms_norm_src1", (ggml_tensor *)src1);
+    // int *ptr = NULL;
+    // *ptr = 0;
+}
+
+static __dpct_inline__ float warp_reduce_sum(float x,
+                                             const sycl::nd_item<3> &item_ct1) {
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        /*
+        DPCT1096:98: The right-most dimension of the work-group used in the SYCL
+        kernel that calls this function may be less than "32". The function
+        "dpct::permute_sub_group_by_xor" may return an unexpected result on the
+        CPU device. Modify the size of the work-group to ensure that the value
+        of the right-most dimension is a multiple of "32".
+        */
+        x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
+    }
+    return x;
+}
+
+static __dpct_inline__ sycl::float2
+warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
+                                                mask);
+        a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
+                                                mask);
+    }
+    return a;
+}
+
+static __dpct_inline__ float warp_reduce_max(float x,
+                                             const sycl::nd_item<3> &item_ct1) {
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        /*
+        DPCT1096:97: The right-most dimension of the work-group used in the SYCL
+        kernel that calls this function may be less than "32". The function
+        "dpct::permute_sub_group_by_xor" may return an unexpected result on the
+        CPU device. Modify the size of the work-group to ensure that the value
+        of the right-most dimension is a multiple of "32".
+        */
+        x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
+                              item_ct1.get_sub_group(), x, mask));
+    }
+    return x;
+}
+
+static __dpct_inline__ float op_repeat(const float a, const float b) {
+    return b;
+    GGML_UNUSED(a);
+}
+
+static __dpct_inline__ float op_add(const float a, const float b) {
+    return a + b;
+}
+
+static __dpct_inline__ float op_mul(const float a, const float b) {
+    return a * b;
+}
+
+static __dpct_inline__ float op_div(const float a, const float b) {
+    return a / b;
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
+        int ne0, int ne1, int ne2, int ne3,
+        int ne10, int ne11, int ne12, int ne13,
+        /*int s0, */ int s1,  int s2,  int s3,
+        /*int s10,*/ int s11, int s12, int s13,
+        const sycl::nd_item<3> &item_ct1) {
+    const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+    const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                    item_ct1.get_local_id(1));
+    const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+                    item_ct1.get_local_id(0)) /
+                   ne3;
+    const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+                    item_ct1.get_local_id(0)) %
+                   ne3;
+
+    if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+        return;
+    }
+
+    const int i11 = i1 % ne11;
+    const int i12 = i2 % ne12;
+    const int i13 = i3 % ne13;
+
+    const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+    const size_t i_dst  = i_src0;
+
+    const src0_t * src0_row = src0 + i_src0;
+    const src1_t * src1_row = src1 + i_src1;
+    dst_t * dst_row = dst + i_dst;
+
+    for (int i0 = i0s; i0 < ne0;
+         i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
+        const int i10 = i0 % ne10;
+        dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+    }
+}
+
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
+        int ne0, int ne1, int ne2, int ne3,
+        int ne10, int ne11, int ne12, int ne13,
+        /*int s0, */ int s1,  int s2,  int s3,
+        /*int s10,*/ int s11, int s12, int s13,
+        const sycl::nd_item<3> &item_ct1) {
+
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    const int i3 = i/(ne2*ne1*ne0);
+    const int i2 = (i/(ne1*ne0)) % ne2;
+    const int i1 = (i/ne0) % ne1;
+    const int i0 = i % ne0;
+
+    if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+        return;
+    }
+
+    const int i11 = i1 % ne11;
+    const int i12 = i2 % ne12;
+    const int i13 = i3 % ne13;
+
+    const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+    const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+    const size_t i_dst  = i_src0;
+
+    const src0_t * src0_row = src0 + i_src0;
+    const src1_t * src1_row = src1 + i_src1;
+    dst_t * dst_row = dst + i_dst;
+
+    const int i10 = i0 % ne10;
+    dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+}
+
+static void acc_f32(const float * x, const float * y, float * dst, const int ne,
+    const int ne10, const int ne11, const int ne12,
+    const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+    if (i >= ne) {
+        return;
+    }
+    int src1_idx = i - offset;
+    int oz = src1_idx / nb2;
+    int oy = (src1_idx - (oz * nb2)) / nb1;
+    int ox = src1_idx % nb1;
+    if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
+        dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
+    } else {
+        dst[i] = x[i];
+    }
+}
+
+static void gelu_f32(const float * x, float * dst, const int k,
+                     const sycl::nd_item<3> &item_ct1) {
+    const float GELU_COEF_A    = 0.044715f;
+    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    if (i >= k) {
+        return;
+    }
+
+    float xi = x[i];
+    dst[i] = 0.5f * xi *
+             (1.0f +
+              sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
+}
+
+static void silu_f32(const float * x, float * dst, const int k,
+                     const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
+}
+
+static void gelu_quick_f32(const float *x, float *dst, int k,
+                           const sycl::nd_item<3> &item_ct1) {
+    const float GELU_QUICK_COEF = -1.702f;
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+    if (i >= k) {
+        return;
+    }
+    dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
+}
+
+static void tanh_f32(const float *x, float *dst, int k,
+                     const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+    if (i >= k) {
+        return;
+    }
+    dst[i] = sycl::tanh((float)(x[i]));
+}
+
+static void relu_f32(const float * x, float * dst, const int k,
+                     const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = sycl::fmax((float)(x[i]), (float)0);
+}
+
+static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
+                           const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+    if (i >= k) {
+        return;
+    }
+    dst[i] = sycl::fmax((float)(x[i]), (float)0) +
+             sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
+}
+
+static void sqr_f32(const float * x, float * dst, const int k,
+                    const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    if (i >= k) {
+        return;
+    }
+    dst[i] = x[i] * x[i];
+}
+
+static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
+                     const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+    const int tid = item_ct1.get_local_id(2);
+
+    sycl::float2 mean_var = sycl::float2(0.f, 0.f);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const float xi = x[row*ncols + col];
+        mean_var.x() += xi;
+        mean_var.y() += xi * xi;
+    }
+
+    // sum up partial sums
+    mean_var = warp_reduce_sum(mean_var, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = mean_var;
+        }
+        /*
+        DPCT1118:0: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+        mean_var = s_sum[lane_id];
+        mean_var = warp_reduce_sum(mean_var, item_ct1);
+    }
+
+    const float mean = mean_var.x() / ncols;
+    const float var = mean_var.y() / ncols - mean * mean;
+    const float inv_std = sycl::rsqrt(var + eps);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
+    }
+}
+
+static void concat_f32(const float  *x,const float  *y, float *dst, const int ne0, const int ne02,
+                       const sycl::nd_item<3> &item_ct1) {
+    int nidx = item_ct1.get_local_id(2) +
+               item_ct1.get_group(2) * item_ct1.get_local_range(2);
+    if (nidx >= ne0) {
+        return;
+    }
+    // operation
+    int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
+                     item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
+    if (item_ct1.get_group(0) < ne02) { // src0
+        int offset_src =
+            nidx + item_ct1.get_group(1) * ne0 +
+            item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
+            dst[offset_dst] = x[offset_src];
+    } else {
+        int offset_src =
+            nidx + item_ct1.get_group(1) * ne0 +
+            (item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
+            dst[offset_dst] = y[offset_src];
+    }
+}
+
+static void upscale_f32(const float  *x, float *dst, const int ne00, const int nb02, const int scale_factor,
+                        const sycl::nd_item<3> &item_ct1) {
+    int ne0 = ne00 * scale_factor;
+    int nidx = item_ct1.get_local_id(2) +
+               item_ct1.get_group(2) * item_ct1.get_local_range(2);
+    if (nidx >= ne0) {
+        return;
+    }
+    // operation
+    int i00 = nidx / scale_factor;
+    int i01 = item_ct1.get_group(1) / scale_factor;
+    int offset_src = i00 + i01 * ne00 + item_ct1.get_group(0) * nb02;
+    int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
+                     item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
+    dst[offset_dst] = x[offset_src];
+}
+
+static void pad_f32(const float  *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
+                    const sycl::nd_item<3> &item_ct1) {
+    int nidx = item_ct1.get_local_id(2) +
+               item_ct1.get_group(2) * item_ct1.get_local_range(2);
+    if (nidx >= ne0) {
+        return;
+    }
+
+    // operation
+    int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
+                     item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
+    if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
+        item_ct1.get_group(0) < ne02) {
+        int offset_src = nidx + item_ct1.get_group(1) * ne00 +
+                         item_ct1.get_group(0) * ne00 * ne01;
+            dst[offset_dst] = x[offset_src];
+    } else {
+        dst[offset_dst] = 0.0f;
+    }
+}
+
+static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
+                           const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
+    int start = item_ct1.get_group(2) * group_size;
+    int end = start + group_size;
+
+    start += item_ct1.get_local_id(2);
+
+    if (end >= ne_elements) {
+        end = ne_elements;
+    }
+
+    float tmp = 0.0f; // partial sum for thread in warp
+
+    for (int j = start; j < end; j += block_size) {
+        tmp += x[j];
+    }
+
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        /*
+        DPCT1118:1: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+        tmp = s_sum[lane_id];
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    float mean = tmp / group_size;
+    tmp = 0.0f;
+
+    for (int j = start; j < end; j += block_size) {
+        float xi = x[j] - mean;
+        dst[j] = xi;
+        tmp += xi * xi;
+    }
+
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        /*
+        DPCT1118:2: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+        tmp = s_sum[lane_id];
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    float variance = tmp / group_size;
+    float scale = sycl::rsqrt(variance + eps);
+    for (int j = start; j < end; j += block_size) {
+        dst[j] *= scale;
+    }
+}
+
+static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
+                         const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+    const int tid = item_ct1.get_local_id(2);
+
+    float tmp = 0.0f; // partial sum for thread in warp
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const float xi = x[row*ncols + col];
+        tmp += xi * xi;
+    }
+
+    // sum up partial sums
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        /*
+        DPCT1118:3: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+        tmp = s_sum[lane_id];
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    const float mean = tmp / ncols;
+    const float scale = sycl::rsqrt(mean + eps);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        dst[row*ncols + col] = scale * x[row*ncols + col];
+    }
+}
+
+static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
+                                            const int iqs, dfloat2 &v) {
+    const block_q4_0 * x = (const block_q4_0 *) vx;
+
+    const dfloat d = x[ib].d;
+
+    const int vui = x[ib].qs[iqs];
+
+    v.x() = vui & 0xF;
+    v.y() = vui >> 4;
+
+#ifdef GGML_SYCL_F16
+    // v = v - {8.0f, 8.0f};
+    // v = v * {d, d};
+    v.s0() = (v.s0() - 8.0f) * d;
+    v.s1() = (v.s1() - 8.0f) * d;
+
+#else
+    v.x() = (v.x() - 8.0f) * d;
+    v.y() = (v.y() - 8.0f) * d;
+#endif // GGML_SYCL_F16
+}
+
+static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
+                                            const int iqs, dfloat2 &v) {
+    const block_q4_1 * x = (const block_q4_1 *) vx;
+
+    const dfloat d = x[ib].dm[0];
+    const dfloat m = x[ib].dm[1];
+
+    const int vui = x[ib].qs[iqs];
+
+    v.x() = vui & 0xF;
+    v.y() = vui >> 4;
+
+#ifdef GGML_SYCL_F16
+    // v = v * {d, d};
+    // v = v + {m, m};
+    v.s0() = (v.s0() * d) + m;
+    v.s1() = (v.s1() * d) + m;
+
+#else
+    v.x() = (v.x() * d) + m;
+    v.y() = (v.y() * d) + m;
+#endif // GGML_SYCL_F16
+}
+
+static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
+                                            const int iqs, dfloat2 &v) {
+    const block_q5_0 * x = (const block_q5_0 *) vx;
+
+    const dfloat d = x[ib].d;
+
+    uint32_t qh;
+    memcpy(&qh, x[ib].qh, sizeof(qh));
+
+    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
+    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
+
+    v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
+    v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
+
+#ifdef GGML_SYCL_F16
+    // v = v - {16.0f, 16.0f};
+    // v = v * {d, d};
+    v.s0() = (v.s0() - 16.0f) * d;
+    v.s1() = (v.s1() - 16.0f) * d;
+
+#else
+    v.x() = (v.x() - 16.0f) * d;
+    v.y() = (v.y() - 16.0f) * d;
+#endif // GGML_SYCL_F16
+}
+
+static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
+                                            const int iqs, dfloat2 &v) {
+    const block_q5_1 * x = (const block_q5_1 *) vx;
+
+    const dfloat d = x[ib].dm[0];
+    const dfloat m = x[ib].dm[1];
+
+    uint32_t qh;
+    memcpy(&qh, x[ib].qh, sizeof(qh));
+
+    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
+    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
+
+    v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
+    v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
+
+#ifdef GGML_SYCL_F16
+    // v = v * {d, d};
+    // v = v + {m, m};
+    v.s0() = (v.s0() * d) + m;
+    v.s1() = (v.s1() * d) + m;
+#else
+    v.x() = (v.x() * d) + m;
+    v.y() = (v.y() * d) + m;
+#endif // GGML_SYCL_F16
+}
+
+static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
+                                            const int iqs, dfloat2 &v) {
+    const block_q8_0 * x = (const block_q8_0 *) vx;
+
+    const dfloat d = x[ib].d;
+
+    v.x() = x[ib].qs[iqs + 0];
+    v.y() = x[ib].qs[iqs + 1];
+
+#ifdef GGML_SYCL_F16
+    // v = v * {d, d};
+    v.s0() *= d;
+    v.s1() *= d;
+#else
+    v.x() *= d;
+    v.y() *= d;
+#endif // GGML_SYCL_F16
+}
+
+//================================== k-quants
+
+template<typename dst_t>
+static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
+                                  const sycl::nd_item<3> &item_ct1) {
+
+    const int i = item_ct1.get_group(2);
+    const block_q2_K * x = (const block_q2_K *) vx;
+
+    const int tid = item_ct1.get_local_id(2);
+#if QK_K == 256
+    const int n   = tid/32;
+    const int l   = tid - 32*n;
+    const int is  = 8*n + l/16;
+
+    const uint8_t q = x[i].qs[32*n + l];
+    dst_t * y = yy + i*QK_K + 128*n;
+
+    float dall = x[i].dm[0];
+    float dmin = x[i].dm[1];
+    y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+    y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
+    y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
+    y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
+#else
+    const int is = tid/16;  // 0 or 1
+    const int il = tid%16;  // 0...15
+    const uint8_t q = x[i].qs[il] >> (2*is);
+    dst_t * y = yy + i*QK_K + 16*is + il;
+    float dall = __low2half(x[i].dm);
+    float dmin = __high2half(x[i].dm);
+    y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+    y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
+#endif
+
+}
+
+template<typename dst_t>
+static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
+                                  const sycl::nd_item<3> &item_ct1) {
+
+    const int i = item_ct1.get_group(2);
+    const block_q3_K * x = (const block_q3_K *) vx;
+
+#if QK_K == 256
+    const int r = item_ct1.get_local_id(2) / 4;
+    const int tid = r/2;
+    const int is0 = r%2;
+    const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
+    const int n = tid / 4;
+    const int j = tid - 4*n;
+
+    uint8_t m = 1 << (4*n + j);
+    int is = 8*n + 2*j + is0;
+    int shift = 2*j;
+
+    int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
+                is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
+                is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
+                          (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
+    float d_all = x[i].d;
+    float dl = d_all * (us - 32);
+
+    dst_t * y = yy + i*QK_K + 128*n + 32*j;
+    const uint8_t * q = x[i].qs + 32*n;
+    const uint8_t * hm = x[i].hmask;
+
+    for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
+#else
+    const int tid = threadIdx.x;
+    const int is  = tid/16;  // 0 or 1
+    const int il  = tid%16;  // 0...15
+    const int im  = il/8;    // 0...1
+    const int in  = il%8;    // 0...7
+
+    dst_t * y = yy + i*QK_K + 16*is + il;
+
+    const uint8_t q = x[i].qs[il] >> (2*is);
+    const uint8_t h = x[i].hmask[in] >> (2*is + im);
+    const float   d = (float)x[i].d;
+
+    if (is == 0) {
+        y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+        y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+    } else {
+        y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+        y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+    }
+#endif
+
+}
+
+#if QK_K == 256
+static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
+    if (j < 4) {
+        d = q[j] & 63; m = q[j + 4] & 63;
+    } else {
+        d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
+        m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
+    }
+}
+#endif
+
+template<typename dst_t>
+static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
+                                  const sycl::nd_item<3> &item_ct1) {
+    const block_q4_K * x = (const block_q4_K *) vx;
+
+    const int i = item_ct1.get_group(2);
+
+#if QK_K == 256
+    // assume 32 threads
+    const int tid = item_ct1.get_local_id(2);
+    const int il  = tid/8;
+    const int ir  = tid%8;
+    const int is  = 2*il;
+    const int n   = 4;
+
+    dst_t * y = yy + i*QK_K + 64*il + n*ir;
+
+    const float dall = x[i].dm[0];
+    const float dmin = x[i].dm[1];
+
+    const uint8_t * q = x[i].qs + 32*il + n*ir;
+
+    uint8_t sc, m;
+    get_scale_min_k4(is + 0, x[i].scales, sc, m);
+    const float d1 = dall * sc; const float m1 = dmin * m;
+    get_scale_min_k4(is + 1, x[i].scales, sc, m);
+    const float d2 = dall * sc; const float m2 = dmin * m;
+    for (int l = 0; l < n; ++l) {
+        y[l + 0] = d1 * (q[l] & 0xF) - m1;
+        y[l +32] = d2 * (q[l] >>  4) - m2;
+    }
+#else
+    const int tid = threadIdx.x;
+    const uint8_t * q = x[i].qs;
+    dst_t * y = yy + i*QK_K;
+    const float d = (float)x[i].dm[0];
+    const float m = (float)x[i].dm[1];
+    y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
+    y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
+                                  const sycl::nd_item<3> &item_ct1) {
+    const block_q5_K * x = (const block_q5_K *) vx;
+
+    const int i = item_ct1.get_group(2);
+
+#if QK_K == 256
+    // assume 64 threads - this is very slightly better than the one below
+    const int tid = item_ct1.get_local_id(2);
+    const int il  = tid/16;   // il is in 0...3
+    const int ir  = tid%16;   // ir is in 0...15
+    const int is  = 2*il;     // is is in 0...6
+
+    dst_t * y = yy + i*QK_K + 64*il + 2*ir;
+
+    const float dall = x[i].dm[0];
+    const float dmin = x[i].dm[1];
+
+    const uint8_t * ql = x[i].qs + 32*il + 2*ir;
+    const uint8_t * qh = x[i].qh + 2*ir;
+
+    uint8_t sc, m;
+    get_scale_min_k4(is + 0, x[i].scales, sc, m);
+    const float d1 = dall * sc; const float m1 = dmin * m;
+    get_scale_min_k4(is + 1, x[i].scales, sc, m);
+    const float d2 = dall * sc; const float m2 = dmin * m;
+
+    uint8_t   hm  = 1 << (2*il);
+    y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
+    y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
+    hm <<= 1;
+    y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
+    y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
+#else
+    const int tid = threadIdx.x;
+    const uint8_t q = x[i].qs[tid];
+    const int im = tid/8;  // 0...3
+    const int in = tid%8;  // 0...7
+    const int is = tid/16; // 0 or 1
+    const uint8_t h = x[i].qh[in] >> im;
+    const float d = x[i].d;
+    dst_t * y = yy + i*QK_K + tid;
+    y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
+    y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
+#endif
+}
+
+template<typename dst_t>
+static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
+                                  const sycl::nd_item<3> &item_ct1) {
+    const block_q6_K * x = (const block_q6_K *) vx;
+
+    const int i = item_ct1.get_group(2);
+#if QK_K == 256
+
+    // assume 64 threads - this is very slightly better than the one below
+    const int tid = item_ct1.get_local_id(2);
+    const int ip  = tid/32;   // ip is 0 or 1
+    const int il  = tid - 32*ip; // 0...32
+    const int is  = 8*ip + il/16;
+
+    dst_t * y = yy + i*QK_K + 128*ip + il;
+
+    const float d = x[i].d;
+
+    const uint8_t * ql = x[i].ql + 64*ip + il;
+    const uint8_t   qh = x[i].qh[32*ip + il];
+    const int8_t  * sc = x[i].scales + is;
+
+    y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
+    y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+    y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
+#else
+
+    // assume 32 threads
+    const int tid = threadIdx.x;
+    const int ip  = tid/16;         // 0 or 1
+    const int il  = tid - 16*ip;    // 0...15
+
+    dst_t * y = yy + i*QK_K + 16*ip + il;
+
+    const float d = x[i].d;
+
+    const uint8_t   ql = x[i].ql[16*ip + il];
+    const uint8_t   qh = x[i].qh[il] >> (2*ip);
+    const int8_t  * sc = x[i].scales;
+
+    y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+    y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+#endif
+}
+
+/*
+DPCT1110:4: The total declared local variable size in device function
+dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
+pressure. Consult with your hardware vendor to find the total register size
+available and adjust the code, or use smaller sub-group size to avoid high
+register pressure.
+*/
+static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
+                                        const float *__restrict__ yy,
+                                        float *__restrict__ dst,
+                                        const int ncols, int nrows,
+                                        const sycl::nd_item<3> &item_ct1) {
+
+    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
+
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+    if (row > nrows) return;
+
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q2_K * x = (const block_q2_K *)vx + ib0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+    const int tid =
+        item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
+    const int ix =
+        item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
+
+    const int step = 16/K_QUANTS_PER_ITERATION;
+
+    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const int in = tid - step*im;                        // 0...15 or 0...7
+
+    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
+    const int q_offset = 32*im + l0;
+    const int s_offset = 8*im;
+    const int y_offset = 128*im + l0;
+
+    uint32_t aux[4];
+    const uint8_t * d = (const uint8_t *)aux;
+    const uint8_t * m = (const uint8_t *)(aux + 2);
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y = yy + i * QK_K + y_offset;
+        const uint8_t * q = x[i].qs + q_offset;
+
+        const float dall = x[i].dm[0];
+        const float dmin = x[i].dm[1];
+
+        const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
+        aux[0] = a[0] & 0x0f0f0f0f;
+        aux[1] = a[1] & 0x0f0f0f0f;
+        aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
+        aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
+
+        float sum1 = 0, sum2 = 0;
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
+                  + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
+                  + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
+                  + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
+                  + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
+                  + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
+                  + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
+                  +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
+            sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
+                  + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
+
+        }
+        tmp += dall * sum1 - dmin * sum2;
+
+    }
+#else
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
+    const int offset = tid * K_QUANTS_PER_ITERATION;
+
+    uint32_t uaux[2];
+    const uint8_t * d = (const uint8_t *)uaux;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+        const float   * y = yy + i * QK_K + offset;
+        const uint8_t * q = x[i].qs + offset;
+        const uint32_t * s = (const uint32_t *)x[i].scales;
+
+        uaux[0] = s[0] & 0x0f0f0f0f;
+        uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
+
+        const float2 dall = __half22float2(x[i].dm);
+
+        float sum1 = 0, sum2 = 0;
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            const uint8_t ql = q[l];
+            sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
+                  + y[l+16] * d[1] * ((ql >> 2) & 3)
+                  + y[l+32] * d[2] * ((ql >> 4) & 3)
+                  + y[l+48] * d[3] * ((ql >> 6) & 3);
+            sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
+        }
+        tmp += dall.x * sum1 - dall.y * sum2;
+    }
+#endif
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (item_ct1.get_local_id(2) == 0) {
+        dst[row] = tmp;
+    }
+}
+
+/*
+DPCT1110:5: The total declared local variable size in device function
+dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
+pressure. Consult with your hardware vendor to find the total register size
+available and adjust the code, or use smaller sub-group size to avoid high
+register pressure.
+*/
+static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
+                                        const float *__restrict__ yy,
+                                        float *__restrict__ dst,
+                                        const int ncols, int nrows,
+                                        const sycl::nd_item<3> &item_ct1) {
+
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+    if (row > nrows) return;
+
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q3_K * x = (const block_q3_K *)vx + ib0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+
+    const uint16_t kmask1 = 0x0303;
+    const uint16_t kmask2 = 0x0f0f;
+
+    const int tid =
+        item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+    const int ix =
+        item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
+
+    const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
+    const int step = 16/K_QUANTS_PER_ITERATION;
+    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const int in = tid - step*im;                        // 0....15 or 0...7
+
+    const uint8_t m = 1 << (4*im);
+
+    const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
+    const int q_offset =  32*im + l0;
+    const int y_offset = 128*im + l0;
+
+    uint16_t utmp[4];
+    const int8_t * s = (const int8_t *)utmp;
+
+    const uint16_t s_shift = 4*im;
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y  = yy + i * QK_K + y_offset;
+        const uint8_t * q = x[i].qs + q_offset;
+        const uint8_t * h = x[i].hmask + l0;
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
+        utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
+        utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
+        utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
+
+        const float d = x[i].d;
+
+        float sum = 0;
+        for (int l = 0; l < n; ++l) {
+            sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
+                 + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
+                 + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
+                 + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
+            sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
+                 + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
+                 + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
+                + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
+        }
+        tmp += d * sum;
+
+    }
+#else
+
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
+    const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
+    const int in = offset/8;                                 // 0 or 1
+    const int im = offset%8;                                 // 0...7
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+        const float   * y = yy + i * QK_K + offset;
+        const uint8_t * q = x[i].qs + offset;
+        const uint8_t * s = x[i].scales;
+
+        const float dall = (float)x[i].d;
+
+        float sum = 0;
+        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+            const uint8_t hl = x[i].hmask[im+l] >> in;
+            const uint8_t ql = q[l];
+            sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
+                 + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
+                 + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
+                 + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
+        }
+        tmp += sum;
+    }
+#endif
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (item_ct1.get_local_id(2) == 0) {
+        dst[row] = tmp;
+    }
+}
+
+/*
+DPCT1110:6: The total declared local variable size in device function
+dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
+pressure. Consult with your hardware vendor to find the total register size
+available and adjust the code, or use smaller sub-group size to avoid high
+register pressure.
+*/
+static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
+                                        const float *__restrict__ yy,
+                                        float *__restrict__ dst,
+                                        const int ncols, int nrows,
+                                        const sycl::nd_item<3> &item_ct1) {
+
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+    if (row > nrows) return;
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q4_K * x = (const block_q4_K *)vx + ib0;
+
+#if QK_K == 256
+    const uint16_t kmask1 = 0x3f3f;
+    const uint16_t kmask2 = 0x0f0f;
+    const uint16_t kmask3 = 0xc0c0;
+
+    const int tid =
+        item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+    const int ix =
+        item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
+
+    const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4
+
+    const int il  = tid/step;                            // 0...3
+    const int ir  = tid - step*il;                       // 0...7 or 0...3
+    const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4
+
+    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+    const int in = il%2;
+
+    const int l0 = n*(2*ir + in);
+    const int q_offset = 32*im + l0;
+    const int y_offset = 64*im + l0;
+
+    uint16_t aux[4];
+    const uint8_t * sc = (const uint8_t *)aux;
+
+#if K_QUANTS_PER_ITERATION == 2
+    uint32_t q32[4];
+    const uint8_t * q4 = (const uint8_t *)q32;
+#else
+    uint16_t q16[4];
+    const uint8_t * q4 = (const uint8_t *)q16;
+#endif
+
+    float tmp = 0; // partial sum for thread in warp
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y1 = yy + i*QK_K + y_offset;
+        const float   * y2 = y1 + 128;
+
+        const float dall = x[i].dm[0];
+        const float dmin = x[i].dm[1];
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux[0] = a[im+0] & kmask1;
+        aux[1] = a[im+2] & kmask1;
+        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+
+#if K_QUANTS_PER_ITERATION == 2
+        const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
+        const uint32_t * q2 = q1 + 16;
+
+        q32[0] = q1[0] & 0x0f0f0f0f;
+        q32[1] = q1[0] & 0xf0f0f0f0;
+        q32[2] = q2[0] & 0x0f0f0f0f;
+        q32[3] = q2[0] & 0xf0f0f0f0;
+
+        sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
+        float smin = 0;
+        for (int l = 0; l < 4; ++l) {
+            s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
+            s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
+            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+        }
+        tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
+                       s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
+               dmin * smin;
+#else
+        const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
+        const uint16_t * q2 = q1 + 32;
+
+        q16[0] = q1[0] & 0x0f0f;
+        q16[1] = q1[0] & 0xf0f0;
+        q16[2] = q2[0] & 0x0f0f;
+        q16[3] = q2[0] & 0xf0f0;
+
+        float4 s = {0.f, 0.f, 0.f, 0.f};
+        float smin = 0;
+        for (int l = 0; l < 2; ++l) {
+            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
+            s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
+            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+        }
+        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#endif
+
+    }
+#else
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
+
+    const int step = tid * K_QUANTS_PER_ITERATION;
+
+    uint16_t aux16[2];
+    const uint8_t * s = (const uint8_t *)aux16;
+
+    float tmp = 0;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+        const uint8_t * q = x[i].qs + step;
+        const float   * y = yy + i*QK_K + step;
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux16[0] = a[0] & 0x0f0f;
+        aux16[1] = (a[0] >> 4) & 0x0f0f;
+        const float d = (float)x[i].dm[0];
+        const float m = (float)x[i].dm[1];
+        float sum = 0.f;
+        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+            sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
+                 + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
+                 + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
+                 + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
+        }
+        tmp += sum;
+    }
+
+#endif
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (tid == 0) {
+        dst[row] = tmp;
+    }
+}
+
+/*
+DPCT1110:7: The total declared local variable size in device function
+dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
+pressure. Consult with your hardware vendor to find the total register size
+available and adjust the code, or use smaller sub-group size to avoid high
+register pressure.
+*/
+static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
+                                        const float *__restrict__ yy,
+                                        float *__restrict__ dst,
+                                        const int ncols,
+                                        const sycl::nd_item<3> &item_ct1) {
+
+    const int row = item_ct1.get_group(2);
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q5_K * x = (const block_q5_K *)vx + ib0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+#if QK_K == 256
+    const uint16_t kmask1 = 0x3f3f;
+    const uint16_t kmask2 = 0x0f0f;
+    const uint16_t kmask3 = 0xc0c0;
+
+    const int tid = item_ct1.get_local_id(2) / 2; // 0...15
+    const int ix = item_ct1.get_local_id(2) % 2;
+
+    const int il  = tid/4;     // 0...3
+    const int ir  = tid - 4*il;// 0...3
+    const int n   = 2;
+
+    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+    const int in = il%2;
+
+    const int l0 = n*(2*ir + in);
+    const int q_offset = 32*im + l0;
+    const int y_offset = 64*im + l0;
+
+    const uint8_t hm1  = 1 << (2*im);
+    const uint8_t hm2  = hm1 << 4;
+
+    uint16_t aux[4];
+    const uint8_t * sc = (const uint8_t *)aux;
+
+    uint16_t q16[8];
+    const uint8_t * q4 = (const uint8_t *)q16;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2) {
+
+        const uint8_t * ql1 = x[i].qs + q_offset;
+        const uint8_t * qh  = x[i].qh + l0;
+        const float   * y1  = yy + i*QK_K + y_offset;
+        const float   * y2  = y1 + 128;
+
+        const float dall = x[i].dm[0];
+        const float dmin = x[i].dm[1];
+
+        const uint16_t * a = (const uint16_t *)x[i].scales;
+        aux[0] = a[im+0] & kmask1;
+        aux[1] = a[im+2] & kmask1;
+        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+
+        sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
+        float smin = 0;
+        const uint16_t * q1 = (const uint16_t *)ql1;
+        const uint16_t * q2 = q1 + 32;
+        q16[0] = q1[0] & 0x0f0f;
+        q16[1] = q1[8] & 0x0f0f;
+        q16[2] = (q1[0] >> 4) & 0x0f0f;
+        q16[3] = (q1[8] >> 4) & 0x0f0f;
+        q16[4] = q2[0] & 0x0f0f;
+        q16[5] = q2[8] & 0x0f0f;
+        q16[6] = (q2[0] >> 4) & 0x0f0f;
+        q16[7] = (q2[8] >> 4) & 0x0f0f;
+        for (int l = 0; l < n; ++l) {
+            sum.x() +=
+                y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
+                y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
+            sum.y() +=
+                y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
+                y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
+            sum.z() +=
+                y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
+                y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
+            sum.w() +=
+                y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
+                y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
+            smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+                  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
+        }
+        tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
+                       sum.w() * sc[5]) -
+               dmin * smin;
+    }
+
+#else
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
+    const int step = tid * K_QUANTS_PER_ITERATION;
+    const int im = step/8;
+    const int in = step%8;
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+        const uint8_t * q = x[i].qs + step;
+        const int8_t  * s = x[i].scales;
+        const float   * y = yy + i*QK_K + step;
+        const float     d = x[i].d;
+        float sum = 0.f;
+        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+            const uint8_t h = x[i].qh[in+j] >> im;
+            sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
+                 + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
+                 + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
+                 + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
+        }
+        tmp += sum;
+    }
+#endif
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (item_ct1.get_local_id(2) == 0) {
+        dst[row] = tmp;
+    }
+}
+
+static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
+                                        const sycl::nd_item<3> &item_ct1) {
+
+    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
+
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+    if (row > nrows) return;
+
+    const int num_blocks_per_row = ncols / QK_K;
+    const int ib0 = row*num_blocks_per_row;
+
+    const block_q6_K * x = (const block_q6_K *)vx + ib0;
+
+#if QK_K == 256
+
+    const int tid =
+        item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+    const int ix =
+        item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
+
+    const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
+
+    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
+    const int in = tid - step*im;                        // 0...15 or 0...7
+
+#if K_QUANTS_PER_ITERATION == 1
+    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
+    const int is = 0;
+#else
+    const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
+    const int is = in / 4;
+#endif
+    const int ql_offset = 64*im + l0;
+    const int qh_offset = 32*im + l0;
+    const int s_offset  =  8*im + is;
+    const int y_offset = 128*im + l0;
+
+    float tmp = 0; // partial sum for thread in warp
+
+    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+
+        const float   * y  = yy + i * QK_K + y_offset;
+        const uint8_t * ql = x[i].ql + ql_offset;
+        const uint8_t * qh = x[i].qh + qh_offset;
+        const int8_t  * s  = x[i].scales + s_offset;
+
+        const float d = x[i].d;
+
+#if K_QUANTS_PER_ITERATION == 1
+        float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
+                  + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
+                  + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
+                  + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
+                  + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
+                  + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
+                  + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
+                  +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
+        tmp += sum;
+#else
+        float sum = 0;
+        for (int l = 0; l < 4; ++l) {
+            sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
+                 + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
+                 + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
+                 + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
+        }
+        tmp += sum;
+#endif
+
+    }
+
+#else
+
+    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
+    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3
+
+    const int step = tid * K_QUANTS_PER_ITERATION;
+
+    float tmp = 0; // partial sum for thread in warp
+
+    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+
+        const float   * y  = yy + i * QK_K + step;
+        const uint8_t * ql = x[i].ql + step;
+        const uint8_t * qh = x[i].qh + step;
+        const int8_t  * s  = x[i].scales;
+
+        const float d = x[i+0].d;
+
+        float sum = 0;
+        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+            sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
+                 + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
+                 + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
+                 + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
+        }
+        tmp += sum;
+
+    }
+
+#endif
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (tid == 0) {
+        dst[row] = tmp;
+    }
+}
+
+static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const sycl::half *x = (const sycl::half *)vx;
+
+    // automatic half -> float type cast if dfloat == float
+    v.x() = x[ib + iqs + 0];
+    v.y() = x[ib + iqs + 1];
+}
+
+static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
+    const float * x = (const float *) vx;
+
+    // automatic half -> float type cast if dfloat == float
+    v.x() = x[ib + iqs + 0];
+    v.y() = x[ib + iqs + 1];
+}
+
+static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
+                          const sycl::nd_item<3> &item_ct1) {
+    const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                   item_ct1.get_local_id(2);
+
+    if (ix >= kx_padded) {
+        return;
+    }
+
+    const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                   item_ct1.get_local_id(1);
+
+    const int i_padded = iy*kx_padded + ix;
+
+    block_q8_1 * y = (block_q8_1 *) vy;
+
+    const int ib = i_padded / QK8_1; // block index
+    const int iqs = i_padded % QK8_1; // quant index
+
+    const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
+    float amax = sycl::fabs((float)xi);
+    float sum = xi;
+
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
+                                    item_ct1.get_sub_group(), amax, mask));
+        sum +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
+    }
+
+    const float d = amax / 127;
+    const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
+
+    y[ib].qs[iqs] = q;
+
+    if (iqs > 0) {
+        return;
+    }
+
+    reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
+    reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
+}
+
+template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void k_get_rows(
+            const void * src0, const int32_t * src1, dst_t * dst,
+            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+            size_t s10, size_t s11, size_t s12,
+            const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
+
+    const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+                     item_ct1.get_local_id(2)) *
+                    2;
+    const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                    item_ct1.get_local_id(1);
+    const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+                     item_ct1.get_local_id(0)) /
+                    ne12;
+    const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+                     item_ct1.get_local_id(0)) %
+                    ne12;
+
+    if (i00 >= ne00) {
+        return;
+    }
+
+    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+    const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
+
+    const int ib = i00/qk; // block index
+    const int iqs = (i00%qk)/qr; // quant index
+    const int iybs = i00 - i00%qk; // dst block start index
+    const int y_offset = qr == 1 ? 1 : qk/2;
+
+    // dequantize
+    dfloat2 v;
+    dequantize_kernel(src0_row, ib, iqs, v);
+
+    dst_row[iybs + iqs + 0] = v.x();
+    dst_row[iybs + iqs + y_offset] = v.y();
+}
+
+template<typename src0_t, typename dst_t>
+static void k_get_rows_float(
+            const src0_t * src0, const int32_t * src1, dst_t * dst,
+            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+            size_t s10, size_t s11, size_t s12,
+            const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
+
+    const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+                    item_ct1.get_local_id(2);
+    const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                    item_ct1.get_local_id(1);
+    const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+                     item_ct1.get_local_id(0)) /
+                    ne12;
+    const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+                     item_ct1.get_local_id(0)) %
+                    ne12;
+
+    if (i00 >= ne00) {
+        return;
+    }
+
+    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+
+    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+    const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
+
+    dst_row[i00] = src0_row[i00];
+}
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
+                             const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  2 * item_ct1.get_local_id(2);
+
+    if (i >= k) {
+        return;
+    }
+
+    const int ib = i/qk; // block index
+    const int iqs = (i%qk)/qr; // quant index
+    const int iybs = i - i%qk; // y block start index
+    const int y_offset = qr == 1 ? 1 : qk/2;
+
+    // dequantize
+    dfloat2 v;
+    dequantize_kernel(vx, ib, iqs, v);
+
+    y[iybs + iqs + 0] = v.x();
+    y[iybs + iqs + y_offset] = v.y();
+}
+
+// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
+// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
+
+#define VDR_Q4_0_Q8_1_MMVQ 2
+#define VDR_Q4_0_Q8_1_MMQ  4
+
+template <int vdr>
+static __dpct_inline__ float vec_dot_q4_0_q8_1_impl(const int *v, const int *u,
+                                                    const float &d4,
+                                                    const sycl::half2 &ds8) {
+    int sumi = 0;
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+
+        // SIMD dot product of quantized values
+        sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
+        sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
+    }
+
+    const sycl::float2 ds8f =
+        ds8.convert<float, sycl::rounding_mode::automatic>();
+
+    // second part effectively subtracts 8 from each quant value
+    return d4 * (sumi * ds8f.x() - (8 * vdr / QI4_0) * ds8f.y());
+}
+
+#define VDR_Q4_1_Q8_1_MMVQ 2
+#define VDR_Q4_1_Q8_1_MMQ  4
+
+template <int vdr>
+static __dpct_inline__ float vec_dot_q4_1_q8_1_impl(const int *v, const int *u,
+                                                    const sycl::half2 &dm4,
+                                                    const sycl::half2 &ds8) {
+
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+
+        // SIMD dot product of quantized values
+        sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
+        sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
+    }
+
+#ifdef GGML_SYCL_F16
+    const sycl::float2 tmp =
+        (dm4 * ds8).convert<float, sycl::rounding_mode::automatic>();
+    const float d4d8 = tmp.x();
+    const float m4s8 = tmp.y();
+#else
+    const sycl::float2 dm4f =
+        dm4.convert<float, sycl::rounding_mode::automatic>();
+    const sycl::float2 ds8f =
+        ds8.convert<float, sycl::rounding_mode::automatic>();
+    const float d4d8 = dm4f.x() * ds8f.x();
+    const float m4s8 = dm4f.y() * ds8f.y();
+#endif // GGML_SYCL_F16
+
+    // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
+    return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
+}
+
+#define VDR_Q5_0_Q8_1_MMVQ 2
+#define VDR_Q5_0_Q8_1_MMQ  4
+
+template <int vdr>
+static __dpct_inline__ float
+vec_dot_q5_0_q8_1_impl(const int *vl, const int *vh, const int *u,
+                       const float &d5, const sycl::half2 &ds8) {
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
+        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+        sumi = dpct::dp4a(vi0, u[2 * i + 0],
+                          sumi); // SIMD dot product of quantized values
+
+        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
+        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
+        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
+        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
+        sumi = dpct::dp4a(vi1, u[2 * i + 1],
+                          sumi); // SIMD dot product of quantized values
+    }
+
+    const sycl::float2 ds8f =
+        ds8.convert<float, sycl::rounding_mode::automatic>();
+
+    // second part effectively subtracts 16 from each quant value
+    return d5 * (sumi * ds8f.x() - (16 * vdr / QI5_0) * ds8f.y());
+}
+
+#define VDR_Q5_1_Q8_1_MMVQ 2
+#define VDR_Q5_1_Q8_1_MMQ  4
+
+template <int vdr>
+static __dpct_inline__ float
+vec_dot_q5_1_q8_1_impl(const int *vl, const int *vh, const int *u,
+                       const sycl::half2 &dm5, const sycl::half2 &ds8) {
+
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
+        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+        sumi = dpct::dp4a(vi0, u[2 * i + 0],
+                          sumi); // SIMD dot product of quantized values
+
+        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
+        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
+        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
+        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
+        sumi = dpct::dp4a(vi1, u[2 * i + 1],
+                          sumi); // SIMD dot product of quantized values
+    }
+
+#ifdef GGML_SYCL_F16
+     const sycl::float2 tmp =
+        (dm5 * ds8).convert<float, sycl::rounding_mode::automatic>();
+    const float d5d8 = tmp.x();
+    const float m5s8 = tmp.y();
+
+
+#else
+    const sycl::float2 dm5f =
+        dm5.convert<float, sycl::rounding_mode::automatic>();
+    const sycl::float2 ds8f =
+        ds8.convert<float, sycl::rounding_mode::automatic>();
+    const float d5d8 = dm5f.x() * ds8f.x();
+    const float m5s8 = dm5f.y() * ds8f.y();
+#endif // GGML_SYCL_F16
+
+    // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
+    return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
+}
+
+#define VDR_Q8_0_Q8_1_MMVQ 2
+#define VDR_Q8_0_Q8_1_MMQ 8
+
+template <int vdr>
+static __dpct_inline__ float vec_dot_q8_0_q8_1_impl(const int *v, const int *u,
+                                                    const float &d8_0,
+                                                    const float &d8_1) {
+
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        // SIMD dot product of quantized values
+        sumi = dpct::dp4a(v[i], u[i], sumi);
+    }
+
+    return d8_0*d8_1 * sumi;
+}
+
+template <int vdr>
+static __dpct_inline__ float vec_dot_q8_1_q8_1_impl(const int *v, const int *u,
+                                                    const sycl::half2 &dm8,
+                                                    const sycl::half2 &ds8) {
+
+    int sumi = 0;
+
+#pragma unroll
+    for (int i = 0; i < vdr; ++i) {
+        // SIMD dot product of quantized values
+        sumi = dpct::dp4a(v[i], u[i], sumi);
+    }
+
+#ifdef GGML_SYCL_F16
+    const sycl::float2 tmp =
+        (dm8 * ds8).convert<float, sycl::rounding_mode::automatic>();
+    const float d8d8 = tmp.x();
+    const float m8s8 = tmp.y();
+#else
+    const sycl::float2 dm8f =
+        dm8.convert<float, sycl::rounding_mode::automatic>();
+    const sycl::float2 ds8f =
+        ds8.convert<float, sycl::rounding_mode::automatic>();
+    const float d8d8 = dm8f.x() * ds8f.x();
+    const float m8s8 = dm8f.y() * ds8f.y();
+#endif // GGML_SYCL_F16
+
+    // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
+    return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
+}
+
+#define VDR_Q2_K_Q8_1_MMVQ 1
+#define VDR_Q2_K_Q8_1_MMQ  2
+
+// contiguous v/x values
+static __dpct_inline__ float vec_dot_q2_K_q8_1_impl_mmvq(
+    const int &v, const int *__restrict__ u, const uint8_t *__restrict__ scales,
+    const sycl::half2 &dm2, const float *__restrict__ d8) {
+
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR2_K; ++i) {
+        const int sc = scales[2*i];
+
+        const int vi = (v >> (2*i)) & 0x03030303;
+
+        sumf_d +=
+            d8[i] * (dpct::dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
+
+        // fill int with 4x m
+        int m = sc >> 4;
+        m |= m <<  8;
+        m |= m << 16;
+        sumf_m += d8[i] *
+                  dpct::dp4a(
+                      m, u[i],
+                      0); // multiply constant q2_K part with sum of q8_1 values
+    }
+
+    const sycl::float2 dm2f =
+        dm2.convert<float, sycl::rounding_mode::automatic>();
+
+    return dm2f.x() * sumf_d - dm2f.y() * sumf_m;
+}
+
+// contiguous u/y values
+static __dpct_inline__ float
+vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
+                           const uint8_t *__restrict__ scales,
+                           const sycl::half2 &dm2, const float &d8) {
+
+    int sumi_d = 0;
+    int sumi_m = 0;
+
+#pragma unroll
+    for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
+        int sumi_d_sc = 0;
+
+        const int sc = scales[i0 / (QI8_1/2)];
+
+        // fill int with 4x m
+        int m = sc >> 4;
+        m |= m <<  8;
+        m |= m << 16;
+
+#pragma unroll
+        for (int i = i0; i < i0 + QI8_1/2; ++i) {
+            sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
+            sumi_m = dpct::dp4a(m, u[i],
+                                sumi_m); // multiply sum of q8_1 values with m
+        }
+
+        sumi_d += sumi_d_sc * (sc & 0xF);
+    }
+
+    const sycl::float2 dm2f =
+        dm2.convert<float, sycl::rounding_mode::automatic>();
+
+    return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m);
+}
+
+#define VDR_Q3_K_Q8_1_MMVQ 1
+#define VDR_Q3_K_Q8_1_MMQ  2
+
+// contiguous v/x values
+static __dpct_inline__ float vec_dot_q3_K_q8_1_impl_mmvq(
+    const int &vl, const int &vh, const int *__restrict__ u,
+    const uint8_t *__restrict__ scales, const int &scale_offset,
+    const float &d3, const float *__restrict__ d8) {
+
+    float sumf = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR3_K; ++i) {
+        const int isc = scale_offset + 2*i;
+
+        const int isc_low = isc % (QK_K/32);
+        const int sc_shift_low = 4 * (isc / (QK_K/32));
+        const int sc_low  = (scales[isc_low] >> sc_shift_low) & 0xF;
+
+        const int isc_high = isc % (QK_K/64);
+        const int sc_shift_high = 2 * (isc / (QK_K/64));
+        const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
+
+        const int sc = (sc_low | sc_high) - 32;
+
+        const int vil = (vl >> (2*i)) & 0x03030303;
+
+        const int vih = ((vh >> i) << 2) & 0x04040404;
+
+        const int vi =
+            dpct::vectorized_binary<sycl::char4>(vil, vih, dpct::sub_sat());
+
+        sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
+    }
+
+    return d3 * sumf;
+}
+
+// contiguous u/y values
+static __dpct_inline__ float
+vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
+                           const int8_t *__restrict__ scales, const float &d3,
+                           const float &d8) {
+
+    int sumi = 0;
+
+#pragma unroll
+    for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
+        int sumi_sc = 0;
+
+        for (int i = i0; i < i0 + QI8_1/2; ++i) {
+            sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product
+        }
+
+        sumi += sumi_sc * scales[i0 / (QI8_1/2)];
+    }
+
+    return d3*d8 * sumi;
+}
+
+#define VDR_Q4_K_Q8_1_MMVQ 2
+#define VDR_Q4_K_Q8_1_MMQ  8
+
+// contiguous v/x values
+static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_vmmq(
+    const int *__restrict__ v, const int *__restrict__ u,
+    const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
+    const sycl::half2 &dm4, const float *__restrict__ d8) {
+
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR4_K; ++i) {
+        const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
+        const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
+
+        const int dot1 =
+            dpct::dp4a(v1i, u[2 * i + 1],
+                       dpct::dp4a(v0i, u[2 * i + 0], 0)); // SIMD dot product
+        const int dot2 =
+            dpct::dp4a(0x01010101, u[2 * i + 1],
+                       dpct::dp4a(0x01010101, u[2 * i + 0], 0)); // sum of u
+
+        sumf_d += d8[i] * (dot1 * sc[i]);
+        sumf_m += d8[i] * (dot2 * m[i]);  // multiply constant part of q4_K with sum of q8_1 values
+    }
+
+    const sycl::float2 dm4f =
+        dm4.convert<float, sycl::rounding_mode::automatic>();
+
+    return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
+}
+
+// contiguous u/y values
+static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq(
+    const int *__restrict__ v, const int *__restrict__ u,
+    const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
+    const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
+
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
+        int sumi_d = 0;
+
+#pragma unroll
+        for (int j = 0; j < QI8_1; ++j) {
+            sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F,
+                                u[i * QI8_1 + j], sumi_d); // SIMD dot product
+        }
+
+        const sycl::float2 ds8f =
+            ds8[i].convert<float, sycl::rounding_mode::automatic>();
+
+        sumf_d += ds8f.x() * (sc[i] * sumi_d);
+        sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
+    }
+
+    const sycl::float2 dm4f =
+        dm4.convert<float, sycl::rounding_mode::automatic>();
+
+    return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
+}
+
+#define VDR_Q5_K_Q8_1_MMVQ 2
+#define VDR_Q5_K_Q8_1_MMQ  8
+
+// contiguous v/x values
+static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_vmmq(
+    const int *__restrict__ vl, const int *__restrict__ vh,
+    const int *__restrict__ u, const uint8_t *__restrict__ sc,
+    const uint8_t *__restrict__ m, const sycl::half2 &dm5,
+    const float *__restrict__ d8) {
+
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR5_K; ++i) {
+        const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
+        const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
+
+        const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
+        const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
+
+        const int v0i = vl0i | vh0i;
+        const int v1i = vl1i | vh1i;
+
+        const int dot1 =
+            dpct::dp4a(v0i, u[2 * i + 0],
+                       dpct::dp4a(v1i, u[2 * i + 1], 0)); // SIMD dot product
+        const int dot2 =
+            dpct::dp4a(0x01010101, u[2 * i + 0],
+                       dpct::dp4a(0x01010101, u[2 * i + 1], 0)); // sum of u
+
+        sumf_d += d8[i] * (dot1 * sc[i]);
+        sumf_m += d8[i] * (dot2 * m[i]);
+
+    }
+
+    const sycl::float2 dm5f =
+        dm5.convert<float, sycl::rounding_mode::automatic>();
+
+    return dm5f.x() * sumf_d - dm5f.y() * sumf_m;
+}
+
+// contiguous u/y values
+static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq(
+    const int *__restrict__ v, const int *__restrict__ u,
+    const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
+    const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
+
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
+        int sumi_d = 0;
+
+#pragma unroll
+        for (int j = 0; j < QI8_1; ++j) {
+            sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j],
+                                sumi_d); // SIMD dot product
+        }
+
+        const sycl::float2 ds8f =
+            ds8[i].convert<float, sycl::rounding_mode::automatic>();
+
+        sumf_d += ds8f.x() * (sc[i] * sumi_d);
+        sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
+    }
+
+    const sycl::float2 dm4f =
+        dm4.convert<float, sycl::rounding_mode::automatic>();
+
+    return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
+}
+
+#define VDR_Q6_K_Q8_1_MMVQ 1
+#define VDR_Q6_K_Q8_1_MMQ  8
+
+// contiguous v/x values
+static __dpct_inline__ float
+vec_dot_q6_K_q8_1_impl_mmvq(const int &vl, const int &vh,
+                            const int *__restrict__ u,
+                            const int8_t *__restrict__ scales, const float &d,
+                            const float *__restrict__ d8) {
+
+    float sumf = 0.0f;
+
+#pragma unroll
+    for (int i = 0; i < QR6_K; ++i) {
+        const int sc = scales[4*i];
+
+        const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
+
+        const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
+
+        const int vi = dpct::vectorized_binary<sycl::char4>(
+            (vil | vih), 0x20202020, dpct::sub_sat()); // vi = (vil | vih) - 32
+
+        sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
+    }
+
+    return d*sumf;
+}
+
+// contiguous u/y values
+static __dpct_inline__ float
+vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
+                           const int8_t *__restrict__ sc, const float &d6,
+                           const float *__restrict__ d8) {
+
+    float sumf_d = 0.0f;
+
+#pragma unroll
+    for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
+        sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+
+#pragma unroll
+        for (int i = i0; i < i0 + 2; ++i) {
+            sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0],
+                                    sumi_d.x()); // SIMD dot product
+            sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1],
+                                    sumi_d.x()); // SIMD dot product
+
+            sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4],
+                                    sumi_d.y()); // SIMD dot product
+            sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5],
+                                    sumi_d.y()); // SIMD dot product
+        }
+
+        sumf_d += d8[i0 / 4] *
+                  (sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y());
+    }
+
+    return d6 * sumf_d;
+}
+
+static __dpct_inline__ float
+vec_dot_q4_0_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
+
+    int v[VDR_Q4_0_Q8_1_MMVQ];
+    int u[2*VDR_Q4_0_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
+        v[i]     = get_int_from_uint8(bq4_0->qs, iqs + i);
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
+    }
+
+    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_qs_q4_0, float *tile_x_d_q4_0) {
+    (void)x_qh; (void)x_sc;
+
+    *x_ql = tile_x_qs_q4_0;
+    *x_dm = (sycl::half2 *)tile_x_d_q4_0;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh; (void)x_sc;
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI4_0;
+    const int kqsx = k % QI4_0;
+
+    const block_q4_0 * bx0 = (const block_q4_0 *) vx;
+
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+        // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
+        int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh; (void)x_sc;
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+    const float * x_dmf = (const float *) x_dm;
+
+    int u[2*VDR_Q4_0_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
+    }
+
+    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
+        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
+         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __dpct_inline__ float
+vec_dot_q4_1_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
+
+    int v[VDR_Q4_1_Q8_1_MMVQ];
+    int u[2*VDR_Q4_1_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
+        v[i]    = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
+    }
+
+    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) {
+    (void)x_qh; (void)x_sc;
+
+    *x_ql = tile_x_qs_q4_1;
+    *x_dm = tile_x_dm_q4_1;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh; (void)x_sc;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI4_1;
+    const int kqsx = k % QI4_1;
+
+    const block_q4_1 * bx0 = (const block_q4_1 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
+        int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh; (void)x_sc;
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+
+    int u[2*VDR_Q4_1_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
+    }
+
+    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
+        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
+         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __dpct_inline__ float
+vec_dot_q5_0_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
+
+    int vl[VDR_Q5_0_Q8_1_MMVQ];
+    int vh[VDR_Q5_0_Q8_1_MMVQ];
+    int  u[2*VDR_Q5_0_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
+        vl[i]    = get_int_from_uint8(bq5_0->qs, iqs + i);
+        vh[i]    = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
+    }
+
+    return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_ql_q5_0, float *tile_x_d_q5_0) {
+    (void)x_qh; (void)x_sc;
+
+    *x_ql = tile_x_ql_q5_0;
+    *x_dm = (sycl::half2 *)tile_x_d_q5_0;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh; (void)x_sc;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI5_0;
+    const int kqsx = k % QI5_0;
+
+    const block_q5_0 * bx0 = (const block_q5_0 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        const int ql = get_int_from_uint8(bxi->qs, kqsx);
+        const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
+
+        int qs0 = (ql >>  0)   & 0x0F0F0F0F;
+        qs0    |= (qh <<  4)   & 0x00000010;  // 0 ->  4
+        qs0    |= (qh << 11)   & 0x00001000;  // 1 -> 12
+        qs0    |= (qh << 18)   & 0x00100000;  // 2 -> 20
+        qs0    |= (qh << 25)   & 0x10000000;  // 3 -> 28
+        qs0 = dpct::vectorized_binary<sycl::char4>(
+            qs0, 0x10101010, dpct::sub_sat()); // subtract 16
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+        int qs1 = (ql >>  4)   & 0x0F0F0F0F;
+        qs1    |= (qh >> 12)   & 0x00000010;  // 16 ->  4
+        qs1    |= (qh >>  5)   & 0x00001000;  // 17 -> 12
+        qs1    |= (qh <<  2)   & 0x00100000;  // 18 -> 20
+        qs1    |= (qh <<  9)   & 0x10000000;  // 19 -> 28
+        qs1 = dpct::vectorized_binary<sycl::char4>(
+            qs1, 0x10101010, dpct::sub_sat()); // subtract 16
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
+    const int kbxd = k % blocks_per_tile_x_row;
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
+        int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh; (void)x_sc;
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+    const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    int u[2*VDR_Q5_0_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
+    }
+
+    return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
+        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __dpct_inline__ float
+vec_dot_q5_1_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
+
+    int vl[VDR_Q5_1_Q8_1_MMVQ];
+    int vh[VDR_Q5_1_Q8_1_MMVQ];
+    int  u[2*VDR_Q5_1_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
+        vl[i]   = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
+        vh[i]   = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
+        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
+    }
+
+    return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) {
+    (void)x_qh; (void)x_sc;
+
+    *x_ql = tile_x_ql_q5_1;
+    *x_dm = tile_x_dm_q5_1;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh; (void)x_sc;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset < nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI5_1;
+    const int kqsx = k % QI5_1;
+
+    const block_q5_1 * bx0 = (const block_q5_1 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+        const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+
+        int qs0 = (ql >>  0) & 0x0F0F0F0F;
+        qs0    |= (qh <<  4) & 0x00000010; // 0 ->  4
+        qs0    |= (qh << 11) & 0x00001000; // 1 -> 12
+        qs0    |= (qh << 18) & 0x00100000; // 2 -> 20
+        qs0    |= (qh << 25) & 0x10000000; // 3 -> 28
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+        int qs1 = (ql >>  4) & 0x0F0F0F0F;
+        qs1    |= (qh >> 12) & 0x00000010; // 16 ->  4
+        qs1    |= (qh >>  5) & 0x00001000; // 17 -> 12
+        qs1    |= (qh <<  2) & 0x00100000; // 18 -> 20
+        qs1    |= (qh <<  9) & 0x10000000; // 19 -> 28
+
+        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
+        int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh; (void)x_sc;
+
+    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+    const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+
+    int u[2*VDR_Q5_1_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
+        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
+        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
+    }
+
+    return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
+        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __dpct_inline__ float
+vec_dot_q8_0_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
+
+    int v[VDR_Q8_0_Q8_1_MMVQ];
+    int u[VDR_Q8_0_Q8_1_MMVQ];
+
+#pragma unroll
+    for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
+        v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
+        u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+    }
+
+    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d,
+                                                      bq8_1->ds[0]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_qs_q8_0, float *tile_x_d_q8_0) {
+    (void)x_qh; (void)x_sc;
+
+    *x_ql = tile_x_qs_q8_0;
+    *x_dm = (sycl::half2 *)tile_x_d_q8_0;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh; (void)x_sc;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI8_0;
+    const int kqsx = k % QI8_0;
+    float * x_dmf = (float *) x_dm;
+
+    const block_q8_0 * bx0 = (const block_q8_0 *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
+        int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh; (void)x_sc;
+
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
+        (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
+         y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
+}
+
+static __dpct_inline__ float
+vec_dot_q2_K_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q2_K * bq2_K = (const block_q2_K *) vbq;
+
+    const int bq8_offset = QR2_K * (iqs / QI8_1);
+    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+    const uint8_t * scales = bq2_K->scales + scale_offset;
+
+    const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
+    int    u[QR2_K];
+    float d8[QR2_K];
+
+#pragma unroll
+    for (int i = 0; i < QR2_K; ++ i) {
+        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+        d8[i] = bq8_1[bq8_offset + i].ds[0];
+    }
+
+    return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K,
+                    int *tile_x_sc_q2_K) {
+    (void)x_qh;
+
+    *x_ql = tile_x_ql_q2_K;
+    *x_dm = tile_x_dm_q2_K;
+    *x_sc = tile_x_sc_q2_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI2_K;
+    const int kqsx = k % QI2_K;
+
+    const block_q2_K * bx0 = (const block_q2_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
+    const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
+        int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
+
+        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
+    }
+}
+
+static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh;
+
+    const int kbx = k / QI2_K;
+    const int ky  = (k % QI2_K) * QR2_K;
+    const float * y_df = (const float *) y_ds;
+
+    int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
+
+    const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
+    const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
+
+#pragma unroll
+    for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
+        v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
+    }
+
+    const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
+
+    const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
+    return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
+}
+
+static __dpct_inline__ float
+vec_dot_q3_K_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q3_K * bq3_K = (const block_q3_K *) vbq;
+
+    const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
+    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+    const float d = bq3_K->d;
+
+    const int vl = get_int_from_uint8(bq3_K->qs, iqs);
+
+    // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+    const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
+
+    int    u[QR3_K];
+    float d8[QR3_K];
+
+#pragma unroll
+    for (int i = 0; i < QR3_K; ++i) {
+        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+        d8[i] = bq8_1[bq8_offset + i].ds[0];
+    }
+
+    return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K,
+                    int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) {
+
+    *x_ql = tile_x_ql_q3_K;
+    *x_dm = tile_x_dm_q3_K;
+    *x_qh = tile_x_qh_q3_K;
+    *x_sc = tile_x_sc_q3_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI3_K;
+    const int kqsx = k % QI3_K;
+
+    const block_q3_K * bx0 = (const block_q3_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
+    const int kbxd = k % blocks_per_tile_x_row;
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
+        int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
+        int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
+
+        // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+        x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
+
+        const int ksc = k % (QI3_K/4);
+
+        const int ksc_low = ksc % (QI3_K/8);
+        const int shift_low = 4 * (ksc / (QI3_K/8));
+        const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
+
+        const int ksc_high = QI3_K/8;
+        const int shift_high = 2 * ksc;
+        const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
+
+        const int sc = dpct::vectorized_binary<sycl::char4>(
+            sc_low | sc_high, 0x20202020, dpct::sub_sat());
+
+        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+
+    const int kbx  = k / QI3_K;
+    const int ky  = (k % QI3_K) * QR3_K;
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
+
+    int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
+
+#pragma unroll
+    for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
+        const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
+        const int shift = 2 * ((ky % 32) / 8);
+        const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
+
+        const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
+        const int vlh = (vh << 2) & 0x04040404;
+
+        v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat());
+    }
+
+    const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
+    return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
+}
+
+static __dpct_inline__ float
+vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+#ifndef GGML_QKK_64
+    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+    int    v[2];
+    int    u[2*QR4_K];
+    float d8[QR4_K];
+
+    // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
+    const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
+
+    // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
+    // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
+    // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
+    // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
+
+    const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+    v[0] = q4[0];
+    v[1] = q4[4];
+
+    const uint16_t * scales = (const uint16_t *)bq4_K->scales;
+    uint16_t aux[2];
+    const int j = bq8_offset/2;
+    if (j < 2) {
+        aux[0] = scales[j+0] & 0x3f3f;
+        aux[1] = scales[j+2] & 0x3f3f;
+    } else {
+        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+    }
+    const uint8_t * sc = (const uint8_t *)aux;
+    const uint8_t * m  = sc + 2;
+
+    for (int i = 0; i < QR4_K; ++i) {
+        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+        d8[i] = bq8i->ds[0];
+
+        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+        u[2*i+0] = q8[0];
+        u[2*i+1] = q8[4];
+    }
+
+    return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
+
+#else
+
+#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
+    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+    float sumf_d = 0.0f;
+    float sumf_m = 0.0f;
+
+    uint16_t aux16[2];
+    const uint8_t * s = (const uint8_t *)aux16;
+
+    const uint16_t * a = (const uint16_t *)bq4_K->scales;
+    aux16[0] = a[0] & 0x0f0f;
+    aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+    const float dall = bq4_K->dm[0];
+    const float dmin = bq4_K->dm[1];
+
+    const float d8_1 = __low2float(bq8_1[0].ds);
+    const float d8_2 = __low2float(bq8_1[1].ds);
+
+    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+    const int * q4 = (const int *)bq4_K->qs + (iqs/2);
+    const int v1 = q4[0];
+    const int v2 = q4[4];
+
+    const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
+    const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
+    const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
+    const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
+
+    sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
+    sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
+
+    return dall * sumf_d - dmin * sumf_m;
+
+#else
+    bad_arch();
+#endif // __SYCL_ARCH__ >= VER_4VEC
+
+#endif
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K,
+                    int *tile_x_sc_q4_K) {
+    (void)x_qh;
+
+    *x_ql = tile_x_ql_q4_K;
+    *x_dm = tile_x_dm_q4_K;
+    *x_sc = tile_x_sc_q4_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI4_K; // == 0 if QK_K == 256
+    const int kqsx = k % QI4_K; // == k if QK_K == 256
+
+    const block_q4_K * bx0 = (const block_q4_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
+    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
+        int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
+#else
+        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
+#endif
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
+
+        const int * scales = (const int *) bxi->scales;
+
+        const int ksc = k % (WARP_SIZE/8);
+
+        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
+
+        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh;
+
+    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
+
+    const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
+    return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
+                                      x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
+}
+
+static __dpct_inline__ float
+vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+#ifndef GGML_QKK_64
+    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+    int   vl[2];
+    int   vh[2];
+    int    u[2*QR5_K];
+    float d8[QR5_K];
+
+    const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
+    const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+    const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
+
+    vl[0] = ql[0];
+    vl[1] = ql[4];
+
+    vh[0] = qh[0] >> bq8_offset;
+    vh[1] = qh[4] >> bq8_offset;
+
+    const uint16_t * scales = (const uint16_t *)bq5_K->scales;
+    uint16_t aux[2];
+    const int j = bq8_offset/2;
+    if (j < 2) {
+        aux[0] = scales[j+0] & 0x3f3f;
+        aux[1] = scales[j+2] & 0x3f3f;
+    } else {
+        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+    }
+    const uint8_t * sc = (const uint8_t *)aux;
+    const uint8_t * m  = sc + 2;
+
+#pragma unroll
+    for (int i = 0; i < QR5_K; ++i) {
+        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+        d8[i] = bq8i->ds[0];
+
+        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+        u[2*i+0] = q8[0];
+        u[2*i+1] = q8[4];
+    }
+
+    return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
+
+#else
+
+#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
+    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+    const int8_t * s = bq5_K->scales;
+
+    const float d = bq5_K->d;
+
+    const float d8_1 = __low2half(bq8_1[0].ds);
+    const float d8_2 = __low2half(bq8_1[1].ds);
+
+    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+    const int * ql = (const int *)bq5_K->qs + (iqs/2);
+    const int vl1 = ql[0];
+    const int vl2 = ql[4];
+
+    const int step = 4 * (iqs/2); // 0, 4, 8, 12
+    const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
+    const int in = step%8; // 0, 4, 0, 4
+    const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
+
+    const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
+    const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
+    const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
+    const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
+
+    const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+                       + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
+
+    return d * sumf_d;
+
+#else
+    bad_arch();
+#endif // __SYCL_ARCH__ >= VER_4VEC
+
+#endif
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K,
+                    int *tile_x_sc_q5_K) {
+    (void)x_qh;
+
+    *x_ql = tile_x_ql_q5_K;
+    *x_dm = tile_x_dm_q5_K;
+    *x_sc = tile_x_sc_q5_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI5_K; // == 0 if QK_K == 256
+    const int kqsx = k % QI5_K; // == k if QK_K == 256
+
+    const block_q5_K * bx0 = (const block_q5_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
+        const int ky = QR5_K*kqsx;
+
+        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+        const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
+        const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
+        const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
+
+        const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
+        const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
+
+        x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
+        x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
+    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
+        int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+        x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
+#endif
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
+
+        const int * scales = (const int *) bxi->scales;
+
+        const int ksc = k % (WARP_SIZE/8);
+
+        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
+
+        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+    }
+}
+
+static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh;
+
+    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
+
+    const int index_x = i * (QR5_K*WARP_SIZE + 1) +  QR5_K*k;
+    const int index_y = j * WARP_SIZE             + (QR5_K*k) % WARP_SIZE;
+    return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
+                                      x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
+}
+
+static __dpct_inline__ float
+vec_dot_q6_K_q8_1(const void *__restrict__ vbq,
+                  const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
+
+    const block_q6_K * bq6_K = (const block_q6_K *) vbq;
+
+    const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
+    const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
+    const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
+
+    const int vl = get_int_from_uint8(bq6_K->ql, iqs);
+    const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
+
+    const int8_t * scales = bq6_K->scales + scale_offset;
+
+    int    u[QR6_K];
+    float d8[QR6_K];
+
+#pragma unroll
+    for (int i = 0; i < QR6_K; ++i) {
+        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
+        d8[i] = bq8_1[bq8_offset + 2 * i].ds[0];
+    }
+
+    return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+                    int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) {
+    (void)x_qh;
+
+    *x_ql = tile_x_ql;
+    *x_dm = tile_x_dm;
+    *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+                sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+                int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+                const int &k, const int &blocks_per_row) {
+    (void)x_qh;
+
+    GGML_SYCL_ASSUME(i_offset >= 0);
+    GGML_SYCL_ASSUME(i_offset <  nwarps);
+    GGML_SYCL_ASSUME(k >= 0);
+    GGML_SYCL_ASSUME(k <  WARP_SIZE);
+
+    const int kbx  = k / QI6_K; // == 0 if QK_K == 256
+    const int kqsx = k % QI6_K; // == k if QK_K == 256
+
+    const block_q6_K * bx0 = (const block_q6_K *) vx;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+        int i = i0 + i_offset;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
+        const int ky = QR6_K*kqsx;
+
+        const int ql = get_int_from_uint8(bxi->ql, kqsx);
+        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+        const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
+        const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
+        const int qh1 =  (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4))))       & 0x30303030;
+
+        const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
+        const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
+
+        x_ql[i * (2 * WARP_SIZE + 1) + kq0] =
+            dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020,
+                                                 dpct::sub_sat());
+        x_ql[i * (2 * WARP_SIZE + 1) + kq1] =
+            dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020,
+                                                 dpct::sub_sat());
+    }
+
+    const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
+    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
+    float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
+        int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+        x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
+    }
+
+#pragma unroll
+    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+        if (need_check) {
+            i = sycl::min(i, i_max);
+        }
+
+        const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
+
+        x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
+    }
+}
+
+static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat(
+    const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+    const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+    const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+    const int &i, const int &j, const int &k) {
+    (void)x_qh;
+
+    const float * x_dmf = (const float *) x_dm;
+    const float * y_df  = (const float *) y_ds;
+
+    const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
+
+    const int index_x = i * (QR6_K*WARP_SIZE + 1) +  QR6_K*k;
+    const int index_y = j * WARP_SIZE             + (QR6_K*k) % WARP_SIZE;
+    return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
+}
+
+template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
+          int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr,
+          vec_dot_q_mul_mat_sycl_t vec_dot>
+/*
+DPCT1110:8: The total declared local variable size in device function mul_mat_q
+exceeds 128 bytes and may cause high register pressure. Consult with your
+hardware vendor to find the total register size available and adjust the code,
+or use smaller sub-group size to avoid high register pressure.
+*/
+static __dpct_inline__ void
+mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy,
+          float *__restrict__ dst, const int ncols_x, const int nrows_x,
+          const int ncols_y, const int nrows_y, const int nrows_dst,
+          int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh,
+          int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs,
+          sycl::half2 *tile_y_ds) {
+
+    const block_q_t  * x = (const block_q_t  *) vx;
+    const block_q8_1 * y = (const block_q8_1 *) vy;
+
+    const int blocks_per_row_x = ncols_x / qk;
+    const int blocks_per_col_y = nrows_y / QK8_1;
+    const int blocks_per_warp = WARP_SIZE / qi;
+
+    const int & ncols_dst = ncols_y;
+
+    const int row_dst_0 = item_ct1.get_group(2) * mmq_y;
+    const int & row_x_0 = row_dst_0;
+
+    const int col_dst_0 = item_ct1.get_group(1) * mmq_x;
+    const int & col_y_0 = col_dst_0;
+
+    float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
+
+    for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
+
+        load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm,
+                   tile_x_qh, tile_x_sc, item_ct1.get_local_id(1),
+                   nrows_x - row_x_0 - 1, item_ct1.get_local_id(2),
+                   blocks_per_row_x);
+
+#pragma unroll
+        for (int ir = 0; ir < qr; ++ir) {
+            const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2);
+            const int kbxd = kqs / QI8_1;
+
+#pragma unroll
+            for (int i = 0; i < mmq_x; i += nwarps) {
+                const int col_y_eff = dpct::min(
+                    (unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i),
+                    ncols_y - 1); // to prevent out-of-bounds memory accesses
+
+                const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
+
+                const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE +
+                                    kqs % WARP_SIZE;
+                tile_y_qs[index_y] = get_int_from_int8_aligned(
+                    by0->qs, item_ct1.get_local_id(2) % QI8_1);
+            }
+
+#pragma unroll
+            for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
+                const int ids =
+                    (ids0 + item_ct1.get_local_id(1) * QI8_1 +
+                     item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) %
+                    mmq_x;
+                const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1);
+                const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1);
+
+                // if the sum is not needed it's faster to transform the scale to f32 ahead of time
+                const sycl::half2 *dsi_src =
+                    &y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) +
+                       ir * (WARP_SIZE / QI8_1) + kby]
+                         .ds;
+                sycl::half2 *dsi_dst =
+                    &tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby];
+                if (need_sum) {
+                    *dsi_dst = *dsi_src;
+                } else {
+                    float * dfi_dst = (float *) dsi_dst;
+                    *dfi_dst = (*dsi_src)[0];
+                }
+            }
+
+            /*
+            DPCT1118:9: SYCL group functions and algorithms must be encountered
+            in converged control flow. You may need to adjust the code.
+            */
+            /*
+            DPCT1065:56: Consider replacing sycl::nd_item::barrier() with
+            sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+            better performance if there is no access to global memory.
+            */
+            item_ct1.barrier();
+
+// #pragma unroll // unrolling this loop causes too much register pressure
+            for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
+#pragma unroll
+                for (int j = 0; j < mmq_x; j += nwarps) {
+#pragma unroll
+                    for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+                        sum[i / WARP_SIZE][j / nwarps] += vec_dot(
+                            tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
+                            tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i,
+                            item_ct1.get_local_id(1) + j, k);
+                    }
+                }
+            }
+
+            /*
+            DPCT1118:10: SYCL group functions and algorithms must be encountered
+            in converged control flow. You may need to adjust the code.
+            */
+            /*
+            DPCT1065:57: Consider replacing sycl::nd_item::barrier() with
+            sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+            better performance if there is no access to global memory.
+            */
+            item_ct1.barrier();
+        }
+    }
+
+#pragma unroll
+    for (int j = 0; j < mmq_x; j += nwarps) {
+        const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1);
+
+        if (col_dst >= ncols_dst) {
+            return;
+        }
+
+#pragma unroll
+        for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+            const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i;
+
+            if (row_dst >= nrows_dst) {
+                continue;
+            }
+
+            dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
+        }
+    }
+}
+
+#define  MMQ_X_Q4_0_RDNA2  64
+#define  MMQ_Y_Q4_0_RDNA2  128
+#define NWARPS_Q4_0_RDNA2  8
+#define  MMQ_X_Q4_0_RDNA1  64
+#define  MMQ_Y_Q4_0_RDNA1  64
+#define NWARPS_Q4_0_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q4_0_AMPERE 4
+#define  MMQ_Y_Q4_0_AMPERE 32
+#define NWARPS_Q4_0_AMPERE 4
+#else
+#define  MMQ_X_Q4_0_AMPERE 64
+#define  MMQ_Y_Q4_0_AMPERE 128
+#define NWARPS_Q4_0_AMPERE 4
+#endif
+#define  MMQ_X_Q4_0_PASCAL 64
+#define  MMQ_Y_Q4_0_PASCAL 64
+#define NWARPS_Q4_0_PASCAL 8
+
+template <bool need_check> static void
+    mul_mat_q4_0(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0,
+    int *tile_y_qs, sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+
+    const int mmq_x  =  MMQ_X_Q4_0_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q4_0_AMPERE;
+    const int nwarps = NWARPS_Q4_0_AMPERE;
+    allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_qs_q4_0, tile_x_d_q4_0);
+    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
+              load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ,
+              vec_dot_q4_0_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q4_1_RDNA2  64
+#define  MMQ_Y_Q4_1_RDNA2  128
+#define NWARPS_Q4_1_RDNA2  8
+#define  MMQ_X_Q4_1_RDNA1  64
+#define  MMQ_Y_Q4_1_RDNA1  64
+#define NWARPS_Q4_1_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q4_1_AMPERE 4
+#define  MMQ_Y_Q4_1_AMPERE 32
+#define NWARPS_Q4_1_AMPERE 4
+#else
+#define  MMQ_X_Q4_1_AMPERE 64
+#define  MMQ_Y_Q4_1_AMPERE 128
+#define NWARPS_Q4_1_AMPERE 4
+#endif
+#define  MMQ_X_Q4_1_PASCAL 64
+#define  MMQ_Y_Q4_1_PASCAL 64
+#define NWARPS_Q4_1_PASCAL 8
+
+template <bool need_check> static void
+    mul_mat_q4_1(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1,
+    sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q4_1_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q4_1_AMPERE;
+    const int nwarps = NWARPS_Q4_1_AMPERE;
+    allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_qs_q4_1, tile_x_dm_q4_1);
+    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
+              load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ,
+              vec_dot_q4_1_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q5_0_RDNA2  64
+#define  MMQ_Y_Q5_0_RDNA2  128
+#define NWARPS_Q5_0_RDNA2  8
+#define  MMQ_X_Q5_0_RDNA1  64
+#define  MMQ_Y_Q5_0_RDNA1  64
+#define NWARPS_Q5_0_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q5_0_AMPERE 4
+#define  MMQ_Y_Q5_0_AMPERE 32
+#define NWARPS_Q5_0_AMPERE 4
+#else
+#define  MMQ_X_Q5_0_AMPERE 128
+#define  MMQ_Y_Q5_0_AMPERE 64
+#define NWARPS_Q5_0_AMPERE 4
+#endif
+#define  MMQ_X_Q5_0_PASCAL 64
+#define  MMQ_Y_Q5_0_PASCAL 64
+#define NWARPS_Q5_0_PASCAL 8
+
+template <bool need_check> static void
+    mul_mat_q5_0(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0,
+    int *tile_y_qs, sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q5_0_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q5_0_AMPERE;
+    const int nwarps = NWARPS_Q5_0_AMPERE;
+    allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_ql_q5_0, tile_x_d_q5_0);
+    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
+              load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ,
+              vec_dot_q5_0_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q5_1_RDNA2  64
+#define  MMQ_Y_Q5_1_RDNA2  128
+#define NWARPS_Q5_1_RDNA2  8
+#define  MMQ_X_Q5_1_RDNA1  64
+#define  MMQ_Y_Q5_1_RDNA1  64
+#define NWARPS_Q5_1_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q5_1_AMPERE 4
+#define  MMQ_Y_Q5_1_AMPERE 32
+#define NWARPS_Q5_1_AMPERE 4
+#else
+#define  MMQ_X_Q5_1_AMPERE 128
+#define  MMQ_Y_Q5_1_AMPERE 64
+#define NWARPS_Q5_1_AMPERE 4
+#endif
+#define  MMQ_X_Q5_1_PASCAL 64
+#define  MMQ_Y_Q5_1_PASCAL 64
+#define NWARPS_Q5_1_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q5_1(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1,
+    sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q5_1_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q5_1_AMPERE;
+    const int nwarps = NWARPS_Q5_1_AMPERE;
+    allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_ql_q5_1, tile_x_dm_q5_1);
+    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
+              load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ,
+              vec_dot_q5_1_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q8_0_RDNA2  64
+#define  MMQ_Y_Q8_0_RDNA2  128
+#define NWARPS_Q8_0_RDNA2  8
+#define  MMQ_X_Q8_0_RDNA1  64
+#define  MMQ_Y_Q8_0_RDNA1  64
+#define NWARPS_Q8_0_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q8_0_AMPERE 4
+#define  MMQ_Y_Q8_0_AMPERE 32
+#define NWARPS_Q8_0_AMPERE 4
+#else
+#define  MMQ_X_Q8_0_AMPERE 128
+#define  MMQ_Y_Q8_0_AMPERE 64
+#define NWARPS_Q8_0_AMPERE 4
+#endif
+#define  MMQ_X_Q8_0_PASCAL 64
+#define  MMQ_Y_Q8_0_PASCAL 64
+#define NWARPS_Q8_0_PASCAL 8
+
+template <bool need_check> static void
+    mul_mat_q8_0(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0,
+    int *tile_y_qs, sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q8_0_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q8_0_AMPERE;
+    const int nwarps = NWARPS_Q8_0_AMPERE;
+    allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_qs_q8_0, tile_x_d_q8_0);
+    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
+              load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ,
+              vec_dot_q8_0_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q2_K_RDNA2  64
+#define  MMQ_Y_Q2_K_RDNA2  128
+#define NWARPS_Q2_K_RDNA2  8
+#define  MMQ_X_Q2_K_RDNA1  128
+#define  MMQ_Y_Q2_K_RDNA1  32
+#define NWARPS_Q2_K_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q2_K_AMPERE 4
+#define  MMQ_Y_Q2_K_AMPERE 32
+#define NWARPS_Q2_K_AMPERE 4
+#else
+#define  MMQ_X_Q2_K_AMPERE 64
+#define  MMQ_Y_Q2_K_AMPERE 128
+#define NWARPS_Q2_K_AMPERE 4
+#endif
+#define  MMQ_X_Q2_K_PASCAL 64
+#define  MMQ_Y_Q2_K_PASCAL 64
+#define NWARPS_Q2_K_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q2_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K,
+    sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs,
+    sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q2_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q2_K_AMPERE;
+    const int nwarps = NWARPS_Q2_K_AMPERE;
+    allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K);
+    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
+              load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ,
+              vec_dot_q2_K_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q3_K_RDNA2  128
+#define  MMQ_Y_Q3_K_RDNA2  64
+#define NWARPS_Q3_K_RDNA2  8
+#define  MMQ_X_Q3_K_RDNA1  32
+#define  MMQ_Y_Q3_K_RDNA1  128
+#define NWARPS_Q3_K_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q3_K_AMPERE 4
+#define  MMQ_Y_Q3_K_AMPERE 32
+#define NWARPS_Q3_K_AMPERE 4
+#else
+#define  MMQ_X_Q3_K_AMPERE 128
+#define  MMQ_Y_Q3_K_AMPERE 128
+#define NWARPS_Q3_K_AMPERE 4
+#endif
+#define  MMQ_X_Q3_K_PASCAL 64
+#define  MMQ_Y_Q3_K_PASCAL 64
+#define NWARPS_Q3_K_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q3_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K,
+    sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K,
+    int *tile_y_qs, sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q3_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q3_K_AMPERE;
+    const int nwarps = NWARPS_Q3_K_AMPERE;
+    allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K,
+                               tile_x_sc_q3_K);
+    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
+              load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ,
+              vec_dot_q3_K_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q4_K_RDNA2  64
+#define  MMQ_Y_Q4_K_RDNA2  128
+#define NWARPS_Q4_K_RDNA2  8
+#define  MMQ_X_Q4_K_RDNA1  32
+#define  MMQ_Y_Q4_K_RDNA1  64
+#define NWARPS_Q4_K_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q4_K_AMPERE 4
+#define  MMQ_Y_Q4_K_AMPERE 32
+#define NWARPS_Q4_K_AMPERE 4
+#else
+#define  MMQ_X_Q4_K_AMPERE 64
+#define  MMQ_Y_Q4_K_AMPERE 128
+#define NWARPS_Q4_K_AMPERE 4
+#endif
+#define  MMQ_X_Q4_K_PASCAL 64
+#define  MMQ_Y_Q4_K_PASCAL 64
+#define NWARPS_Q4_K_PASCAL 8
+
+template <bool need_check> static void
+    mul_mat_q4_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K,
+    sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs,
+    sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q4_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q4_K_AMPERE;
+    const int nwarps = NWARPS_Q4_K_AMPERE;
+    allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K);
+    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
+              load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ,
+              vec_dot_q4_K_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q5_K_RDNA2  64
+#define  MMQ_Y_Q5_K_RDNA2  128
+#define NWARPS_Q5_K_RDNA2  8
+#define  MMQ_X_Q5_K_RDNA1  32
+#define  MMQ_Y_Q5_K_RDNA1  64
+#define NWARPS_Q5_K_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q5_K_AMPERE 4
+#define  MMQ_Y_Q5_K_AMPERE 32
+#define NWARPS_Q5_K_AMPERE 4
+#else
+#define  MMQ_X_Q5_K_AMPERE 64
+#define  MMQ_Y_Q5_K_AMPERE 128
+#define NWARPS_Q5_K_AMPERE 4
+#endif
+#define  MMQ_X_Q5_K_PASCAL 64
+#define  MMQ_Y_Q5_K_PASCAL 64
+#define NWARPS_Q5_K_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q5_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K,
+    sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs,
+    sycl::half2 *tile_y_ds) {
+    int   * tile_x_ql = nullptr;
+    sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q5_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q5_K_AMPERE;
+    const int nwarps = NWARPS_Q5_K_AMPERE;
+    allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K);
+    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
+              load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ,
+              vec_dot_q5_K_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define  MMQ_X_Q6_K_RDNA2  64
+#define  MMQ_Y_Q6_K_RDNA2  128
+#define NWARPS_Q6_K_RDNA2  8
+#define  MMQ_X_Q6_K_RDNA1  32
+#define  MMQ_Y_Q6_K_RDNA1  64
+#define NWARPS_Q6_K_RDNA1  8
+#if defined(SYCL_USE_XMX)
+#define  MMQ_X_Q6_K_AMPERE 4
+#define  MMQ_Y_Q6_K_AMPERE 32
+#define NWARPS_Q6_K_AMPERE 4
+#else
+#define  MMQ_X_Q6_K_AMPERE 64
+#define  MMQ_Y_Q6_K_AMPERE 64
+#define NWARPS_Q6_K_AMPERE 4
+#endif
+#define  MMQ_X_Q6_K_PASCAL 64
+#define  MMQ_Y_Q6_K_PASCAL 64
+#define NWARPS_Q6_K_PASCAL 8
+
+template <bool need_check> static void
+    mul_mat_q6_K(
+    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+    const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm,
+    int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) {
+    // int   * tile_x_ql = nullptr;
+    // sycl::half2 *tile_x_dm = nullptr;
+    int   * tile_x_qh = nullptr;
+    // int   * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+    const int mmq_x  =  MMQ_X_Q6_K_AMPERE;
+    const int mmq_y  =  MMQ_Y_Q6_K_AMPERE;
+    const int nwarps = NWARPS_Q6_K_AMPERE;
+    allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+                               tile_x_ql, tile_x_dm, tile_x_sc);
+    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
+              load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ,
+              vec_dot_q6_K_q8_1_mul_mat>(
+        vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+        tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
+static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows,
+                          const sycl::nd_item<3> &item_ct1) {
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+
+    if (row >= nrows) {
+        return;
+    }
+
+    const int blocks_per_row = ncols / qk;
+    const int blocks_per_warp = vdr * WARP_SIZE / qi;
+
+// partial sum for each thread
+    float tmp = 0.0f;
+
+    const block_q_t  * x = (const block_q_t  *) vx;
+    const block_q8_1 * y = (const block_q8_1 *) vy;
+
+    for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
+        const int ibx = row * blocks_per_row + i +
+                        item_ct1.get_local_id(2) / (qi / vdr); // x block index
+
+        const int iby = (i + item_ct1.get_local_id(2) / (qi / vdr)) *
+                        (qk / QK8_1); // y block index that aligns with ibx
+
+        const int iqs =
+            vdr *
+            (item_ct1.get_local_id(2) %
+             (qi / vdr)); // x block quant index when casting the quants to int
+
+        tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
+    }
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (item_ct1.get_local_id(2) == 0) {
+        dst[row] = tmp;
+    }
+}
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
+static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
+                                   const sycl::nd_item<3> &item_ct1) {
+    // qk = quantized weights per x block
+    // qr = number of quantized weights per data value in x block
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+                    item_ct1.get_local_id(1);
+
+    if (row >= nrows) {
+        return;
+    }
+
+    const int tid = item_ct1.get_local_id(2);
+
+    const int iter_stride = 2*GGML_SYCL_DMMV_X;
+    const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
+    const int y_offset = qr == 1 ? 1 : qk/2;
+
+// partial sum for each thread
+#ifdef GGML_SYCL_F16
+    sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
+#else
+    float tmp = 0.0f;
+#endif // GGML_SYCL_F16
+
+    for (int i = 0; i < ncols; i += iter_stride) {
+        const int col = i + vals_per_iter*tid;
+        const int ib = (row*ncols + col)/qk; // x block index
+        const int iqs = (col%qk)/qr; // x quant index
+        const int iybs = col - col%qk; // y block start index
+
+// processing >2 values per i iter is faster for fast GPUs
+#pragma unroll
+        for (int j = 0; j < vals_per_iter; j += 2) {
+            // process 2 vals per j iter
+
+            // dequantize
+            // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
+            dfloat2 v;
+            dequantize_kernel(vx, ib, iqs + j/qr, v);
+
+            // matrix multiplication
+            // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
+#ifdef GGML_SYCL_F16
+            dfloat2 t1{y[iybs + iqs + j / qr + 0],
+                        y[iybs + iqs + j / qr + y_offset]};
+
+            tmp += v * t1;
+#else
+            tmp += v.x() * y[iybs + iqs + j / qr + 0];
+            tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
+#endif // GGML_SYCL_F16
+        }
+    }
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (tid == 0) {
+#ifdef GGML_SYCL_F16
+        dst[row] = tmp.x() + tmp.y();
+#else
+        dst[row] = tmp;
+#endif // GGML_SYCL_F16
+    }
+}
+
+static void mul_mat_p021_f16_f32(
+    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
+    const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
+    const sycl::nd_item<3> &item_ct1) {
+
+    const sycl::half *x = (const sycl::half *)vx;
+
+    const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                      item_ct1.get_local_id(1);
+    const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+                        item_ct1.get_local_id(0);
+    const int channel_x = channel / (nchannels_y / nchannels_x);
+
+    const int nrows_y = ncols_x;
+    const int nrows_dst = nrows_x;
+    const int row_dst = row_x;
+
+    float tmp = 0.0f;
+
+    for (int col_x0 = 0; col_x0 < ncols_x;
+         col_x0 += item_ct1.get_local_range(2)) {
+        const int col_x = col_x0 + item_ct1.get_local_id(2);
+
+        if (col_x >= ncols_x) {
+            break;
+        }
+
+        // x is transposed and permuted
+        const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
+        const float xi =
+            sycl::vec<sycl::half, 1>(x[ix])
+                .convert<float, sycl::rounding_mode::automatic>()[0];
+
+        const int row_y = col_x;
+
+
+        // y is not transposed but permuted
+        const int iy = channel*nrows_y + row_y;
+
+        tmp += xi * y[iy];
+    }
+
+    // dst is not transposed and not permuted
+    const int idst = channel*nrows_dst + row_dst;
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (item_ct1.get_local_id(2) == 0) {
+        dst[idst] = tmp;
+    }
+}
+
+static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
+    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
+    const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
+    const sycl::nd_item<3> &item_ct1) {
+
+    const sycl::half *x = (const sycl::half *)vx;
+
+    const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                      item_ct1.get_local_id(1);
+    const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+                        item_ct1.get_local_id(0);
+    const int channel_x = channel / channel_x_divisor;
+
+    const int nrows_y   = ncols_x;
+    const int nrows_dst = nrows_x;
+    const int row_dst   = row_x;
+
+    const int idst = channel*nrows_dst + row_dst;
+
+    float tmp = 0.0f;
+
+    for (int col_x0 = 0; col_x0 < ncols_x;
+         col_x0 += item_ct1.get_local_range(2)) {
+        const int col_x = col_x0 + item_ct1.get_local_id(2);
+
+        if (col_x >= ncols_x) {
+            break;
+        }
+
+        const int row_y = col_x;
+
+        const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
+        const int iy = channel*nrows_y + row_y;
+
+        const float xi =
+            sycl::vec<sycl::half, 1>(x[ix])
+                .convert<float, sycl::rounding_mode::automatic>()[0];
+
+        tmp += xi * y[iy];
+    }
+
+    // sum up partial sums and write back result
+#pragma unroll
+    for (int mask = 16; mask > 0; mask >>= 1) {
+        tmp +=
+            dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+    }
+
+    if (item_ct1.get_local_id(2) == 0) {
+        dst[idst] = tmp;
+    }
+}
+
+static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    float * dsti = (float *) cdsti;
+
+    *dsti = *xi;
+}
+
+static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    sycl::half *dsti = (sycl::half *)cdsti;
+
+    *dsti = sycl::vec<float, 1>(*xi)
+                .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+}
+
+static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
+    const sycl::half *xi = (const sycl::half *)cxi;
+    sycl::half *dsti = (sycl::half *)cdsti;
+
+    *dsti = *xi;
+}
+
+static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
+    const sycl::half *xi = (const sycl::half *)cxi;
+    float *dsti = (float *)cdsti;
+
+    *dsti = *xi;
+}
+
+static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
+    const int16_t *xi = (const int16_t *)cxi;
+    int16_t *dsti = (int16_t *)cdsti;
+
+    *dsti = *xi;
+}
+
+static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
+    const int32_t *xi = (const int32_t *)cxi;
+    int32_t *dsti = (int32_t *)cdsti;
+
+    *dsti = *xi;
+}
+
+template <cpy_kernel_t cpy_1>
+static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
+                        const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+                        const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+                        const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    if (i >= ne) {
+        return;
+    }
+
+    // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
+    // then combine those indices with the corresponding byte offsets to get the total offsets
+    const int i03 = i/(ne00 * ne01 * ne02);
+    const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+    const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
+    const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+    const int i13 = i/(ne10 * ne11 * ne12);
+    const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+    const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+    const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+    const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
+
+    cpy_1(cx + x_offset, cdst + dst_offset);
+}
+
+static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q8_0 * dsti = (block_q8_0 *) cdsti;
+
+    float amax = 0.0f; // absolute max
+
+    for (int j = 0; j < QK8_0; j++) {
+        const float v = xi[j];
+        amax = sycl::fmax(amax, sycl::fabs((float)v));
+    }
+
+    const float d = amax / ((1 << 7) - 1);
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->d = d;
+
+    for (int j = 0; j < QK8_0; ++j) {
+        const float x0 = xi[j]*id;
+
+        dsti->qs[j] = sycl::round((float)x0);
+    }
+}
+
+static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q4_0 * dsti = (block_q4_0 *) cdsti;
+
+    float amax = 0.0f;
+    float vmax = 0.0f;
+
+    for (int j = 0; j < QK4_0; ++j) {
+        const float v = xi[j];
+        if (amax < sycl::fabs((float)v)) {
+            amax = sycl::fabs((float)v);
+            vmax = v;
+        }
+    }
+
+    const float d  = vmax / -8;
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->d = d;
+
+    for (int j = 0; j < QK4_0/2; ++j) {
+        const float x0 = xi[0       + j]*id;
+        const float x1 = xi[QK4_0/2 + j]*id;
+
+        const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
+        const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
+
+        dsti->qs[j]  = xi0;
+        dsti->qs[j] |= xi1 << 4;
+    }
+}
+
+static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
+    const float * xi = (const float *) cxi;
+    block_q4_1 * dsti = (block_q4_1 *) cdsti;
+
+    float vmin = FLT_MAX;
+    float vmax = -FLT_MAX;
+
+    for (int j = 0; j < QK4_1; ++j) {
+        const float v = xi[j];
+
+        if (v < vmin) vmin = v;
+        if (v > vmax) vmax = v;
+    }
+
+    const float d  = (vmax - vmin) / ((1 << 4) - 1);
+    const float id = d ? 1.0f/d : 0.0f;
+
+    dsti->dm.x() = d;
+    dsti->dm.y() = vmin;
+
+    for (int j = 0; j < QK4_1/2; ++j) {
+        const float x0 = (xi[0       + j] - vmin)*id;
+        const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
+
+        const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
+        const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
+
+        dsti->qs[j]  = xi0;
+        dsti->qs[j] |= xi1 << 4;
+    }
+}
+
+template <cpy_kernel_t cpy_blck, int qk>
+static void cpy_f32_q(const char * cx, char * cdst, const int ne,
+                      const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+                      const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+                      const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
+    const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                   item_ct1.get_local_id(2)) *
+                  qk;
+
+    if (i >= ne) {
+        return;
+    }
+
+    const int i03 = i/(ne00 * ne01 * ne02);
+    const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+    const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
+    const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+    const int i13 = i/(ne10 * ne11 * ne12);
+    const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+    const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+    const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+    const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
+
+    cpy_blck(cx + x_offset, cdst + dst_offset);
+}
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+    const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
+    return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
+}
+
+struct rope_corr_dims {
+    float v[4];
+};
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+    float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+    float * cos_theta, float * sin_theta
+) {
+    // Get n-d rotational scaling corrected for extrapolation
+    float theta_interp = freq_scale * theta_extrap;
+    float theta = theta_interp;
+    if (ext_factor != 0.0f) {
+        float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+        // Get n-d magnitude scaling corrected for interpolation
+        mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
+    }
+    *cos_theta = sycl::cos(theta) * mscale;
+    *sin_theta = sycl::sin(theta) * mscale;
+}
+
+// rope == RoPE == rotary positional embedding
+template<typename T, bool has_pos>
+static void rope(
+    const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+    float ext_factor, float attn_factor, rope_corr_dims corr_dims
+,
+    const sycl::nd_item<3> &item_ct1) {
+    const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                         item_ct1.get_local_id(1));
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+    const int i = row*ncols + col;
+    const int i2 = row/p_delta_rows;
+
+    const int p = has_pos ? pos[i2] : 0;
+    const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
+
+    float cos_theta, sin_theta;
+    rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + 1];
+
+    dst[i + 0] = x0*cos_theta - x1*sin_theta;
+    dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
+
+template<typename T, bool has_pos>
+static void rope_neox(
+    const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
+,
+    const sycl::nd_item<3> &item_ct1) {
+    const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                         item_ct1.get_local_id(1));
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+    const int ib = col / n_dims;
+    const int ic = col % n_dims;
+
+    if (ib > 0) {
+        const int i = row*ncols + ib*n_dims + ic;
+
+        dst[i + 0] = x[i + 0];
+        dst[i + 1] = x[i + 1];
+
+        return;
+    }
+
+    const int i  = row*ncols + ib*n_dims + ic/2;
+    const int i2 = row/p_delta_rows;
+
+    float cur_rot = inv_ndims * ic - ib;
+
+    const int p = has_pos ? pos[i2] : 0;
+    const float theta_base =
+        p * freq_scale * dpct::pow(theta_scale, col / 2.0f);
+
+    float cos_theta, sin_theta;
+    rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + n_dims/2];
+
+    dst[i + 0]        = x0*cos_theta - x1*sin_theta;
+    dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+static void rope_glm_f32(
+    const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+    int n_ctx
+, const sycl::nd_item<3> &item_ct1) {
+    const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+    const int half_n_dims = ncols/4;
+
+    if (col >= half_n_dims) {
+        return;
+    }
+
+    const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                    item_ct1.get_local_id(1);
+    const int i = row*ncols + col;
+    const int i2 = row/p_delta_rows;
+
+    const float col_theta_scale = dpct::pow(freq_base, -2.0f * col / ncols);
+     // FIXME: this is likely wrong
+    const int p = pos != nullptr ? pos[i2] : 0;
+
+    const float theta = sycl::min(p, n_ctx - 2) * freq_scale * col_theta_scale;
+    const float sin_theta = sycl::sin((float)theta);
+    const float cos_theta = sycl::cos((float)theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + half_n_dims];
+
+    dst[i + 0]           = x0*cos_theta - x1*sin_theta;
+    dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
+
+    const float block_theta =
+        ((float)sycl::max(p - n_ctx - 2, 0)) * col_theta_scale;
+    const float sin_block_theta = sycl::sin((float)block_theta);
+    const float cos_block_theta = sycl::cos((float)block_theta);
+
+    const float x2 = x[i + half_n_dims * 2];
+    const float x3 = x[i + half_n_dims * 3];
+
+    dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
+    dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
+}
+
+static void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
+                                 const int n_heads_log2_floor, const float m0, const float m1,
+                                 const sycl::nd_item<3> &item_ct1) {
+    const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                    item_ct1.get_local_id(1);
+    const int i = row*ncols + col;
+
+    const int k = row/k_rows;
+
+    float m_k;
+    if (k < n_heads_log2_floor) {
+        m_k = dpct::pow(m0, k + 1);
+    } else {
+        m_k = dpct::pow(m1, 2 * (k - n_heads_log2_floor) + 1);
+    }
+
+    dst[i] = col * m_k + x[i];
+}
+
+static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
+                           const sycl::nd_item<3> &item_ct1) {
+    const int row = item_ct1.get_group(1);
+    const int col = item_ct1.get_local_id(2);
+
+    float sum = 0.0f;
+    for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
+        sum += x[row * ncols + i];
+    }
+
+    sum = warp_reduce_sum(sum, item_ct1);
+
+    if (col == 0) {
+        dst[row] = sum;
+    }
+}
+
+template<typename T>
+static inline void swap(T & a, T & b) {
+    T tmp = a;
+    a = b;
+    b = tmp;
+}
+
+template<ggml_sort_order order>
+static void k_argsort_f32_i32(const float * x, int * dst, const int ncols,
+                              const sycl::nd_item<3> &item_ct1) {
+    // bitonic sort
+    int col = item_ct1.get_local_id(2);
+    int row = item_ct1.get_group(1);
+
+    if (col >= ncols) return;
+
+    const float * x_row = x + row * ncols;
+    int * dst_row = dst + row * ncols;
+
+    // initialize indices
+    if (col < ncols) {
+        dst_row[col] = col;
+    }
+    /*
+    DPCT1065:58: Consider replacing sycl::nd_item::barrier() with
+    sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
+    performance if there is no access to global memory.
+    */
+    item_ct1.barrier();
+
+    for (int k = 2; k <= ncols; k *= 2) {
+        for (int j = k / 2; j > 0; j /= 2) {
+            int ixj = col ^ j;
+            if (ixj > col) {
+                if ((col & k) == 0) {
+                    if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
+                        swap(dst_row[col], dst_row[ixj]);
+                    }
+                } else {
+                    if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
+                        swap(dst_row[col], dst_row[ixj]);
+                    }
+                }
+            }
+            /*
+            DPCT1118:11: SYCL group functions and algorithms must be encountered
+            in converged control flow. You may need to adjust the code.
+            */
+            /*
+            DPCT1065:59: Consider replacing sycl::nd_item::barrier() with
+            sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+            better performance if there is no access to global memory.
+            */
+            item_ct1.barrier();
+        }
+    }
+}
+
+static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
+                              const sycl::nd_item<3> &item_ct1) {
+    const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                    item_ct1.get_local_id(1);
+    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+
+    if (col >= ncols) {
+        return;
+    }
+
+    const int i = row*ncols + col;
+    //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
+    //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
+    dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
+}
+
+static void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale,
+                         const sycl::nd_item<3> &item_ct1, float *buf) {
+    const int tid = item_ct1.get_local_id(2);
+    const int rowx = item_ct1.get_group(2);
+    const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
+
+    const int block_size = item_ct1.get_local_range(2);
+
+    const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+    const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+
+    float max_val = -INFINITY;
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const int ix = rowx*ncols + col;
+        const int iy = rowy*ncols + col;
+        max_val = sycl::max(max_val, x[ix] * scale + (y ? y[iy] : 0.0f));
+    }
+
+    // find the max value in the block
+    max_val = warp_reduce_max(max_val, item_ct1);
+    if (block_size > WARP_SIZE) {
+        if (warp_id == 0) {
+            buf[lane_id] = -INFINITY;
+        }
+        /*
+        DPCT1118:12: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:60: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+
+        if (lane_id == 0) {
+            buf[warp_id] = max_val;
+        }
+        /*
+        DPCT1118:13: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:61: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+
+        max_val = buf[lane_id];
+        max_val = warp_reduce_max(max_val, item_ct1);
+    }
+
+    float tmp = 0.f;
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const int ix = rowx*ncols + col;
+        const int iy = rowy*ncols + col;
+        const float val =
+            sycl::native::exp((x[ix] * scale + (y ? y[iy] : 0.0f)) - max_val);
+        tmp += val;
+        dst[ix] = val;
+    }
+
+    // find the sum of exps in the block
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+        if (warp_id == 0) {
+            buf[lane_id] = 0.f;
+        }
+        /*
+        DPCT1118:14: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:62: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+
+        if (lane_id == 0) {
+            buf[warp_id] = tmp;
+        }
+        /*
+        DPCT1118:15: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:63: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+
+        tmp = buf[lane_id];
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    const float inv_tmp = 1.f / tmp;
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const int i = rowx*ncols + col;
+        dst[i] *= inv_tmp;
+    }
+}
+
+static void scale_f32(const float * x, float * dst, const float scale, const int k,
+                      const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    if (i >= k) {
+        return;
+    }
+
+    dst[i] = scale * x[i];
+}
+
+static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
+                      const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                  item_ct1.get_local_id(2);
+
+    if (i >= k) {
+        return;
+    }
+
+    dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
+}
+
+template <typename T>
+static void im2col_kernel(const float *x, T *dst, int offset_delta,
+                           int IW, int IH, int OW, int KW, int KH,
+                           int pelements, int CHW, int s0, int s1, int p0,
+                           int p1, int d0, int d1,
+                           const sycl::nd_item<3> &item_ct1) {
+    const int i = item_ct1.get_local_id(2) +
+                  item_ct1.get_group(2) * item_ct1.get_local_range(2);
+    if (i >= pelements) {
+        return;
+    }
+
+    const int ksize = OW * (KH > 1 ? KW : 1);
+    const int kx = i / ksize;
+    const int kd = kx * ksize;
+    const int ky = (i - kd) / OW;
+    const int ix = i % OW;
+
+    const int64_t iiw = ix * s0 + kx * d0 - p0;
+    const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
+
+    const int64_t offset_dst =
+        (item_ct1.get_group(1) * OW + ix) * CHW +
+        (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
+
+    if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+        dst[offset_dst] =
+            sycl::vec<float, 1>(0.0f)
+                .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+    } else {
+        const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
+        dst[offset_dst] =
+            sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
+                .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+    }
+}
+
+template <int qk, int qr, dequantize_kernel_t dq>
+static void get_rows_sycl(const ggml_tensor *src0, const ggml_tensor *src1,
+                          ggml_tensor *dst, const void *src0_dd,
+                          const int32_t *src1_dd, float *dst_dd,
+                          dpct::queue_ptr stream) {
+
+    GGML_TENSOR_BINARY_OP_LOCALS
+
+    const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
+    const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
+    const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
+
+    // strides in elements
+    //const size_t s0 = nb0 / ggml_element_size(dst);
+    const size_t s1 = nb1 / ggml_element_size(dst);
+    const size_t s2 = nb2 / ggml_element_size(dst);
+    const size_t s3 = nb3 / ggml_element_size(dst);
+
+    const size_t s10 = nb10 / ggml_element_size(src1);
+    const size_t s11 = nb11 / ggml_element_size(src1);
+    const size_t s12 = nb12 / ggml_element_size(src1);
+    //const size_t s13 = nb13 / ggml_element_size(src1);
+
+    GGML_ASSERT(ne00 % 2 == 0);
+
+    stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                         [=](sycl::nd_item<3> item_ct1) {
+                             k_get_rows<qk, qr, dq>(
+                                 src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
+                                 s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
+                         });
+
+    (void) dst;
+}
+
+template <typename src0_t>
+static void get_rows_sycl_float(const ggml_tensor *src0,
+                                const ggml_tensor *src1, ggml_tensor *dst,
+                                const src0_t *src0_dd, const int32_t *src1_dd,
+                                float *dst_dd, dpct::queue_ptr stream) {
+
+    GGML_TENSOR_BINARY_OP_LOCALS
+
+    const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
+    const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
+    const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
+
+    // strides in elements
+    //const size_t s0 = nb0 / ggml_element_size(dst);
+    const size_t s1 = nb1 / ggml_element_size(dst);
+    const size_t s2 = nb2 / ggml_element_size(dst);
+    const size_t s3 = nb3 / ggml_element_size(dst);
+
+    const size_t s10 = nb10 / ggml_element_size(src1);
+    const size_t s11 = nb11 / ggml_element_size(src1);
+    const size_t s12 = nb12 / ggml_element_size(src1);
+    //const size_t s13 = nb13 / ggml_element_size(src1);
+
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
+                                 s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
+            });
+    }
+
+    (void) dst;
+}
+
+template<float (*bin_op)(const float, const float)>
+struct bin_bcast_sycl {
+    template <typename src0_t, typename src1_t, typename dst_t>
+    void operator()(const struct ggml_tensor *src0,
+                    const struct ggml_tensor *src1, struct ggml_tensor *dst,
+                    const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
+                    dpct::queue_ptr stream) {
+
+        GGML_TENSOR_BINARY_OP_LOCALS
+
+        int nr0 = ne10/ne0;
+        int nr1 = ne11/ne1;
+        int nr2 = ne12/ne2;
+        int nr3 = ne13/ne3;
+
+        int nr[4] = { nr0, nr1, nr2, nr3 };
+
+        // collapse dimensions until first broadcast dimension
+        int64_t cne0[] = {ne0, ne1, ne2, ne3};
+        int64_t cne1[] = {ne10, ne11, ne12, ne13};
+        size_t cnb0[] = {nb0, nb1, nb2, nb3};
+        size_t cnb1[] = {nb10, nb11, nb12, nb13};
+        auto collapse = [](int64_t cne[]) {
+            cne[0] *= cne[1];
+            cne[1] = cne[2];
+            cne[2] = cne[3];
+            cne[3] = 1;
+        };
+
+        auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
+            cnb[1] *= cne[1];
+            cnb[2] *= cne[2];
+            cnb[3] *= cne[3];
+        };
+
+        for (int i = 0; i < 4; i++) {
+            if (nr[i] != 1) {
+                break;
+            }
+            if (i > 0) {
+                collapse_nb(cnb0, cne0);
+                collapse_nb(cnb1, cne1);
+                collapse(cne0);
+                collapse(cne1);
+            }
+        }
+        {
+            int64_t ne0 = cne0[0];
+            int64_t ne1 = cne0[1];
+            int64_t ne2 = cne0[2];
+            int64_t ne3 = cne0[3];
+
+            int64_t ne10 = cne1[0];
+            int64_t ne11 = cne1[1];
+            int64_t ne12 = cne1[2];
+            int64_t ne13 = cne1[3];
+
+            size_t nb0 = cnb0[0];
+            size_t nb1 = cnb0[1];
+            size_t nb2 = cnb0[2];
+            size_t nb3 = cnb0[3];
+
+            size_t nb10 = cnb1[0];
+            size_t nb11 = cnb1[1];
+            size_t nb12 = cnb1[2];
+            size_t nb13 = cnb1[3];
+
+            size_t s0 = nb0 / sizeof(dst_t);
+            size_t s1 = nb1 / sizeof(dst_t);
+            size_t s2 = nb2 / sizeof(dst_t);
+            size_t s3 = nb3 / sizeof(dst_t);
+
+            size_t s10 = nb10 / sizeof(src1_t);
+            size_t s11 = nb11 / sizeof(src1_t);
+            size_t s12 = nb12 / sizeof(src1_t);
+            size_t s13 = nb13 / sizeof(src1_t);
+
+            GGML_ASSERT(s0 == 1);
+            GGML_ASSERT(s10 == 1);
+
+            const int block_size = 128;
+
+            int64_t hne0 = std::max(ne0/2LL, 1LL);
+
+            sycl::range<3> block_dims(1, 1, 1);
+            block_dims[2] = std::min<unsigned int>(hne0, block_size);
+            block_dims[1] = std::min<unsigned int>(
+                ne1, block_size / (unsigned int)block_dims[2]);
+            block_dims[0] = std::min(
+                std::min<unsigned int>(
+                    ne2 * ne3, block_size / (unsigned int)block_dims[2] /
+                                   (unsigned int)block_dims[1]),
+                64U);
+
+            sycl::range<3> block_nums(
+                (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
+                (ne1 + block_dims[1] - 1) / block_dims[1],
+                (hne0 + block_dims[2] - 1) / block_dims[2]);
+
+            if (block_nums[0] > 65535) {
+                // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
+                int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
+                {
+                    dpct::has_capability_or_fail(stream->get_device(),
+                                                 {sycl::aspect::fp16});
+
+                    stream->parallel_for(
+                        sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
+                                              sycl::range<3>(1, 1, block_size),
+                                          sycl::range<3>(1, 1, block_size)),
+                        [=](sycl::nd_item<3> item_ct1) {
+                            k_bin_bcast_unravel<bin_op>(
+                                src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
+                                ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
+                                s13, item_ct1);
+                        });
+                }
+            } else {
+                /*
+                DPCT1049:16: The work-group size passed to the SYCL kernel may
+                exceed the limit. To get the device limit, query
+                info::device::max_work_group_size. Adjust the work-group size if
+                needed.
+                */
+                dpct::has_capability_or_fail(stream->get_device(),
+                                             {sycl::aspect::fp16});
+
+                stream->parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
+                                            ne2, ne3, ne10, ne11, ne12, ne13,
+                                            s1, s2, s3, s11, s12, s13,
+                                            item_ct1);
+                    });
+            }
+        }
+    }
+};
+
+static void acc_f32_sycl(const float *x, const float *y, float *dst,
+                         const int n_elements, const int ne10, const int ne11,
+                         const int ne12, const int nb1, const int nb2,
+                         const int offset, dpct::queue_ptr stream) {
+    int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
+                    item_ct1);
+        });
+}
+
+static void gelu_f32_sycl(const float *x, float *dst, const int k,
+                          dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            gelu_f32(x, dst, k, item_ct1);
+        });
+}
+
+static void silu_f32_sycl(const float *x, float *dst, const int k,
+                          dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            silu_f32(x, dst, k, item_ct1);
+        });
+}
+
+static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
+                                dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            gelu_quick_f32(x, dst, k, item_ct1);
+        });
+}
+
+static void tanh_f32_sycl(const float *x, float *dst, const int k,
+                          dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            tanh_f32(x, dst, k, item_ct1);
+        });
+}
+
+static void relu_f32_sycl(const float *x, float *dst, const int k,
+                          dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            relu_f32(x, dst, k, item_ct1);
+        });
+}
+
+static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
+                                const float negative_slope,
+                                dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
+        });
+}
+
+static void sqr_f32_sycl(const float *x, float *dst, const int k,
+                         dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            sqr_f32(x, dst, k, item_ct1);
+        });
+}
+
+static void norm_f32_sycl(const float *x, float *dst, const int ncols,
+                          const int nrows, const float eps,
+                          dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % WARP_SIZE == 0);
+    if (ncols < 1024) {
+        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+        stream->submit([&](sycl::handler &cgh) {
+            sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
+                sycl::range<1>(32), cgh);
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                                  block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                    [[intel::reqd_sub_group_size(32)]] {
+                        norm_f32(x, dst, ncols, eps, item_ct1,
+                                            s_sum_acc_ct1.get_pointer(), WARP_SIZE);
+                    });
+        });
+    } else {
+        const int work_group_size = g_work_group_size;
+        const sycl::range<3> block_dims(1, 1, work_group_size);
+        /*
+        DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->submit([&](sycl::handler &cgh) {
+            sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
+                sycl::range<1>(32), cgh);
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                                  block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                    [[intel::reqd_sub_group_size(32)]] {
+                        norm_f32(x, dst, ncols, eps, item_ct1,
+                                       s_sum_acc_ct1.get_pointer(), work_group_size);
+                    });
+        });
+    }
+}
+
+static void group_norm_f32_sycl(const float *x, float *dst,
+                                const int num_groups, const int group_size,
+                                const int ne_elements, dpct::queue_ptr stream) {
+    static const float eps = 1e-6f;
+    if (group_size < 1024) {
+        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+        stream->submit([&](sycl::handler &cgh) {
+            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+                                                         cgh);
+
+            const float eps_ct4 = eps;
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+                                  block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                    [[intel::reqd_sub_group_size(32)]] {
+                        group_norm_f32(
+                            x, dst, group_size, ne_elements, eps_ct4, item_ct1,
+                            s_sum_acc_ct1.get_pointer(), WARP_SIZE);
+                    });
+        });
+    } else {
+        const int work_group_size = g_work_group_size;
+        const sycl::range<3> block_dims(1, 1, work_group_size);
+        /*
+        DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+
+        stream->submit([&](sycl::handler &cgh) {
+            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+                                                         cgh);
+
+            const float eps_ct4 = eps;
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+                                  block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                    [[intel::reqd_sub_group_size(32)]] {
+                        group_norm_f32(x, dst, group_size, ne_elements,
+                                             eps_ct4, item_ct1,
+                                             s_sum_acc_ct1.get_pointer(), work_group_size);
+                    });
+        });
+    }
+}
+
+static void concat_f32_sycl(const float *x, const float *y, float *dst,
+                            const int ne0, int ne1, int ne2, int ne02,
+                            dpct::queue_ptr stream) {
+    int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
+    sycl::range<3> gridDim(ne2, ne1, num_blocks);
+    stream->parallel_for(
+        sycl::nd_range<3>(gridDim *
+                              sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            concat_f32(x, y, dst, ne0, ne02, item_ct1);
+        });
+}
+
+static void upscale_f32_sycl(const float *x, float *dst, const int ne00,
+                             const int ne01, const int ne02,
+                             const int scale_factor, dpct::queue_ptr stream) {
+    int ne0 = (ne00 * scale_factor);
+    int num_blocks = (ne0 + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
+    sycl::range<3> gridDim(ne02, (ne01 * scale_factor), num_blocks);
+    stream->parallel_for(
+        sycl::nd_range<3>(gridDim *
+                              sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            upscale_f32(x, dst, ne00, ne00 * ne01, scale_factor, item_ct1);
+        });
+}
+
+static void pad_f32_sycl(const float *x, float *dst, const int ne00,
+                         const int ne01, const int ne02, const int ne0,
+                         const int ne1, const int ne2, dpct::queue_ptr stream) {
+    int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
+    sycl::range<3> gridDim(ne2, ne1, num_blocks);
+    stream->parallel_for(
+        sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
+        });
+}
+
+static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
+                              const int nrows, const float eps,
+                              dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % WARP_SIZE == 0);
+    // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
+    if (ncols < 1024) {
+        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+        stream->submit([&](sycl::handler &cgh) {
+            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+                                                         cgh);
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                                  block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                    [[intel::reqd_sub_group_size(32)]] {
+                        rms_norm_f32(x, dst, ncols, eps, item_ct1,
+                                                s_sum_acc_ct1.get_pointer(), WARP_SIZE);
+                    });
+        });
+    } else {
+        const int work_group_size = g_work_group_size;
+        const sycl::range<3> block_dims(1, 1, work_group_size);
+        /*
+        DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->submit([&](sycl::handler &cgh) {
+            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+                                                         cgh);
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                                  block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                    [[intel::reqd_sub_group_size(32)]] {
+                        rms_norm_f32(x, dst, ncols, eps, item_ct1,
+                                           s_sum_acc_ct1.get_pointer(), work_group_size);
+                    });
+        });
+    }
+}
+
+static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
+                                   const int ky, const int kx_padded,
+                                   dpct::queue_ptr stream) {
+    const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
+    const sycl::range<3> num_blocks(1, ky, block_num_x);
+    const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(num_blocks * block_size, block_size),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
+            });
+    }
+}
+
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void dequantize_block_sycl(const void *__restrict__ vx,
+                                  dst_t *__restrict__ y, const int k,
+                                  dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(
+                sycl::range<3>(1, 1, num_blocks) *
+                    sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
+                sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
+            [=](sycl::nd_item<3> item_ct1) {
+                dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
+            });
+    }
+}
+
+template <typename dst_t>
+static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
+                                     dpct::queue_ptr stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
+                                                   sycl::range<3>(1, 1, 64),
+                                               sycl::range<3>(1, 1, 64)),
+                             [=](sycl::nd_item<3> item_ct1) {
+                                 dequantize_block_q2_K(vx, y, item_ct1);
+                             });
+    }
+#else
+    dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template <typename dst_t>
+static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
+                                     dpct::queue_ptr stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
+                                                   sycl::range<3>(1, 1, 64),
+                                               sycl::range<3>(1, 1, 64)),
+                             [=](sycl::nd_item<3> item_ct1) {
+                                 dequantize_block_q3_K(vx, y, item_ct1);
+                             });
+    }
+#else
+    dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template <typename dst_t>
+static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
+                                     dpct::queue_ptr stream) {
+    const int nb = k / QK_K;
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
+                                                   sycl::range<3>(1, 1, 32),
+                                               sycl::range<3>(1, 1, 32)),
+                             [=](sycl::nd_item<3> item_ct1) {
+                                 dequantize_block_q4_K(vx, y, item_ct1);
+                             });
+    }
+}
+
+template <typename dst_t>
+static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
+                                     dpct::queue_ptr stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
+                                                   sycl::range<3>(1, 1, 64),
+                                               sycl::range<3>(1, 1, 64)),
+                             [=](sycl::nd_item<3> item_ct1) {
+                                 dequantize_block_q5_K(vx, y, item_ct1);
+                             });
+    }
+#else
+    dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+template <typename dst_t>
+static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
+                                     dpct::queue_ptr stream) {
+    const int nb = k / QK_K;
+#if QK_K == 256
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
+                                                   sycl::range<3>(1, 1, 64),
+                                               sycl::range<3>(1, 1, 64)),
+                             [=](sycl::nd_item<3> item_ct1) {
+                                 dequantize_block_q6_K(vx, y, item_ct1);
+                             });
+    }
+#else
+    dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
+
+static to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) {
+    switch (type) {
+        case GGML_TYPE_Q4_0:
+            return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
+        case GGML_TYPE_Q4_1:
+            return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
+        case GGML_TYPE_Q5_0:
+            return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
+        case GGML_TYPE_Q5_1:
+            return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
+        case GGML_TYPE_Q8_0:
+            return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
+        case GGML_TYPE_Q2_K:
+            return dequantize_row_q2_K_sycl;
+        case GGML_TYPE_Q3_K:
+            return dequantize_row_q3_K_sycl;
+        case GGML_TYPE_Q4_K:
+            return dequantize_row_q4_K_sycl;
+        case GGML_TYPE_Q5_K:
+            return dequantize_row_q5_K_sycl;
+        case GGML_TYPE_Q6_K:
+            return dequantize_row_q6_K_sycl;
+        case GGML_TYPE_F32:
+            return dequantize_block_sycl<1, 1, convert_f32>;
+        default:
+            return nullptr;
+    }
+}
+
+static to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
+    switch (type) {
+        case GGML_TYPE_Q4_0:
+            return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
+        case GGML_TYPE_Q4_1:
+            return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
+        case GGML_TYPE_Q5_0:
+            return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
+        case GGML_TYPE_Q5_1:
+            return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
+        case GGML_TYPE_Q8_0:
+            return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
+        case GGML_TYPE_Q2_K:
+            return dequantize_row_q2_K_sycl;
+        case GGML_TYPE_Q3_K:
+            return dequantize_row_q3_K_sycl;
+        case GGML_TYPE_Q4_K:
+            return dequantize_row_q4_K_sycl;
+        case GGML_TYPE_Q5_K:
+            return dequantize_row_q5_K_sycl;
+        case GGML_TYPE_Q6_K:
+            return dequantize_row_q6_K_sycl;
+        case GGML_TYPE_F16:
+            return dequantize_block_sycl<1, 1, convert_f16>;
+        default:
+            return nullptr;
+    }
+}
+
+static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
+                    vx, y, dst, ncols, nrows, item_ct1);
+            });
+    }
+}
+
+static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
+                    vx, y, dst, ncols, nrows, item_ct1);
+            });
+    }
+}
+
+static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
+                    vx, y, dst, ncols, nrows, item_ct1);
+            });
+    }
+}
+
+static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
+                    vx, y, dst, ncols, nrows, item_ct1);
+            });
+    }
+}
+
+static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
+                    vx, y, dst, ncols, nrows, item_ct1);
+            });
+    }
+}
+
+static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, ny, 32);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
+        });
+}
+
+static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2 / K_QUANTS_PER_ITERATION;
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, ny, 32);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
+        });
+}
+
+static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2 / K_QUANTS_PER_ITERATION;
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, ny, 32);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
+        });
+}
+
+static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const sycl::range<3> block_dims(1, 1, 32);
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
+        });
+}
+
+static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
+                                             float *dst, const int ncols,
+                                             const int nrows,
+                                             dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int ny = 2 / K_QUANTS_PER_ITERATION;
+    const int block_num_y = (nrows + ny - 1) / ny;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, ny, 32);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
+        });
+}
+
+static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
+                                         float *dst, const int ncols,
+                                         const int nrows,
+                                         dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
+                                                          nrows, item_ct1);
+            });
+    }
+}
+
+static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK4_0 == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ,
+                          vec_dot_q4_0_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK4_1 == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ,
+                          vec_dot_q4_1_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK5_0 == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ,
+                          vec_dot_q5_0_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK5_1 == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ,
+                          vec_dot_q5_1_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK8_0 == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ,
+                          vec_dot_q8_0_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ,
+                          vec_dot_q2_K_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ,
+                          vec_dot_q3_K_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ,
+                          vec_dot_q4_K_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ,
+                          vec_dot_q5_K_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
+                                       float *dst, const int ncols,
+                                       const int nrows,
+                                       dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % QK_K == 0);
+    const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
+    const sycl::range<3> block_nums(1, 1, block_num_y);
+    const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
+    stream->parallel_for(
+        sycl::nd_range<3>(block_nums * block_dims, block_dims),
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ,
+                          vec_dot_q6_K_q8_1>(vx, vy, dst, ncols, nrows,
+                                             item_ct1);
+        });
+}
+
+int get_device_index_by_id(int id){
+    int res = g_sycl_device_id2index[id].index;
+    // GGML_SYCL_DEBUG("get_device_index_by_id id=%d device_index=%d\n", id, res);
+    GGML_ASSERT(res>=0);
+    return res;
+}
+
+int get_device_id_by_index(int index){
+    int res = g_device_caps[index].device_id;
+    GGML_ASSERT(res>=0);
+    return res;
+}
+
+
+int get_current_device_index(){
+    return get_device_index_by_id(dpct::dev_mgr::instance().current_device_id());
+}
+
+static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q4_0_RDNA2;
+        mmq_y  =  MMQ_Y_Q4_0_RDNA2;
+        nwarps = NWARPS_Q4_0_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q4_0_RDNA1;
+        mmq_y  =  MMQ_Y_Q4_0_RDNA1;
+        nwarps = NWARPS_Q4_0_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q4_0_AMPERE;
+        mmq_y  =  MMQ_Y_Q4_0_AMPERE;
+        nwarps = NWARPS_Q4_0_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q4_0_PASCAL;
+        mmq_y  =  MMQ_Y_Q4_0_PASCAL;
+        nwarps = NWARPS_Q4_0_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:20: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q4_0<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_qs_q4_0_acc_ct1.get_pointer(),
+                            tile_x_d_q4_0_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:21: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q4_0<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_qs_q4_0_acc_ct1.get_pointer(),
+                            tile_x_d_q4_0_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q4_1_RDNA2;
+        mmq_y  =  MMQ_Y_Q4_1_RDNA2;
+        nwarps = NWARPS_Q4_1_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q4_1_RDNA1;
+        mmq_y  =  MMQ_Y_Q4_1_RDNA1;
+        nwarps = NWARPS_Q4_1_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q4_1_AMPERE;
+        mmq_y  =  MMQ_Y_Q4_1_AMPERE;
+        nwarps = NWARPS_Q4_1_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q4_1_PASCAL;
+        mmq_y  =  MMQ_Y_Q4_1_PASCAL;
+        nwarps = NWARPS_Q4_1_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:22: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q4_1<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_qs_q4_1_acc_ct1.get_pointer(),
+                            tile_x_dm_q4_1_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:23: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q4_1<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_qs_q4_1_acc_ct1.get_pointer(),
+                            tile_x_dm_q4_1_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q5_0_RDNA2;
+        mmq_y  =  MMQ_Y_Q5_0_RDNA2;
+        nwarps = NWARPS_Q5_0_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q5_0_RDNA1;
+        mmq_y  =  MMQ_Y_Q5_0_RDNA1;
+        nwarps = NWARPS_Q5_0_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q5_0_AMPERE;
+        mmq_y  =  MMQ_Y_Q5_0_AMPERE;
+        nwarps = NWARPS_Q5_0_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q5_0_PASCAL;
+        mmq_y  =  MMQ_Y_Q5_0_PASCAL;
+        nwarps = NWARPS_Q5_0_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:24: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q5_0<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q5_0_acc_ct1.get_pointer(),
+                            tile_x_d_q5_0_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:25: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q5_0<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q5_0_acc_ct1.get_pointer(),
+                            tile_x_d_q5_0_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q5_1_RDNA2;
+        mmq_y  =  MMQ_Y_Q5_1_RDNA2;
+        nwarps = NWARPS_Q5_1_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q5_1_RDNA1;
+        mmq_y  =  MMQ_Y_Q5_1_RDNA1;
+        nwarps = NWARPS_Q5_1_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q5_1_AMPERE;
+        mmq_y  =  MMQ_Y_Q5_1_AMPERE;
+        nwarps = NWARPS_Q5_1_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q5_1_PASCAL;
+        mmq_y  =  MMQ_Y_Q5_1_PASCAL;
+        nwarps = NWARPS_Q5_1_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:26: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q5_1<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q5_1_acc_ct1.get_pointer(),
+                            tile_x_dm_q5_1_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:27: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q5_1<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q5_1_acc_ct1.get_pointer(),
+                            tile_x_dm_q5_1_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q8_0_RDNA2;
+        mmq_y  =  MMQ_Y_Q8_0_RDNA2;
+        nwarps = NWARPS_Q8_0_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q8_0_RDNA1;
+        mmq_y  =  MMQ_Y_Q8_0_RDNA1;
+        nwarps = NWARPS_Q8_0_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q8_0_AMPERE;
+        mmq_y  =  MMQ_Y_Q8_0_AMPERE;
+        nwarps = NWARPS_Q8_0_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q8_0_PASCAL;
+        mmq_y  =  MMQ_Y_Q8_0_PASCAL;
+        nwarps = NWARPS_Q8_0_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:28: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q8_0<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_qs_q8_0_acc_ct1.get_pointer(),
+                            tile_x_d_q8_0_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:29: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q8_0<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_qs_q8_0_acc_ct1.get_pointer(),
+                            tile_x_d_q8_0_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q2_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q2_K_RDNA2;
+        nwarps = NWARPS_Q2_K_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q2_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q2_K_RDNA1;
+        nwarps = NWARPS_Q2_K_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q2_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q2_K_AMPERE;
+        nwarps = NWARPS_Q2_K_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q2_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q2_K_PASCAL;
+        nwarps = NWARPS_Q2_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:30: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q2_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q2_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q2_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q2_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:31: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q2_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q2_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q2_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q2_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+#if QK_K == 256
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q3_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q3_K_RDNA2;
+        nwarps = NWARPS_Q3_K_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q3_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q3_K_RDNA1;
+        nwarps = NWARPS_Q3_K_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q3_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q3_K_AMPERE;
+        nwarps = NWARPS_Q3_K_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q3_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q3_K_PASCAL;
+        nwarps = NWARPS_Q3_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:32: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q3_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q3_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q3_K_acc_ct1.get_pointer(),
+                            tile_x_qh_q3_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q3_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:33: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q3_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q3_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q3_K_acc_ct1.get_pointer(),
+                            tile_x_qh_q3_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q3_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+#endif
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q4_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q4_K_RDNA2;
+        nwarps = NWARPS_Q4_K_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q4_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q4_K_RDNA1;
+        nwarps = NWARPS_Q4_K_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q4_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q4_K_AMPERE;
+        nwarps = NWARPS_Q4_K_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q4_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q4_K_PASCAL;
+        nwarps = NWARPS_Q4_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:34: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q4_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q4_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q4_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q4_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:35: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q4_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q4_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q4_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q4_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q5_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q5_K_RDNA2;
+        nwarps = NWARPS_Q5_K_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q5_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q5_K_RDNA1;
+        nwarps = NWARPS_Q5_K_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q5_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q5_K_AMPERE;
+        nwarps = NWARPS_Q5_K_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q5_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q5_K_PASCAL;
+        nwarps = NWARPS_Q5_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:36: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q5_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q5_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q5_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q5_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:37: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q5_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_q5_K_acc_ct1.get_pointer(),
+                            tile_x_dm_q5_K_acc_ct1.get_pointer(),
+                            tile_x_sc_q5_K_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
+                                        float *dst, const int ncols_x,
+                                        const int nrows_x, const int ncols_y,
+                                        const int nrows_y, const int nrows_dst,
+                                        dpct::queue_ptr stream) try {
+
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    const int compute_capability = g_device_caps[id].cc;
+
+    int mmq_x, mmq_y, nwarps;
+    if (compute_capability >= VER_GEN13) {
+        mmq_x  =  MMQ_X_Q6_K_RDNA2;
+        mmq_y  =  MMQ_Y_Q6_K_RDNA2;
+        nwarps = NWARPS_Q6_K_RDNA2;
+    } else if (compute_capability >= VER_GEN12) {
+        mmq_x  =  MMQ_X_Q6_K_RDNA1;
+        mmq_y  =  MMQ_Y_Q6_K_RDNA1;
+        nwarps = NWARPS_Q6_K_RDNA1;
+    } else if (compute_capability >= VER_GEN9) {
+        mmq_x  =  MMQ_X_Q6_K_AMPERE;
+        mmq_y  =  MMQ_Y_Q6_K_AMPERE;
+        nwarps = NWARPS_Q6_K_AMPERE;
+    } else if (compute_capability >= VER_4VEC) {
+        mmq_x  =  MMQ_X_Q6_K_PASCAL;
+        mmq_y  =  MMQ_Y_Q6_K_PASCAL;
+        nwarps = NWARPS_Q6_K_PASCAL;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+    const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+    const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+    if (nrows_x % mmq_y == 0) {
+        const bool need_check = false;
+        /*
+        DPCT1049:38: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q6_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_acc_ct1.get_pointer(),
+                            tile_x_dm_acc_ct1.get_pointer(),
+                            tile_x_sc_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    } else {
+        const bool need_check = true;
+        /*
+        DPCT1049:39: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            stream->submit([&](sycl::handler &cgh) {
+                sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
+                    sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
+                    cgh);
+                sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
+                    sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+                sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+                sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+                    sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+                cgh.parallel_for(
+                    sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                    [=](sycl::nd_item<3> item_ct1) {
+                        mul_mat_q6_K<need_check>(
+                            vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+                            nrows_dst, item_ct1,
+                            tile_x_ql_acc_ct1.get_pointer(),
+                            tile_x_dm_acc_ct1.get_pointer(),
+                            tile_x_sc_acc_ct1.get_pointer(),
+                            tile_y_qs_acc_ct1.get_pointer(),
+                            tile_y_ds_acc_ct1.get_pointer());
+                    });
+            });
+        }
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
+                                           float *dst, const int ncols_x,
+                                           const int nrows_x,
+                                           const int nchannels_x,
+                                           const int nchannels_y,
+                                           dpct::queue_ptr stream) {
+
+    const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
+    const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
+                                     nchannels_y, item_ct1);
+            });
+    }
+}
+
+static void ggml_mul_mat_vec_nc_f16_f32_sycl(
+    const void *vx, const float *y, float *dst, const int ncols_x,
+    const int nrows_x, const int row_stride_x, const int nchannels_x,
+    const int nchannels_y, const int channel_stride_x, dpct::queue_ptr stream) {
+
+    const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
+    const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
+                                       row_stride_x, channel_stride_x,
+                                       nchannels_y / nchannels_x, item_ct1);
+            });
+    }
+}
+
+static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
+                                  const int ne00, const int ne01,
+                                  const int ne02, const int nb00,
+                                  const int nb01, const int nb02,
+                                  const int nb03, const int ne10,
+                                  const int ne11, const int ne12,
+                                  const int nb10, const int nb11,
+                                  const int nb12, const int nb13,
+                                  dpct::queue_ptr stream) {
+
+    const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                                  sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+                              sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+            [=](sycl::nd_item<3> item_ct1) {
+                cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                           nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                           item_ct1);
+            });
+    }
+}
+
+static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
+                                  const int ne00, const int ne01,
+                                  const int ne02, const int nb00,
+                                  const int nb01, const int nb02,
+                                  const int nb03, const int ne10,
+                                  const int ne11, const int ne12,
+                                  const int nb10, const int nb11,
+                                  const int nb12, const int nb13,
+                                  dpct::queue_ptr stream) {
+
+    const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                                  sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+                              sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+            [=](sycl::nd_item<3> item_ct1) {
+                cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                           nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                           item_ct1);
+            });
+    }
+}
+
+static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
+                                   const int ne00, const int ne01,
+                                   const int ne02, const int nb00,
+                                   const int nb01, const int nb02,
+                                   const int nb03, const int ne10,
+                                   const int ne11, const int ne12,
+                                   const int nb10, const int nb11,
+                                   const int nb12, const int nb13,
+                                   dpct::queue_ptr stream) {
+
+    GGML_ASSERT(ne % QK8_0 == 0);
+    const int num_blocks = ne / QK8_0;
+    stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
+                                           sycl::range<3>(1, 1, 1)),
+                         [=](sycl::nd_item<3> item_ct1) {
+                             cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
+                                 cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                 nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                 item_ct1);
+                         });
+}
+
+static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
+                                   const int ne00, const int ne01,
+                                   const int ne02, const int nb00,
+                                   const int nb01, const int nb02,
+                                   const int nb03, const int ne10,
+                                   const int ne11, const int ne12,
+                                   const int nb10, const int nb11,
+                                   const int nb12, const int nb13,
+                                   dpct::queue_ptr stream) {
+
+    GGML_ASSERT(ne % QK4_0 == 0);
+    const int num_blocks = ne / QK4_0;
+    stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
+                                           sycl::range<3>(1, 1, 1)),
+                         [=](sycl::nd_item<3> item_ct1) {
+                             cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
+                                 cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                 nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                 item_ct1);
+                         });
+}
+
+static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
+                                   const int ne00, const int ne01,
+                                   const int ne02, const int nb00,
+                                   const int nb01, const int nb02,
+                                   const int nb03, const int ne10,
+                                   const int ne11, const int ne12,
+                                   const int nb10, const int nb11,
+                                   const int nb12, const int nb13,
+                                   dpct::queue_ptr stream) {
+
+    GGML_ASSERT(ne % QK4_1 == 0);
+    const int num_blocks = ne / QK4_1;
+    stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
+                                           sycl::range<3>(1, 1, 1)),
+                         [=](sycl::nd_item<3> item_ct1) {
+                             cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
+                                 cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                 nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                 item_ct1);
+                         });
+}
+
+static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
+                                  const int ne00, const int ne01,
+                                  const int ne02, const int nb00,
+                                  const int nb01, const int nb02,
+                                  const int nb03, const int ne10,
+                                  const int ne11, const int ne12,
+                                  const int nb10, const int nb11,
+                                  const int nb12, const int nb13,
+                                  dpct::queue_ptr stream) {
+
+    const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                                  sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+                              sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+            [=](sycl::nd_item<3> item_ct1) {
+                cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                           nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                           item_ct1);
+            });
+    }
+}
+
+static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
+                                  const int ne00, const int ne01,
+                                  const int ne02, const int nb00,
+                                  const int nb01, const int nb02,
+                                  const int nb03, const int ne10,
+                                  const int ne11, const int ne12,
+                                  const int nb10, const int nb11,
+                                  const int nb12, const int nb13,
+                                  dpct::queue_ptr stream) {
+
+    const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+    {
+        // dpct::has_capability_or_fail(stream->get_device(),
+        //                              {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                                  sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+                              sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+            [=](sycl::nd_item<3> item_ct1) {
+                cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                           nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                           item_ct1);
+            });
+    }
+}
+
+static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
+                                  const int ne00, const int ne01,
+                                  const int ne02, const int nb00,
+                                  const int nb01, const int nb02,
+                                  const int nb03, const int ne10,
+                                  const int ne11, const int ne12,
+                                  const int nb10, const int nb11,
+                                  const int nb12, const int nb13,
+                                  dpct::queue_ptr stream) {
+
+    const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
+    {
+        // dpct::has_capability_or_fail(stream->get_device(),
+        //                              {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                                  sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
+                              sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
+            [=](sycl::nd_item<3> item_ct1) {
+                cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
+                                           nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
+                                           item_ct1);
+            });
+    }
+}
+
+static void scale_f32_sycl(const float *x, float *dst, const float scale,
+                           const int k, dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            scale_f32(x, dst, scale, k, item_ct1);
+        });
+}
+
+static void clamp_f32_sycl(const float *x, float *dst, const float min,
+                           const float max, const int k,
+                           dpct::queue_ptr stream) {
+    const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
+    stream->parallel_for(
+        sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+                              sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
+                          sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
+        [=](sycl::nd_item<3> item_ct1) {
+            clamp_f32(x, dst, min, max, k, item_ct1);
+        });
+}
+
+template <typename T>
+static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
+                      const int32_t *pos, float freq_scale, int p_delta_rows,
+                      float freq_base, float ext_factor, float attn_factor,
+                      rope_corr_dims corr_dims, dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % 2 == 0);
+    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+    const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+    const sycl::range<3> block_nums(1, num_blocks_x, nrows);
+    if (pos == nullptr) {
+        /*
+        DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
+                               freq_base, ext_factor, attn_factor, corr_dims,
+                               item_ct1);
+            });
+    } else {
+        /*
+        DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
+                              freq_base, ext_factor, attn_factor, corr_dims,
+                              item_ct1);
+            });
+    }
+}
+
+template <typename T>
+static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
+                           const int32_t *pos, float freq_scale,
+                           int p_delta_rows, float freq_base, float ext_factor,
+                           float attn_factor, rope_corr_dims corr_dims,
+                           dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % 2 == 0);
+    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+    const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+    const sycl::range<3> block_nums(1, num_blocks_x, nrows);
+
+    const float theta_scale = powf(freq_base, -2.0f/n_dims);
+    const float inv_ndims = -1.0f / n_dims;
+
+    if (pos == nullptr) {
+        /*
+        DPCT1049:42: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope_neox<T, false>(x, dst, ncols, n_dims, pos, freq_scale,
+                                    p_delta_rows, ext_factor, attn_factor,
+                                    corr_dims, theta_scale, inv_ndims,
+                                    item_ct1);
+            });
+    } else {
+        /*
+        DPCT1049:43: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope_neox<T, true>(x, dst, ncols, n_dims, pos, freq_scale,
+                                   p_delta_rows, ext_factor, attn_factor,
+                                   corr_dims, theta_scale, inv_ndims, item_ct1);
+            });
+    }
+}
+
+static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows,
+                              const int32_t *pos, float freq_scale,
+                              int p_delta_rows, float freq_base, int n_ctx,
+                              dpct::queue_ptr stream) {
+    GGML_ASSERT(ncols % 4 == 0);
+    const sycl::range<3> block_dims(1, 1, SYCL_ROPE_BLOCK_SIZE / 4);
+    const int num_blocks_x = (ncols + SYCL_ROPE_BLOCK_SIZE - 1) / SYCL_ROPE_BLOCK_SIZE;
+    const sycl::range<3> block_nums(1, nrows, num_blocks_x);
+    stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                         [=](sycl::nd_item<3> item_ct1) {
+                             rope_glm_f32(x, dst, ncols, pos, freq_scale,
+                                          p_delta_rows, freq_base, n_ctx,
+                                          item_ct1);
+                         });
+}
+
+static void alibi_f32_sycl(const float *x, float *dst, const int ncols,
+                           const int nrows, const int k_rows,
+                           const int n_heads_log2_floor, const float m0,
+                           const float m1, dpct::queue_ptr stream) {
+    const sycl::range<3> block_dims(1, 1, SYCL_ALIBI_BLOCK_SIZE);
+    const int num_blocks_x = (ncols + SYCL_ALIBI_BLOCK_SIZE - 1) / (SYCL_ALIBI_BLOCK_SIZE);
+    const sycl::range<3> block_nums(1, nrows, num_blocks_x);
+    stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                         [=](sycl::nd_item<3> item_ct1) {
+                             alibi_f32(x, dst, ncols, k_rows,
+                                       n_heads_log2_floor, m0, m1, item_ct1);
+                         });
+}
+
+static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
+                              const int nrows, dpct::queue_ptr stream) {
+    const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+    const sycl::range<3> block_nums(1, nrows, 1);
+    stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                         [=](sycl::nd_item<3> item_ct1)
+                             [[intel::reqd_sub_group_size(32)]] {
+                                 k_sum_rows_f32(x, dst, ncols, item_ct1);
+                             });
+}
+
+static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
+                                 const int nrows, ggml_sort_order order,
+                                 dpct::queue_ptr stream) {
+    // bitonic sort requires ncols to be power of 2
+    GGML_ASSERT((ncols & (ncols - 1)) == 0);
+
+    const sycl::range<3> block_dims(1, 1, ncols);
+    const sycl::range<3> block_nums(1, nrows, 1);
+    if (order == GGML_SORT_ASC) {
+        /*
+        DPCT1049:44: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                k_argsort_f32_i32<GGML_SORT_ASC>(x, dst, ncols, item_ct1);
+            });
+    } else if (order == GGML_SORT_DESC) {
+        /*
+        DPCT1049:45: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                k_argsort_f32_i32<GGML_SORT_DESC>(x, dst, ncols, item_ct1);
+            });
+    } else {
+        GGML_ASSERT(false);
+    }
+}
+
+static void diag_mask_inf_f32_sycl(const float *x, float *dst,
+                                   const int ncols_x, const int nrows_x,
+                                   const int rows_per_channel, const int n_past,
+                                   dpct::queue_ptr stream) {
+    const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
+    const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
+    const sycl::range<3> block_nums(1, block_num_x, nrows_x);
+    stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+                         [=](sycl::nd_item<3> item_ct1) {
+                             diag_mask_inf_f32(x, dst, ncols_x,
+                                               rows_per_channel, n_past,
+                                               item_ct1);
+                         });
+}
+
+static void soft_max_f32_sycl(const float *x, const float *y, float *dst,
+                              const int ncols_x, const int nrows_x,
+                              const int nrows_y, const float scale,
+                              dpct::queue_ptr stream) {
+    int nth = WARP_SIZE;
+    while (nth < ncols_x && nth < SYCL_SOFT_MAX_BLOCK_SIZE) nth *= 2;
+    const sycl::range<3> block_dims(1, 1, nth);
+    const sycl::range<3> block_nums(1, 1, nrows_x);
+    /*
+    DPCT1049:46: The work-group size passed to the SYCL kernel may exceed the
+    limit. To get the device limit, query info::device::max_work_group_size.
+    Adjust the work-group size if needed.
+    */
+    stream->submit([&](sycl::handler &cgh) {
+        /*
+        DPCT1101:96: 'SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE' expression was
+        replaced with a value. Modify the code to use the original expression,
+        provided in comments, if it is correct.
+        */
+        sycl::local_accessor<float, 1> buf_acc_ct1(
+            sycl::range<1>(32 /*SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE*/), cgh);
+
+        cgh.parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+                soft_max_f32(x, y, dst, ncols_x, nrows_y, scale, item_ct1,
+                             buf_acc_ct1.get_pointer());
+            });
+    });
+}
+
+template <typename T>
+static void im2col_sycl(const float *x, T *dst, int IW, int IH,
+                                int OW, int OH, int KW, int KH, int IC,
+                                int offset_delta, int s0, int s1, int p0,
+                                int p1, int d0, int d1,
+                                dpct::queue_ptr stream) {
+    const int parallel_elements = OW * KW * KH;
+    const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
+    sycl::range<3> block_nums(IC, OH, num_blocks);
+    {
+        dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums *
+                                  sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
+                              sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
+            [=](sycl::nd_item<3> item_ct1) {
+                im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
+                               parallel_elements, (IC * KH * KW), s0, s1, p0,
+                               p1, d0, d1, item_ct1);
+            });
+    }
+}
+
+// buffer pool for sycl
+#define MAX_SYCL_BUFFERS 256
+
+struct scoped_spin_lock {
+    std::atomic_flag& lock;
+    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
+        while (lock.test_and_set(std::memory_order_acquire)) {
+            ; // spin
+        }
+    }
+    ~scoped_spin_lock() {
+        lock.clear(std::memory_order_release);
+    }
+    scoped_spin_lock(const scoped_spin_lock&) = delete;
+    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
+};
+
+static std::atomic_flag g_sycl_pool_lock = ATOMIC_FLAG_INIT;
+
+// #define DEBUG_SYCL_MALLOC
+struct sycl_buffer {
+    void * ptr = nullptr;
+    size_t size = 0;
+};
+
+static sycl_buffer g_sycl_buffer_pool[GGML_SYCL_MAX_DEVICES][MAX_SYCL_BUFFERS];
+static size_t g_sycl_pool_size[GGML_SYCL_MAX_DEVICES] = {0};
+
+static void *ggml_sycl_pool_malloc_leg(size_t size, size_t *actual_size) try {
+    scoped_spin_lock lock(g_sycl_pool_lock);
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg index %d\n", id);
+#ifdef DEBUG_SYCL_MALLOC
+    int nnz = 0;
+    size_t max_size = 0;
+#endif
+    size_t best_diff = 1ull << 36;
+    int ibest = -1;
+    for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
+        sycl_buffer& b = g_sycl_buffer_pool[id][i];
+        if (b.ptr != nullptr) {
+#ifdef DEBUG_SYCL_MALLOC
+            ++nnz;
+            if (b.size > max_size) max_size = b.size;
+#endif
+            if (b.size >= size) {
+                size_t diff = b.size - size;
+                if (diff < best_diff) {
+                    best_diff = diff;
+                    ibest = i;
+                    if (!best_diff) {
+                        void * ptr = b.ptr;
+                        *actual_size = b.size;
+                        b.ptr = nullptr;
+                        b.size = 0;
+                        // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 1 %p\n", ptr);
+                        return ptr;
+                    }
+                }
+            }
+        }
+    }
+    if (ibest >= 0) {
+        sycl_buffer& b = g_sycl_buffer_pool[id][ibest];
+        void * ptr = b.ptr;
+        *actual_size = b.size;
+        b.ptr = nullptr;
+        b.size = 0;
+        // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 2 %p\n", ptr);
+        return ptr;
+    }
+    void * ptr;
+    size_t look_ahead_size = (size_t) (1.05 * size);
+    look_ahead_size = 256 * ((look_ahead_size + 255)/256);
+
+    const dpct::queue_ptr stream = g_syclStreams[id][0];
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
+                             look_ahead_size, *stream)));
+    *actual_size = look_ahead_size;
+    g_sycl_pool_size[id] += look_ahead_size;
+
+#ifdef DEBUG_SYCL_MALLOC
+    fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
+            (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
+#endif
+    // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return %p\n", ptr);
+    return ptr;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_pool_free_leg(void *ptr, size_t size) try {
+    scoped_spin_lock lock(g_sycl_pool_lock);
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+
+    const dpct::queue_ptr stream = g_syclStreams[id][0];
+    for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
+        sycl_buffer& b = g_sycl_buffer_pool[id][i];
+        if (b.ptr == nullptr) {
+            b.ptr = ptr;
+            b.size = size;
+            return;
+        }
+    }
+    fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_SYCL_BUFFERS\n");
+    SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *stream)));
+    g_sycl_pool_size[id] -= size;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+// pool with virtual memory
+/*
+DPCT1082:64: Migration of CUmemGenericAllocationHandle type is not supported.
+*/
+// static std::vector<CUmemGenericAllocationHandle>
+//     g_sycl_pool_handles[GGML_SYCL_MAX_DEVICES];
+static dpct::device_ptr g_sycl_pool_addr[GGML_SYCL_MAX_DEVICES] = {0};
+static size_t g_sycl_pool_used[GGML_SYCL_MAX_DEVICES] = {0};
+
+static void *ggml_sycl_pool_malloc_vmm(size_t size, size_t *actual_size) try {
+    GGML_UNUSED(size);
+    GGML_UNUSED(actual_size);
+    return NULL;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_pool_free_vmm(void *ptr, size_t size) try {
+    scoped_spin_lock lock(g_sycl_pool_lock);
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = dpct::dev_mgr::instance().current_device_id()));
+
+#ifdef DEBUG_SYCL_MALLOC
+    printf("sycl pool[%d]: freed %llu bytes at %llx\n", id, (unsigned long long) size, ptr);
+#endif
+
+    g_sycl_pool_used[id] -= size;
+
+    // all deallocations must be in reverse order of the allocations
+    GGML_ASSERT(ptr == (void *) (g_sycl_pool_addr[id] + g_sycl_pool_used[id]));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void *ggml_sycl_pool_malloc(size_t size, size_t *actual_size) try {
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    if (g_device_caps[id].vmm) {
+        return ggml_sycl_pool_malloc_vmm(size, actual_size);
+    } else {
+        return ggml_sycl_pool_malloc_leg(size, actual_size);
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_pool_free(void *ptr, size_t size) try {
+    int id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+    if (g_device_caps[id].vmm) {
+        ggml_sycl_pool_free_vmm(ptr, size);
+    } else {
+        ggml_sycl_pool_free_leg(ptr, size);
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+
+template<typename T>
+struct sycl_pool_alloc {
+    T * ptr = nullptr;
+    size_t actual_size = 0;
+
+    // size is in number of elements
+    T * alloc(size_t size) {
+        GGML_ASSERT(ptr == nullptr);
+        ptr = (T *) ggml_sycl_pool_malloc(size * sizeof(T), &this->actual_size);
+        // GGML_SYCL_DEBUG("alloc %lu return %p actual size=%lu\n", size * sizeof(T), ptr, this->actual_size);
+        return ptr;
+    }
+
+    sycl_pool_alloc(size_t size) {
+        alloc(size);
+    }
+
+    ~sycl_pool_alloc() {
+        if (ptr != nullptr) {
+            ggml_sycl_pool_free(ptr, actual_size);
+        }
+    }
+
+    T * get() {
+        return ptr;
+    }
+
+    sycl_pool_alloc() = default;
+    sycl_pool_alloc(const sycl_pool_alloc &) = delete;
+    sycl_pool_alloc(sycl_pool_alloc &&) = delete;
+    sycl_pool_alloc& operator=(const sycl_pool_alloc &) = delete;
+    sycl_pool_alloc& operator=(sycl_pool_alloc &&) = delete;
+};
+
+static bool g_sycl_loaded = false;
+
+bool ggml_sycl_loaded(void) {
+    return g_sycl_loaded;
+}
+
+void ggml_backend_sycl_print_sycl_devices(){
+    int device_count = dpct::dev_mgr::instance().device_count();
+    fprintf(stderr, "found %d SYCL devices:\n", device_count);
+    for (int id = 0; id < device_count; ++id) {
+        dpct::device_info prop;
+        SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+            prop, dpct::dev_mgr::instance().get_device(id))));
+        sycl::device cur_device = dpct::dev_mgr::instance().get_device(id);
+        fprintf(stderr, "  Device %d: %s,\tcompute capability %d.%d,\n\tmax compute_units %d,\tmax work group size %d,\tmax sub group size %d,\tglobal mem size %lu\n", id,
+                prop.get_name(), prop.get_major_version(),
+                prop.get_minor_version(),
+                prop.get_max_compute_units(),
+                prop.get_max_work_group_size(),
+                prop.get_max_sub_group_size(),
+                prop.get_global_mem_size()
+                );
+    }
+    // fprintf(stderr, "\n");
+}
+
+int get_sycl_env(const char* env_name, int default_val){
+    char * user_device_string = getenv(env_name);
+    int user_number = default_val;
+
+    unsigned n;
+    if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1) {
+            user_number = (int)n;
+        } else {
+            user_number=default_val;
+        }
+    return user_number;
+}
+
+int get_work_group_size(int user_device_id){
+    dpct::device_info prop;
+    dpct::get_device_info(
+        prop,
+        dpct::dev_mgr::instance().get_device(user_device_id));
+    return prop.get_max_work_group_size();
+}
+
+void ggml_init_sycl() try {
+    static bool initialized = false;
+
+    if (!initialized) {
+        g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
+
+        printf("GGML_SYCL_DEBUG=%d\n", g_ggml_sycl_debug);
+
+        int user_device_id = get_sycl_env("GGML_SYCL_DEVICE", 0);
+
+        if (CHECK_TRY_ERROR(g_all_sycl_device_count =
+                                 dpct::dev_mgr::instance().device_count()) !=
+            0) {
+            initialized = true;
+            g_sycl_loaded = false;
+            return;
+        }
+        GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
+        int64_t total_vram = 0;
+
+#if defined(GGML_SYCL_F16)
+        fprintf(stderr, "%s: GGML_SYCL_F16:   yes\n", __func__);
+#else
+        fprintf(stderr, "%s: GGML_SYCL_F16:   no\n", __func__);
+#endif
+
+
+#if defined(SYCL_USE_XMX)
+        fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
+#else
+        fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
+#endif
+        ggml_backend_sycl_print_sycl_devices();
+        for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) {
+            g_sycl_device_id2index[id].index = -1;
+            g_device_caps[id].vmm = 0;
+            g_device_caps[id].device_id = -1;
+            g_device_caps[id].cc = 0;
+            g_tensor_split[id] = 0;
+        }
+
+        int device_inx = -1;
+        for (int id = 0; id < g_all_sycl_device_count; ++id) {
+            if(id!=user_device_id) continue;
+
+            device_inx++;
+
+            g_device_caps[device_inx].vmm = 0;
+            g_device_caps[device_inx].device_id = id;
+            g_sycl_device_id2index[id].index = device_inx;
+
+            dpct::device_info prop;
+            SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+                prop, dpct::dev_mgr::instance().get_device(id))));
+
+            g_tensor_split[device_inx] = total_vram;
+            total_vram += prop.get_global_mem_size();
+
+            g_device_caps[device_inx].cc =
+                100 * prop.get_major_version() + 10 * prop.get_minor_version();
+
+        }
+        device_inx = -1;
+        for (int id = 0; id < g_all_sycl_device_count; ++id) {
+            if(id!=user_device_id) continue;
+            device_inx++;
+            g_tensor_split[device_inx] /= total_vram;
+        }
+
+        device_inx = -1;
+        for (int id = 0; id < g_all_sycl_device_count; ++id) {
+            if(id!=user_device_id) continue;
+            device_inx++;
+            SYCL_CHECK(ggml_sycl_set_device(id));
+
+            // create sycl streams
+            for (int is = 0; is < MAX_STREAMS; ++is) {
+                /*
+                DPCT1025:88: The SYCL queue is created ignoring the flag and
+                priority options.
+                */
+                SYCL_CHECK(CHECK_TRY_ERROR(
+                    g_syclStreams[device_inx][is] =
+                        dpct::get_current_device().create_queue()));
+            }
+
+            const dpct::queue_ptr stream = g_syclStreams[device_inx][0];
+            // create sycl handle
+            SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[device_inx] =
+                                              stream));
+            /*
+            DPCT1027:89: The call to syclSetMathMode was replaced with 0
+            because this functionality is redundant in SYCL.
+            */
+            SYCL_CHECK(0);
+        }
+
+        // configure logging to stdout
+        // SYCL_CHECK(syclLoggerConfigure(1, 1, 0, nullptr));
+
+        //hardcode, force set to 1 device
+        g_device_count = 1;
+        ggml_sycl_set_main_device(user_device_id);
+        ggml_sycl_set_device(user_device_id);
+        g_work_group_size = get_work_group_size(user_device_id);
+        // fprintf(stderr, "Using Device %d\n", user_device_id);
+
+        // for (int id = 0; id < g_all_sycl_device_count; ++id) {
+        //     GGML_SYCL_DEBUG("id=%d  g_device_caps[%d].device_id=%d g_sycl_device_id2index[%d].index=%d ", id, id,
+        //     g_device_caps[id].device_id, id, g_sycl_device_id2index[id].index);
+        // }
+
+        initialized = true;
+        g_sycl_loaded = true;
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+
+void ggml_sycl_set_tensor_split(const float * tensor_split) {
+    if (tensor_split == nullptr) {
+        return;
+    }
+    bool all_zero = true;
+    for (int i = 0; i < g_device_count; ++i) {
+        if (tensor_split[i] != 0.0f) {
+            all_zero = false;
+            break;
+        }
+    }
+    if (all_zero) {
+        return;
+    }
+    float split_sum = 0.0f;
+    for (int i = 0; i < g_device_count; ++i) {
+        g_tensor_split[i] = split_sum;
+        split_sum += tensor_split[i];
+    }
+    for (int i = 0; i < g_device_count; ++i) {
+        g_tensor_split[i] /= split_sum;
+    }
+}
+
+void *ggml_sycl_host_malloc(size_t size) try {
+    if (getenv("GGML_SYCL_NO_PINNED") != nullptr) {
+        return nullptr;
+    }
+
+    void * ptr = nullptr;
+    //allow to use dpct::get_in_order_queue() for host malloc
+    dpct::err0 err = CHECK_TRY_ERROR(
+        ptr = (void *)sycl::malloc_host(size, dpct::get_in_order_queue()));
+    /*
+    DPCT1000:82: Error handling if-stmt was detected but could not be rewritten.
+    */
+    if (err != 0) {
+        // clear the error
+        /*
+        DPCT1026:83: The call to syclGetLastError was removed because this
+        functionality is redundant in SYCL.
+        */
+        /*
+        DPCT1001:81: The statement could not be removed.
+        */
+        fprintf(
+            stderr,
+            "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
+            /*
+            DPCT1009:84: SYCL uses exceptions to report errors and does not use
+            the error codes. The original code was commented out and a warning
+            string was inserted. You need to rewrite this code.
+            */
+            size / 1024.0 / 1024.0,
+            "syclGetErrorString is not supported" /*syclGetErrorString(err)*/);
+        return nullptr;
+    }
+
+    return ptr;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+void ggml_sycl_host_free(void *ptr) try {
+    //allow to use dpct::get_in_order_queue() for host malloc
+    SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, dpct::get_in_order_queue())));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
+                                          const struct ggml_tensor *src,
+                                          int64_t i3, int64_t i2,
+                                          int64_t i1_low, int64_t i1_high,
+                                          dpct::queue_ptr stream) try {
+
+    dpct::memcpy_direction kind;
+    char * src_ptr;
+    if (src->backend == GGML_BACKEND_CPU) {
+        kind = dpct::host_to_device;
+        src_ptr = (char *) src->data;
+        // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d  GGML_BACKEND_CPU src_ptr %p\n", src_ptr);
+    } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
+        GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
+        kind = dpct::device_to_device;
+        ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
+        int id;
+        SYCL_CHECK(CHECK_TRY_ERROR(
+            id = get_current_device_index()));
+        // GGML_SYCL_DEBUG("current device index %d\n", id);
+        src_ptr = (char *) extra->data_device[id];
+    } else {
+        // GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
+        GGML_ASSERT(false);
+    }
+    char * dst_ptr = (char *) dst;
+
+    const int64_t ne0 = src->ne[0];
+    const int64_t nb0 = src->nb[0];
+    const int64_t nb1 = src->nb[1];
+    const int64_t nb2 = src->nb[2];
+    const int64_t nb3 = src->nb[3];
+    const enum ggml_type type = src->type;
+    const int64_t ts = ggml_type_size(type);
+    const int64_t bs = ggml_blck_size(type);
+    int64_t i1_diff = i1_high - i1_low;
+
+    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
+    if (nb0 == ts && nb1 == ts*ne0/bs) {
+        // GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
+        // return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
+        return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
+                                    kind, *stream));
+
+    } else if (nb0 == ts) {
+        return CHECK_TRY_ERROR(
+            dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
+                                    ts * ne0 / bs, i1_diff, kind, *stream));
+    } else {
+        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
+            const void * rx = (const void *) ((const char *) x + i1*nb1);
+            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
+            // pretend the row is a matrix with cols=1
+            dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
+                rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
+            /*
+            DPCT1001:85: The statement could not be removed.
+            */
+            /*
+            DPCT1000:86: Error handling if-stmt was detected but could not be
+            rewritten.
+            */
+            if (r != 0) return r;
+        }
+        return 0;
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_op_get_rows(const ggml_tensor *src0,
+                                  const ggml_tensor *src1, ggml_tensor *dst,
+                                  const float *src0_d, const float *src1_d,
+                                  float *dst_d, const dpct::queue_ptr &stream) {
+
+    GGML_ASSERT(src1->type == GGML_TYPE_I32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+    GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
+    GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
+
+    const int32_t * src1_i32 = (const int32_t *) src1_d;
+
+    switch (src0->type) {
+        case GGML_TYPE_F16:
+            get_rows_sycl_float(src0, src1, dst, (const sycl::half *)src0_d,
+                                src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_F32:
+            get_rows_sycl_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q4_0:
+            get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+            break;
+        default:
+            // TODO: k-quants
+            fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
+            GGML_ASSERT(false);
+            break;
+    }
+}
+
+template <class op>
+inline void ggml_sycl_op_bin_bcast(const ggml_tensor *src0,
+                                   const ggml_tensor *src1, ggml_tensor *dst,
+                                   const float *src0_dd, const float *src1_dd,
+                                   float *dst_dd,
+                                   const dpct::queue_ptr &main_stream) {
+
+    if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+        op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+        op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
+             (sycl::half *)dst_dd, main_stream);
+    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
+        op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
+             main_stream);
+    } else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
+        op()(src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
+             main_stream);
+    } else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
+        op()(src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
+             main_stream);
+    } else {
+        fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
+            ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
+        GGML_ASSERT(false);
+    }
+}
+
+static void ggml_sycl_op_repeat(const ggml_tensor *src0,
+                                const ggml_tensor *src1, ggml_tensor *dst,
+                                const float *src0_d, const float *src1_d,
+                                float *dst_d,
+                                const dpct::queue_ptr &main_stream) {
+
+    ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
+
+    (void) src1;
+    (void) src1_d;
+}
+
+inline void ggml_sycl_op_add(const ggml_tensor *src0, const ggml_tensor *src1,
+                             ggml_tensor *dst, const float *src0_dd,
+                             const float *src1_dd, float *dst_dd,
+                             const dpct::queue_ptr &main_stream) {
+
+    ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
+
+inline void ggml_sycl_op_acc(const ggml_tensor *src0, const ggml_tensor *src1,
+                             ggml_tensor *dst, const float *src0_dd,
+                             const float *src1_dd, float *dst_dd,
+                             const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
+
+    int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
+    int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
+    // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
+    int offset = dst->op_params[3] / 4; // offset in bytes
+
+    acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
+
+    (void) dst;
+}
+
+inline void ggml_sycl_op_mul(const ggml_tensor *src0, const ggml_tensor *src1,
+                             ggml_tensor *dst, const float *src0_dd,
+                             const float *src1_dd, float *dst_dd,
+                             const dpct::queue_ptr &main_stream) {
+
+    ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
+
+inline void ggml_sycl_op_div(const ggml_tensor *src0, const ggml_tensor *src1,
+                             ggml_tensor *dst, const float *src0_dd,
+                             const float *src1_dd, float *dst_dd,
+                             const dpct::queue_ptr &main_stream) {
+
+    ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
+
+inline void ggml_sycl_op_gelu(const ggml_tensor *src0, const ggml_tensor *src1,
+                              ggml_tensor *dst, const float *src0_dd,
+                              const float *src1_dd, float *dst_dd,
+                              const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_silu(const ggml_tensor *src0, const ggml_tensor *src1,
+                              ggml_tensor *dst, const float *src0_dd,
+                              const float *src1_dd, float *dst_dd,
+                              const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_gelu_quick(const ggml_tensor *src0,
+                                    const ggml_tensor *src1, ggml_tensor *dst,
+                                    const float *src0_dd, const float *src1_dd,
+                                    float *dst_dd,
+                                    const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_tanh(const ggml_tensor *src0, const ggml_tensor *src1,
+                              ggml_tensor *dst, const float *src0_dd,
+                              const float *src1_dd, float *dst_dd,
+                              const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_relu(const ggml_tensor *src0, const ggml_tensor *src1,
+                              ggml_tensor *dst, const float *src0_dd,
+                              const float *src1_dd, float *dst_dd,
+                              const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_leaky_relu(const ggml_tensor *src0,
+                                    const ggml_tensor *src1, ggml_tensor *dst,
+                                    const float *src0_dd, const float *src1_dd,
+                                    float *dst_dd,
+                                    const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    float negative_slope;
+    memcpy(&negative_slope, dst->op_params, sizeof(float));
+
+    leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_sqr(const ggml_tensor *src0, const ggml_tensor *src1,
+                             ggml_tensor *dst, const float *src0_dd,
+                             const float *src1_dd, float *dst_dd,
+                             const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_norm(const ggml_tensor *src0, const ggml_tensor *src1,
+                              ggml_tensor *dst, const float *src0_dd,
+                              const float *src1_dd, float *dst_dd,
+                              const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    float eps;
+    memcpy(&eps, dst->op_params, sizeof(float));
+
+    norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_group_norm(const ggml_tensor *src0,
+                                    const ggml_tensor *src1, ggml_tensor *dst,
+                                    const float *src0_dd, const float *src1_dd,
+                                    float *dst_dd,
+                                    const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    int num_groups = dst->op_params[0];
+    int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
+    group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_concat(const ggml_tensor *src0,
+                                const ggml_tensor *src1, ggml_tensor *dst,
+                                const float *src0_dd, const float *src1_dd,
+                                float *dst_dd,
+                                const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    for (int i3 = 0; i3 < dst->ne[3]; i3++) {
+        concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
+    }
+
+    (void) src1;
+    (void) dst;
+}
+
+inline void ggml_sycl_op_upscale(const ggml_tensor *src0,
+                                 const ggml_tensor *src1, ggml_tensor *dst,
+                                 const float *src0_dd, const float *src1_dd,
+                                 float *dst_dd,
+                                 const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+    const int scale_factor = dst->op_params[0];
+
+    upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_pad(const ggml_tensor *src0, const ggml_tensor *src1,
+                             ggml_tensor *dst, const float *src0_dd,
+                             const float *src1_dd, float *dst_dd,
+                             const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+    GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+
+    pad_f32_sycl(src0_dd, dst_dd,
+        src0->ne[0], src0->ne[1], src0->ne[2],
+        dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_rms_norm(const ggml_tensor *src0,
+                                  const ggml_tensor *src1, ggml_tensor *dst,
+                                  const float *src0_dd, const float *src1_dd,
+                                  float *dst_dd,
+                                  const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    float eps;
+    memcpy(&eps, dst->op_params, sizeof(float));
+
+    rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_mul_mat_q(
+    const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+    const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+    float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+    const int64_t src1_ncols, const int64_t src1_padded_row_size,
+    const dpct::queue_ptr &stream) try {
+
+    const int64_t ne00 = src0->ne[0];
+
+    const int64_t ne10 = src1->ne[0];
+    GGML_ASSERT(ne10 % QK8_1 == 0);
+
+    const int64_t ne0 = dst->ne[0];
+
+    const int64_t row_diff = row_high - row_low;
+
+    int device_id;
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(device_id = dpct::dev_mgr::instance().current_device_id()));
+
+    // the main device has a larger memory buffer to hold the results from all GPUs
+    // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
+    const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
+
+    switch (src0->type) {
+        case GGML_TYPE_Q4_0:
+            ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q2_K:
+            ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q3_K:
+            ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q4_K:
+            ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q5_K:
+            ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        case GGML_TYPE_Q6_K:
+            ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+            break;
+        default:
+            GGML_ASSERT(false);
+            break;
+    }
+
+    (void) src1;
+    (void) dst;
+    (void) src1_ddf_i;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static int64_t get_row_rounding(ggml_type type) {
+    int64_t min_compute_capability = INT_MAX;
+    int64_t max_compute_capability = INT_MIN;
+    for (int64_t id = 0; id < g_device_count; ++id) {
+        if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
+            if (min_compute_capability > g_device_caps[id].cc) {
+                min_compute_capability = g_device_caps[id].cc;
+            }
+            if (max_compute_capability < g_device_caps[id].cc) {
+                max_compute_capability = g_device_caps[id].cc;
+            }
+        }
+    }
+
+    switch(type) {
+        case GGML_TYPE_Q4_0:
+        case GGML_TYPE_Q4_1:
+            return max_compute_capability >= VER_GEN9 ? 128 : 64;
+        case GGML_TYPE_Q5_0:
+        case GGML_TYPE_Q5_1:
+        case GGML_TYPE_Q8_0:
+            return 64;
+        case GGML_TYPE_F16:
+        case GGML_TYPE_F32:
+            return 1;
+        case GGML_TYPE_Q2_K:
+        case GGML_TYPE_Q3_K:
+        case GGML_TYPE_Q4_K:
+        case GGML_TYPE_Q5_K:
+            return max_compute_capability >= VER_GEN9 ? 128 : 64;
+        case GGML_TYPE_Q6_K:
+            return 64;
+        default:
+            GGML_ASSERT(false);
+    }
+}
+
+inline void ggml_sycl_op_mul_mat_vec_q(
+    const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+    const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+    float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+    const int64_t src1_ncols, const int64_t src1_padded_row_size,
+    const dpct::queue_ptr &stream) {
+
+    GGML_ASSERT(ggml_nrows(src1) == 1);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t row_diff = row_high - row_low;
+
+    switch (src0->type) {
+        case GGML_TYPE_Q4_0:
+            mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q2_K:
+            mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q3_K:
+            mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q4_K:
+            mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_K:
+            mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q6_K:
+            mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        default:
+            GGML_ASSERT(false);
+            break;
+    }
+
+    (void) src1;
+    (void) dst;
+    (void) src1_ddf_i;
+    (void) src1_ncols;
+    (void) src1_padded_row_size;
+}
+
+inline void ggml_sycl_op_dequantize_mul_mat_vec(
+    const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+    const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+    float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+    const int64_t src1_ncols, const int64_t src1_padded_row_size,
+    const dpct::queue_ptr &stream) {
+
+    GGML_TENSOR_BINARY_OP_LOCALS
+
+    const int64_t row_diff = row_high - row_low;
+
+    // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
+#ifdef GGML_SYCL_F16
+    sycl_pool_alloc<sycl::half> src1_dfloat_a;
+    sycl::half *src1_dfloat = nullptr; // dfloat == half
+
+    bool src1_convert_f16 =
+        src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
+        src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
+        src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
+
+    if (src1_convert_f16) {
+        if (src1->type == GGML_TYPE_F16) {
+            src1_dfloat = (sycl::half *)src1->data + src1_padded_row_size;
+        } else {
+            src1_dfloat = src1_dfloat_a.alloc(ne00);
+            ggml_cpy_f32_f16_sycl((const char *)src1_ddf_i, (char *)src1_dfloat,
+                                  ne00, ne00, ne01, ne02, nb00, nb01, nb02,
+                                  nb03, ne10, ne11, ne12, nb10, nb11, nb12,
+                                  nb13, stream);
+        }
+    }
+#else
+    const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
+#endif // GGML_SYCL_F16
+
+    switch (src0->type) {
+        case GGML_TYPE_Q4_0:
+            dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q4_1:
+            dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_0:
+            dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_1:
+            dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q8_0:
+            dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q2_K:
+            dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q3_K:
+            dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q4_K:
+            dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q5_K:
+            dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_Q6_K:
+            dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+            break;
+        case GGML_TYPE_F16:
+            convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+            break;
+        default:
+            GGML_ASSERT(false);
+            break;
+    }
+
+    (void) src1;
+    (void) dst;
+    (void) src1_ddq_i;
+    (void) src1_ncols;
+    (void) src1_padded_row_size;
+}
+
+inline void ggml_sycl_op_mul_mat_sycl(
+    const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+    const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+    float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+    const int64_t src1_ncols, const int64_t src1_padded_row_size,
+    const dpct::queue_ptr &stream) try {
+
+    GGML_ASSERT(src0_dd_i  != nullptr);
+    GGML_ASSERT(src1_ddf_i != nullptr);
+    GGML_ASSERT(dst_dd_i   != nullptr);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne10 = src1->ne[0];
+
+    const int64_t ne0 = dst->ne[0];
+
+    const int64_t row_diff = row_high - row_low;
+
+    int id;
+    int device_id = dpct::dev_mgr::instance().current_device_id();
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(id = get_current_device_index()));
+
+    // the main device has a larger memory buffer to hold the results from all GPUs
+    // ldc == nrows of the matrix that cuBLAS writes into
+    int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
+
+#ifdef GGML_SYCL_F16
+    bool use_fp16 = true;  // TODO(Yu) SYCL capability check
+#else
+    bool use_fp16 = false;
+#endif
+    // if (compute_capability >= VER_GEN9 && (src0->type == GGML_TYPE_F16 ||
+    // ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff ==
+    // src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
+    if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
+        use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
+        dst->op_params[0] == GGML_PREC_DEFAULT) {
+
+        // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
+        // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
+        sycl_pool_alloc<sycl::half> src0_as_f16;
+        if (src0->type != GGML_TYPE_F16) {
+            const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
+            GGML_ASSERT(to_fp16_sycl != nullptr);
+            size_t ne = row_diff*ne00;
+            src0_as_f16.alloc(ne);
+            to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
+        }
+        const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
+                                         ? (const sycl::half *)src0_dd_i
+                                         : src0_as_f16.get();
+
+        sycl_pool_alloc<sycl::half> src1_as_f16;
+        if (src1->type != GGML_TYPE_F16) {
+            const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
+            GGML_ASSERT(to_fp16_sycl != nullptr);
+            size_t ne = src1_ncols*ne10;
+            src1_as_f16.alloc(ne);
+            to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
+        }
+        const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
+                ? (const sycl::half *)src1->data + src1_padded_row_size
+                                         : src1_as_f16.get();
+        sycl_pool_alloc<sycl::half> dst_f16(row_diff * src1_ncols);
+
+        const sycl::half alpha_f16 = 1.0f;
+        const sycl::half beta_f16 = 0.0f;
+
+        SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
+        SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
+            *g_sycl_handles[id], oneapi::mkl::transpose::trans,
+            oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
+            &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
+            src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
+            dst_f16.get(), dpct::library_data_t::real_half, ldc,
+            dpct::library_data_t::real_half)));
+
+        const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
+        to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
+    }
+    else {
+        // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
+        sycl_pool_alloc<float> src0_ddq_as_f32;
+
+        if (src0->type != GGML_TYPE_F32) {
+            const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
+            GGML_ASSERT(to_fp32_sycl != nullptr);
+            src0_ddq_as_f32.alloc(row_diff*ne00);
+            to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
+        }
+        const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
+
+        const float alpha = 1.0f;
+        const float beta = 0.0f;
+
+        SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
+        SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
+            *g_sycl_handles[id], oneapi::mkl::transpose::trans,
+            oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
+            dpct::get_value(&alpha, *g_sycl_handles[id]), src0_ddf_i, ne00,
+            src1_ddf_i, ne10, dpct::get_value(&beta, *g_sycl_handles[id]),
+            dst_dd_i, ldc)));
+    }
+
+    (void) dst;
+    (void) src1_ddq_i;
+    (void) src1_padded_row_size;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
+                              ggml_tensor *dst, const float *src0_dd,
+                              const float *src1_dd, float *dst_dd,
+                              const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
+    GGML_ASSERT(src0->type == dst->type);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne2 = dst->ne[2];
+    const int64_t nrows = ggml_nrows(src0);
+
+    //const int n_past      = ((int32_t *) dst->op_params)[0];
+    const int n_dims      = ((int32_t *) dst->op_params)[1];
+    const int mode        = ((int32_t *) dst->op_params)[2];
+    const int n_ctx       = ((int32_t *) dst->op_params)[3];
+    const int n_orig_ctx  = ((int32_t *) dst->op_params)[4];
+
+    // RoPE alteration for extended context
+    float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
+    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
+    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
+    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
+    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
+    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
+
+    const int32_t * pos = nullptr;
+    if ((mode & 1) == 0) {
+        GGML_ASSERT(src1->type == GGML_TYPE_I32);
+        GGML_ASSERT(src1->ne[0] == ne2);
+        pos = (const int32_t *) src1_dd;
+    }
+
+    const bool is_neox = mode & 2;
+    const bool is_glm  = mode & 4;
+
+    rope_corr_dims corr_dims;
+    ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
+
+    // compute
+    if (is_glm) {
+        GGML_ASSERT(false);
+        rope_glm_f32_sycl(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
+    } else if (is_neox) {
+        if (src0->type == GGML_TYPE_F32) {
+            rope_neox_sycl(
+                (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, main_stream
+            );
+        } else if (src0->type == GGML_TYPE_F16) {
+            rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
+                           ne00, n_dims, nrows, pos, freq_scale, ne01,
+                           freq_base, ext_factor, attn_factor, corr_dims,
+                           main_stream);
+        } else {
+            GGML_ASSERT(false);
+        }
+    } else {
+        if (src0->type == GGML_TYPE_F32) {
+            rope_sycl(
+                (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, main_stream
+            );
+        } else if (src0->type == GGML_TYPE_F16) {
+            rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
+                      nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+                      attn_factor, corr_dims, main_stream);
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
+                               ggml_tensor *dst, const float *src0_dd,
+                               const float *src1_dd, float *dst_dd,
+                               const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+    const int64_t nrows = ggml_nrows(src0);
+
+    //const int n_past = ((int32_t *) dst->op_params)[0];
+    const int n_head = ((int32_t *) dst->op_params)[1];
+    float max_bias;
+    memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
+
+    //GGML_ASSERT(ne01 + n_past == ne00);
+    GGML_ASSERT(n_head == ne02);
+
+    const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
+
+    const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
+    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
+
+    alibi_f32_sycl(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
+
+    (void) src1;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
+                                const ggml_tensor *src1, ggml_tensor *dst,
+                                const float *src0_dd, const float *src1_dd,
+                                float *dst_dd,
+                                const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
+
+    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+    const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
+    const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
+    const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
+    const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
+    const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
+
+    const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
+
+    const int64_t IC = src1->ne[is_2D ? 2 : 1];
+    const int64_t IH = is_2D ? src1->ne[1] : 1;
+    const int64_t IW =         src1->ne[0];
+
+    const int64_t KH = is_2D ? src0->ne[1] : 1;
+    const int64_t KW =         src0->ne[0];
+
+    const int64_t OH = is_2D ? dst->ne[2] : 1;
+    const int64_t OW =         dst->ne[1];
+
+    const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
+
+    if (dst->type == GGML_TYPE_F16) {
+        im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
+    } else {
+        im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
+    }
+
+    (void) src0;
+    (void) src0_dd;
+}
+
+inline void ggml_sycl_op_sum_rows(const ggml_tensor *src0,
+                                  const ggml_tensor *src1, ggml_tensor *dst,
+                                  const float *src0_dd, const float *src1_dd,
+                                  float *dst_dd,
+                                  const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ncols = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_argsort(const ggml_tensor *src0,
+                                 const ggml_tensor *src1, ggml_tensor *dst,
+                                 const float *src0_dd, const float *src1_dd,
+                                 float *dst_dd,
+                                 const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_I32);
+
+    const int64_t ncols = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
+
+    argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_diag_mask_inf(const ggml_tensor *src0,
+                                       const ggml_tensor *src1,
+                                       ggml_tensor *dst, const float *src0_dd,
+                                       const float *src1_dd, float *dst_dd,
+                                       const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int nrows0 = ggml_nrows(src0);
+
+    const int n_past = ((int32_t *) dst->op_params)[0];
+
+    diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
+                                  const ggml_tensor *src1, ggml_tensor *dst,
+                                  const float *src0_dd, const float *src1_dd,
+                                  float *dst_dd,
+                                  const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows_x = ggml_nrows(src0);
+    const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
+
+    float scale = 1.0f;
+    memcpy(&scale, dst->op_params, sizeof(float));
+
+    soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
+
+    (void) dst;
+}
+
+inline void ggml_sycl_op_scale(const ggml_tensor *src0, const ggml_tensor *src1,
+                               ggml_tensor *dst, const float *src0_dd,
+                               const float *src1_dd, float *dst_dd,
+                               const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    float scale;
+    memcpy(&scale, dst->op_params, sizeof(float));
+
+    scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
+    /*
+    DPCT1010:87: SYCL uses exceptions to report errors and does not use the
+    error codes. The call was replaced with 0. You need to rewrite this code.
+    */
+    SYCL_CHECK(0);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+inline void ggml_sycl_op_clamp(const ggml_tensor *src0, const ggml_tensor *src1,
+                               ggml_tensor *dst, const float *src0_dd,
+                               const float *src1_dd, float *dst_dd,
+                               const dpct::queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    float min;
+    float max;
+    memcpy(&min, dst->op_params, sizeof(float));
+    memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
+
+    clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
+    /*
+    DPCT1010:88: SYCL uses exceptions to report errors and does not use the
+    error codes. The call was replaced with 0. You need to rewrite this code.
+    */
+    SYCL_CHECK(0);
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
+
+static void ggml_sycl_op_flatten(const ggml_tensor *src0,
+                                 const ggml_tensor *src1, ggml_tensor *dst,
+                                 const ggml_sycl_op_flatten_t op) try {
+    const int64_t nrows0 = ggml_nrows(src0);
+
+    const bool use_src1 = src1 != nullptr;
+    const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
+
+    GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
+    GGML_ASSERT(              dst->backend != GGML_BACKEND_GPU_SPLIT);
+
+    ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
+    ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
+    ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *)  dst->extra;
+
+    const bool src0_on_device =             src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
+    const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
+    const bool  dst_on_device =              dst->backend == GGML_BACKEND_GPU;
+
+    // dd = data device
+    float * src0_ddf = nullptr;
+    float * src1_ddf = nullptr;
+    float *  dst_ddf = nullptr;
+
+    sycl_pool_alloc<float> src0_f;
+    sycl_pool_alloc<float> src1_f;
+    sycl_pool_alloc<float>  dst_f;
+
+    ggml_sycl_set_device(g_main_device);
+    dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
+    // GGML_SYCL_DEBUG("g_main_device_index=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
+        // g_main_device_index, main_stream, src0_on_device, src1_on_device, dst_on_device);
+
+    if (src0_on_device) {
+        src0_ddf = (float *) src0_extra->data_device[g_main_device_index];
+    } else {
+        src0_ddf = src0_f.alloc(ggml_nelements(src0));
+        // GGML_SYCL_DEBUG("before ggml_sycl_cpy_tensor_2d src0_ddf=%p, src0=%p\n", src0_ddf, src0);
+        SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
+    }
+
+    if (use_src1) {
+        if (src1_on_device) {
+            src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
+        } else {
+            src1_ddf = src1_f.alloc(ggml_nelements(src1));
+            SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
+        }
+    }
+    if (dst_on_device) {
+        dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
+        // printf("zjy dst_ddf=%p main_stream=%p g_main_device_index=%d\n", dst_ddf, main_stream, g_main_device_index);
+    } else {
+        dst_ddf = dst_f.alloc(ggml_nelements(dst));
+    }
+
+    // GGML_SYCL_DEBUG("op src0=%p, src1=%p, dst=%p, src0_ddf=%p, src1_ddf=%p, dst_ddf=%p, main_stream=%p\n",
+        // src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
+    // do the computation
+    op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
+    /*
+    DPCT1010:89: SYCL uses exceptions to report errors and does not use the
+    error codes. The call was replaced with 0. You need to rewrite this code.
+    */
+    SYCL_CHECK(0);
+
+    // copy dst to host if necessary
+    if (!dst_on_device) {
+        SYCL_CHECK(CHECK_TRY_ERROR(
+            main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst))));
+    }
+
+    if (dst->backend == GGML_BACKEND_CPU) {
+        SYCL_CHECK(CHECK_TRY_ERROR(
+            dpct::get_current_device().queues_wait_and_throw()));
+    }
+    // print_ggml_tensor("tensor", dst);
+}
+catch (sycl::exception const &exc) {
+
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_set_peer_access(const int n_tokens) {
+    static bool peer_access_enabled = false;
+
+    const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
+
+    if (peer_access_enabled == enable_peer_access) {
+        return;
+    }
+
+#ifdef NDEBUG
+    for (int id = 0; id < g_device_count; ++id) {
+        SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
+        // SYCL_CHECK(syclDeviceSynchronize());
+    }
+
+    for (int id = 0; id < g_device_count; ++id) {
+        SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
+        int device_id = g_device_caps[id].device_id;
+
+        for (int id_other = 0; id_other < g_device_count; ++id_other) {
+            int device_id_other = g_device_caps[id_other].device_id;
+            if (device_id == id_other) {
+                continue;
+            }
+            if (device_id != g_main_device && device_id_other != g_main_device) {
+                continue;
+            }
+
+            // int can_access_peer;
+            // SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
+            // if (can_access_peer) {
+            //     if (enable_peer_access) {
+            //         SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
+            //     } else {
+            //         SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
+            //     }
+            // }
+        }
+    }
+#endif // NDEBUG
+
+    peer_access_enabled = enable_peer_access;
+}
+
+static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
+                                 const ggml_tensor *src1, ggml_tensor *dst,
+                                 ggml_sycl_op_mul_mat_t op,
+                                 const bool convert_src1_to_q8_1) try {
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+    const int64_t ne03 = src0->ne[3];
+
+    const int64_t ne10 = src1->ne[0];
+    const int64_t ne11 = src1->ne[1];
+    const int64_t ne12 = src1->ne[2];
+    const int64_t ne13 = src1->ne[3];
+    const int64_t nrows1 = ggml_nrows(src1);
+
+    GGML_ASSERT(ne03 == ne13);
+
+    const int64_t ne0 = dst->ne[0];
+    const int64_t ne1 = dst->ne[1];
+
+    const int nb2 = dst->nb[2];
+    const int nb3 = dst->nb[3];
+
+    GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
+    GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
+
+    GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
+
+    const int64_t i02_divisor = ne12 / ne02;
+
+    const size_t src0_ts = ggml_type_size(src0->type);
+    const size_t src0_bs = ggml_blck_size(src0->type);
+    const size_t q8_1_ts = sizeof(block_q8_1);
+    const size_t q8_1_bs = QK8_1;
+
+    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+    ggml_tensor_extra_gpu *  dst_extra = (ggml_tensor_extra_gpu *)  dst->extra;
+
+    const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
+    const bool src0_is_contiguous = ggml_is_contiguous(src0);
+    const bool src1_is_contiguous = ggml_is_contiguous(src1);
+
+    int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
+
+    const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
+    GGML_ASSERT(!(split && ne02 > 1));
+    GGML_ASSERT(!(split && ne03 > 1));
+    GGML_ASSERT(!(split && ne02 < ne12));
+
+    // dd = data device
+    char  *  src0_dd[GGML_SYCL_MAX_DEVICES] = {nullptr};
+    float * src1_ddf[GGML_SYCL_MAX_DEVICES] = {nullptr}; // float
+    char  * src1_ddq[GGML_SYCL_MAX_DEVICES] = {nullptr}; // q8_1
+    float *   dst_dd[GGML_SYCL_MAX_DEVICES] = {nullptr};
+
+    // as = actual size
+    size_t  src0_as[GGML_SYCL_MAX_DEVICES] = {0};
+    size_t src1_asf[GGML_SYCL_MAX_DEVICES] = {0};
+    size_t src1_asq[GGML_SYCL_MAX_DEVICES] = {0};
+    size_t   dst_as[GGML_SYCL_MAX_DEVICES] = {0};
+
+    int64_t  row_low[GGML_SYCL_MAX_DEVICES];
+    int64_t row_high[GGML_SYCL_MAX_DEVICES];
+
+    int used_devices = 0;
+
+    for (int64_t id = 0; id < g_device_count; ++id) {
+        // by default, use all rows
+        row_low[id]  = 0;
+        row_high[id] = ne01;
+
+        // for multi GPU, get the row boundaries from tensor split
+        // and round to mul_mat_q tile sizes
+        if (split) {
+            const int64_t rounding = get_row_rounding(src0->type);
+
+            if (id != 0) {
+                row_low[id]  = ne01*g_tensor_split[id];
+                if (row_low[id] < ne01) {
+                    row_low[id] -= row_low[id] % rounding;
+                }
+            }
+
+            if (id != g_device_count - 1) {
+                row_high[id]  = ne01*g_tensor_split[id + 1];
+                if (row_high[id] < ne01) {
+                    row_high[id] -= row_high[id] % rounding;
+                }
+            }
+        }
+    }
+    for (int64_t id = 0; id < g_device_count; ++id) {
+
+        if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
+            continue;
+        }
+
+        used_devices++;
+
+        const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
+        const bool  dst_on_device =  dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
+
+        ggml_sycl_set_device(get_device_id_by_index(id));
+        const dpct::queue_ptr stream = g_syclStreams[id][0];
+
+        if (src0_on_device && src0_is_contiguous) {
+            src0_dd[id] = (char *) src0_extra->data_device[id];
+        } else {
+            // const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
+            src0_dd[id] = (char *) ggml_sycl_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
+        }
+
+        if (src1_on_device && src1_is_contiguous) {
+            src1_ddf[id] = (float *) src1_extra->data_device[id];
+        } else {
+            src1_ddf[id] = (float *) ggml_sycl_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
+        }
+
+        if (convert_src1_to_q8_1) {
+            src1_ddq[id] = (char *) ggml_sycl_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
+
+            if (src1_on_device && src1_is_contiguous) {
+                quantize_row_q8_1_sycl(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
+                /*
+                DPCT1010:90: SYCL uses exceptions to report errors and does not
+                use the error codes. The call was replaced with 0. You need to
+                rewrite this code.
+                */
+                SYCL_CHECK(0);
+            }
+        }
+
+        if (dst_on_device) {
+            dst_dd[id] = (float *) dst_extra->data_device[id];
+        } else {
+            const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
+            dst_dd[id] = (float *) ggml_sycl_pool_malloc(size_dst_ddf, &dst_as[id]);
+        }
+    }
+
+    // if multiple devices are used they need to wait for the main device
+    // here an event is recorded that signals that the main device has finished calculating the input data
+    if (split && used_devices > 1) {
+        SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+        /*
+        DPCT1024:91: The original code returned the error code that was further
+        consumed by the program logic. This original code was replaced with 0.
+        You may need to rewrite the program logic consuming the error code.
+        */
+        SYCL_CHECK(CHECK_TRY_ERROR(
+            *src0_extra->events[g_main_device_index][0] =
+                g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier()));
+    }
+
+    const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
+    for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
+        const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
+        const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
+
+        for (int64_t id = 0; id < g_device_count; ++id) {
+            if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
+                continue;
+            }
+
+            const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
+            const bool  dst_on_device =  dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
+            const int64_t row_diff = row_high[id] - row_low[id];
+
+            ggml_sycl_set_device(get_device_id_by_index(id));
+            const dpct::queue_ptr stream = g_syclStreams[id][is];
+
+            // wait for main GPU data if necessary
+            if (split && (id != g_main_device_index || is != 0)) {
+                SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
+                    {*src0_extra->events[g_main_device_index][0]})));
+            }
+
+            for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
+                const int64_t i03 = i0 / ne12;
+                const int64_t i02 = i0 % ne12;
+
+                const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
+
+                // for split tensors the data begins at i0 == i0_offset_low
+                char  *  src0_dd_i =  src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
+                float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10;
+                char  * src1_ddq_i = src1_ddq[id] +  src1_ddq_i_offset;
+                float *   dst_dd_i =   dst_dd[id] + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
+
+                // the main device memory buffer can be on VRAM scratch, with space for all partial results
+                // in that case an offset on dst_ddf_i is needed
+                if (dst->backend == GGML_BACKEND_GPU && id == g_main_device_index) {
+                    dst_dd_i += row_low[id]; // offset is 0 if no tensor split
+                }
+
+                // copy src0, src1 to device if necessary
+                if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
+                    if (id != g_main_device_index) {
+                        if (convert_src1_to_q8_1) {
+                            char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset;
+                            SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
+                                src1_ddq_i, src1_ddq_i_source,
+                                src1_ncols * src1_padded_col_size * q8_1_ts /
+                                    q8_1_bs)));
+                        } else {
+                            float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device_index];
+                            src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
+                            SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
+                                src1_ddf_i, src1_ddf_i_source,
+                                src1_ncols * ne10 * sizeof(float))));
+                        }
+                    }
+                } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
+                    SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
+                                   src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
+                } else {
+                    GGML_ASSERT(false);
+                }
+
+                if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
+                    quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
+                    /*
+                    DPCT1010:92: SYCL uses exceptions to report errors and does
+                    not use the error codes. The call was replaced with 0. You
+                    need to rewrite this code.
+                    */
+                    SYCL_CHECK(0);
+                }
+
+                if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
+                    SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream));
+                }
+                if (src1->type == GGML_TYPE_F16) {
+                    src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
+                }
+                // do the computation
+                op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
+                   row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream);
+                /*
+                DPCT1010:93: SYCL uses exceptions to report errors and does not
+                use the error codes. The call was replaced with 0. You need to
+                rewrite this code.
+                */
+                SYCL_CHECK(0);
+
+                // copy dst to host or other device if necessary
+                if (!dst_on_device) {
+                    void * dst_off_device;
+                    dpct::memcpy_direction kind;
+                    if (dst->backend == GGML_BACKEND_CPU) {
+                        dst_off_device = dst->data;
+                        kind = dpct::device_to_host;
+                    } else if (dst->backend == GGML_BACKEND_GPU) {
+                        dst_off_device = dst_extra->data_device[g_main_device_index];
+                        kind = dpct::device_to_device;
+                    } else {
+                        GGML_ASSERT(false);
+                    }
+                    if (split) {
+                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
+                        // dst is NOT transposed.
+                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
+                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
+                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
+                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+                        dhf_dst_i += src1_col_0*ne0 + row_low[id];
+                        SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
+                            dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
+                            row_diff * sizeof(float), row_diff * sizeof(float),
+                            src1_ncols, kind, *stream)));
+                    } else {
+                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+                        GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+                        dhf_dst_i += src1_col_0*ne0;
+                        SYCL_CHECK(CHECK_TRY_ERROR(
+                            stream->memcpy(dhf_dst_i, dst_dd_i,
+                                           src1_ncols * ne0 * sizeof(float))));
+                    }
+                }
+
+                // add event for the main device to wait on until other device is done
+                if (split && (id != g_main_device_index || is != 0)) {
+                    /*
+                    DPCT1024:94: The original code returned the error code that
+                    was further consumed by the program logic. This original
+                    code was replaced with 0. You may need to rewrite the
+                    program logic consuming the error code.
+                    */
+                    SYCL_CHECK(CHECK_TRY_ERROR(
+                        *src0_extra->events[id][is] =
+                            stream->ext_oneapi_submit_barrier()));
+                }
+            }
+        }
+    }
+
+    for (int64_t id = 0; id < g_device_count; ++id) {
+        if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
+            continue;
+        }
+        SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
+
+        // free buffers again when done
+        if (dst_as[id] > 0) {
+            ggml_sycl_pool_free(dst_dd[id], dst_as[id]);
+        }
+        if (src1_asq[id] > 0) {
+            ggml_sycl_pool_free(src1_ddq[id], src1_asq[id]);
+        }
+        if (src1_asf[id] > 0) {
+            ggml_sycl_pool_free(src1_ddf[id], src1_asf[id]);
+        }
+        if (src0_as[id] > 0) {
+            ggml_sycl_pool_free(src0_dd[id], src0_as[id]);
+        }
+    }
+
+    // main device waits for all other devices to be finished
+    if (split && g_device_count > 1) {
+        int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
+        is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
+
+        SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+        for (int64_t id = 0; id < g_device_count; ++id) {
+            if (row_low[id] == row_high[id]) {
+                continue;
+            }
+            for (int64_t is = 0; is < is_max; ++is) {
+                SYCL_CHECK(CHECK_TRY_ERROR(
+                    g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier(
+                        {*src0_extra->events[id][is]})));
+            }
+        }
+    }
+
+    if (dst->backend == GGML_BACKEND_CPU) {
+        SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+        SYCL_CHECK(CHECK_TRY_ERROR(
+            dpct::get_current_device().queues_wait_and_throw()));
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_repeat);
+}
+
+static void ggml_sycl_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_get_rows);
+}
+
+static void ggml_sycl_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_add);
+    // log_tensor_with_cnt("log_ggml_sycl_add_src0", (struct ggml_tensor *) src0, 6);
+    // log_tensor_with_cnt("log_ggml_sycl_add_src1", (struct ggml_tensor *)src1, 6);
+    // log_tensor_with_cnt("log_ggml_sycl_add_dst", dst, 6);
+}
+
+static void ggml_sycl_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_acc);
+}
+
+static void ggml_sycl_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_mul);
+    // log_tensor_with_cnt("log_ggml_sycl_mul_src0", (struct ggml_tensor *)src0, 6);
+    // log_tensor_with_cnt("log_ggml_sycl_mul_src1", (struct ggml_tensor *)src1, 6);
+    // log_tensor_with_cnt("log_ggml_sycl_mul_dst", dst, 6);
+
+}
+
+static void ggml_sycl_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_div);
+}
+
+static void ggml_sycl_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu);
+}
+
+static void ggml_sycl_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_silu);
+}
+
+static void ggml_sycl_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu_quick);
+}
+
+static void ggml_sycl_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_tanh);
+}
+
+static void ggml_sycl_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_relu);
+}
+
+static void ggml_sycl_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_leaky_relu);
+}
+
+static void ggml_sycl_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sqr);
+}
+
+static void ggml_sycl_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_norm);
+}
+
+static void ggml_sycl_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_group_norm);
+}
+
+static void ggml_sycl_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_concat);
+}
+
+static void ggml_sycl_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_upscale);
+}
+
+static void ggml_sycl_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pad);
+}
+
+
+static void ggml_sycl_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_SYCL_DEBUG("call %s\n", __func__);
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rms_norm);
+    // log_tensor_with_cnt("log_ggml_sycl_rms_norm_src0", (struct ggml_tensor *)src0, 6);
+    // log_tensor_with_cnt("log_ggml_sycl_rms_norm_src1", (struct ggml_tensor *)src1, 6);
+    // log_tensor_with_cnt("log_ggml_sycl_rms_norm_dst", dst, 6);
+}
+
+bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+    if (!g_sycl_loaded) return false;
+
+    const int64_t ne10 = src1->ne[0];
+
+    const int64_t ne0 = dst->ne[0];
+    const int64_t ne1 = dst->ne[1];
+
+    // TODO: find the optimal values for these
+    return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
+            src1->type == GGML_TYPE_F32 &&
+             dst->type == GGML_TYPE_F32 &&
+            (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
+}
+
+static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0,
+                                       const ggml_tensor *src1,
+                                       ggml_tensor *dst) try {
+    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
+    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
+    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
+    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+
+    const int64_t ne12 = src1->ne[2];
+
+    SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+    dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
+
+    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+    void * src0_ddq = src0_extra->data_device[g_main_device_index];
+
+    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+    float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
+
+    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+    float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
+
+    ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0,
+                                     const ggml_tensor *src1,
+                                     ggml_tensor *dst) try {
+    GGML_ASSERT(!ggml_is_transposed(src0));
+    GGML_ASSERT(!ggml_is_transposed(src1));
+    GGML_ASSERT(!ggml_is_permuted(src0));
+    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+
+    const int64_t nb01 = src0->nb[1];
+    const int64_t nb02 = src0->nb[2];
+
+    const int64_t ne12 = src1->ne[2];
+
+    SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+    dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
+
+    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+    void * src0_ddq = src0_extra->data_device[g_main_device_index];
+
+    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+    float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
+
+    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+    float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
+
+    const int64_t row_stride_x = nb01 / sizeof(sycl::half);
+    const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
+
+    ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
+                                   const sycl::half *src1_as_f16, char *dst,
+                                   const void **ptrs_src, void **ptrs_dst,
+                                   int64_t ne12, int64_t ne13, int64_t ne23,
+                                   size_t nb02, size_t nb03, size_t nb12,
+                                   size_t nb13, size_t nbd2, size_t nbd3,
+                                   int64_t r2, int64_t r3,
+                                   const sycl::nd_item<3> &item_ct1) {
+    int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+                  item_ct1.get_local_id(2);
+    int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
+                  item_ct1.get_local_id(1);
+
+    if (i13 >= ne13 || i12 >= ne12) {
+        return;
+    }
+
+    int64_t i03 = i13 / r3;
+    int64_t i02 = i12 / r2;
+
+    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02   + i03*nb03;
+    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
+    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2   + i13*nbd3;
+}
+
+static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0,
+                                                 const ggml_tensor *src1,
+                                                 ggml_tensor *dst) try {
+    GGML_ASSERT(!ggml_is_transposed(src0));
+    GGML_ASSERT(!ggml_is_transposed(src1));
+
+    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+    const int64_t ne03 = src0->ne[3];
+
+    const int64_t nb01 = src0->nb[1];
+    const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
+    const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
+
+    const int64_t ne10 = src1->ne[0];
+    const int64_t ne11 = src1->ne[1];
+    const int64_t ne12 = src1->ne[2];
+    const int64_t ne13 = src1->ne[3];
+
+    const int64_t nb11 = src1->nb[1];
+    const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
+    const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
+
+    const int64_t ne1 = ggml_nelements(src1);
+    const int64_t ne  = ggml_nelements(dst);
+
+    SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+    dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
+
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(g_sycl_handles[g_main_device_index] = main_stream));
+
+    ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+    void * src0_ddq = src0_extra->data_device[g_main_device_index];
+    sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
+
+    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+    float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
+
+    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+    float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
+
+    // convert src1 to fp16
+    const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
+    GGML_ASSERT(to_fp16_sycl != nullptr);
+
+    sycl_pool_alloc<sycl::half> src1_as_f16(ne1);
+    to_fp16_sycl(src1_ddf, src1_as_f16.get(), ne1, main_stream);
+
+    sycl_pool_alloc<sycl::half> dst_f16;
+    char * dst_t;
+
+    dpct::library_data_t cu_compute_type = dpct::library_data_t::real_half;
+    dpct::library_data_t cu_data_type = dpct::library_data_t::real_half;
+
+    // dst strides
+    size_t nbd2 = dst->nb[2];
+    size_t nbd3 = dst->nb[3];
+
+    const sycl::half alpha_f16 = 1.0f;
+    const sycl::half beta_f16 = 0.0f;
+
+    const float alpha_f32 = 1.0f;
+    const float beta_f32  = 0.0f;
+
+    const void * alpha = &alpha_f16;
+    const void * beta  = &beta_f16;
+
+    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
+        dst_t = (char *) dst_f16.alloc(ne);
+
+        nbd2 /= sizeof(float) / sizeof(sycl::half);
+        nbd3 /= sizeof(float) / sizeof(sycl::half);
+    } else {
+        dst_t = (char *) dst_ddf;
+
+        cu_compute_type = dpct::library_data_t::real_float;
+        cu_data_type = dpct::library_data_t::real_float;
+
+        alpha = &alpha_f32;
+        beta  = &beta_f32;
+    }
+
+    GGML_ASSERT(ne12 % ne02 == 0);
+    GGML_ASSERT(ne13 % ne03 == 0);
+
+    // broadcast factors
+    const int64_t r2 = ne12/ne02;
+    const int64_t r3 = ne13/ne03;
+
+#if 0
+    // use syclGemmEx
+    {
+        for (int i13 = 0; i13 < ne13; ++i13) {
+            for (int i12 = 0; i12 < ne12; ++i12) {
+                int i03 = i13 / r3;
+                int i02 = i12 / r2;
+
+                SYCL_CHECK(
+                        syclGemmEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N,
+                            ne01, ne11, ne10,
+                            alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , SYCL_R_16F,   nb01/sizeof(half),
+                                   (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F,   nb11/sizeof(float),
+                            beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
+                            cu_compute_type,
+                            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+            }
+        }
+    }
+#else
+    if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
+        // there is no broadcast and src0, src1 are contiguous across dims 2, 3
+        // use syclGemmStridedBatchedEx
+        SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
+            *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans,
+            oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
+            (const char *)src0_as_f16, dpct::library_data_t::real_half,
+            nb01 / sizeof(sycl::half), src0->nb[2] / sizeof(sycl::half),
+            (const char *)src1_as_f16.get(), dpct::library_data_t::real_half,
+            nb11 / sizeof(float), src1->nb[2] / sizeof(float), beta,
+            (char *)dst_t, cu_data_type, ne01, dst->nb[2] / sizeof(float),
+            ne12 * ne13, cu_compute_type)));
+    } else {
+        // use syclGemmBatchedEx
+        const int ne23 = ne12*ne13;
+
+        sycl_pool_alloc<const void *> ptrs_src(2*ne23);
+        sycl_pool_alloc<      void *> ptrs_dst(1*ne23);
+
+        sycl::range<3> block_dims(1, ne12, ne13);
+        /*
+        DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        {
+            dpct::has_capability_or_fail(main_stream->get_device(),
+                                         {sycl::aspect::fp16});
+
+            main_stream->submit([&](sycl::handler &cgh) {
+                const sycl::half *src1_as_f16_get_ct1 = src1_as_f16.get();
+                const void **ptrs_src_get_ct3 = ptrs_src.get();
+                void **ptrs_dst_get_ct4 = ptrs_dst.get();
+
+                cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
+                                 [=](sycl::nd_item<3> item_ct1) {
+                                     k_compute_batched_ptrs(
+                                         src0_as_f16, src1_as_f16_get_ct1,
+                                         dst_t, ptrs_src_get_ct3,
+                                         ptrs_dst_get_ct4, ne12, ne13, ne23,
+                                         nb02, nb03, nb12, nb13, nbd2, nbd3, r2,
+                                         r3, item_ct1);
+                                 });
+            });
+        }
+        /*
+        DPCT1010:95: SYCL uses exceptions to report errors and does not use the
+        error codes. The call was replaced with 0. You need to rewrite this
+        code.
+        */
+        SYCL_CHECK(0);
+
+        SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
+            *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans,
+            oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
+            (const void **)(ptrs_src.get() + 0 * ne23),
+            dpct::library_data_t::real_half, nb01 / sizeof(sycl::half),
+            (const void **)(ptrs_src.get() + 1 * ne23),
+            dpct::library_data_t::real_half, nb11 / sizeof(float), beta,
+            (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
+            cu_compute_type)));
+    }
+#endif
+
+    if (dst->op_params[0] == GGML_PREC_DEFAULT) {
+        const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
+        to_fp32_sycl(dst_f16.get(), dst_ddf, ne, main_stream);
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    const bool all_on_device =
+        (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
+        (src1->backend == GGML_BACKEND_GPU) &&
+        ( dst->backend == GGML_BACKEND_GPU);
+
+    const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
+
+    int64_t min_compute_capability = INT_MAX;
+    for (int64_t id = 0; id < g_device_count; ++id) {
+        if (min_compute_capability > g_device_caps[id].cc && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
+            min_compute_capability = g_device_caps[id].cc;
+        }
+    }
+
+#ifdef SYCL_USE_XMX
+    const bool use_xmx = true;
+#else
+    const bool use_xmx = false;
+#endif
+
+    // debug helpers
+    //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
+    //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
+    //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
+    //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
+    //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
+    //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
+
+    if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
+        // KQ single-batch
+        // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n");
+        ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
+    } else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
+        // KQV single-batch
+        // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n");
+        ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
+    } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
+        // KQ + KQV multi-batch
+        // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_mat_batched_sycl\n");
+        ggml_sycl_mul_mat_mat_batched_sycl(src0, src1, dst);
+    } else if (src0->type == GGML_TYPE_F32) {
+        // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n");
+        ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
+    } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
+        // GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n");
+        if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) {
+#ifdef GGML_SYCL_FORCE_DMMV
+            const bool use_mul_mat_vec_q = false;
+#else
+            const bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1;
+#endif // GGML_SYCL_FORCE_DMMV
+
+            if (use_mul_mat_vec_q) {
+                // NOTE: this kernel does not support ggml_nrows(src1) > 1
+                // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n");
+                ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
+            } else {
+                // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n");
+                ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
+            }
+        } else {
+            bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
+
+            if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) {
+                use_mul_mat_q = false;
+            }
+
+            if (use_mul_mat_q) {
+                // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n");
+                ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
+            } else {
+                // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n");
+                ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
+            }
+        }
+    } else {
+        GGML_ASSERT(false);
+    }
+}
+
+#if 0
+template<typename ... Srcs>
+static __global__ void k_compute_batched_ptrs_id(
+        const void ** ptrs_src, void ** ptrs_dst,
+        int ne12, int ne13,
+        int ne23,
+        int nb02, int nb03,
+        int nb12, int nb13,
+        int nb2, int nb3,
+        int r2, int r3,
+        ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
+        const half * src1_f16, half * dst_f16,
+        const int32_t * ids, const int id,
+        Srcs... src0s) {
+
+    int i = ids[id];
+
+    half * src0_f16;
+    const void * srcs_ar[] = { (const half *) src0s... };
+    if (src0_type == GGML_TYPE_F16) {
+        src0_f16 = (half *) srcs_ar[i];
+    } else {
+        src0_f16 = src0_as_f16;
+        if (threadIdx.x == 0 && threadIdx.y == 0) {
+            const to_fp16_sycl_t to_fp16 = ggml_get_to_fp16_sycl(src0_type);
+            to_fp16(srcs_ar[i], src0_f16, src0_ne, syclStreamFireAndForget);
+        }
+    }
+
+    int i13 = blockIdx.x * blockDim.x + threadIdx.x;
+    int i12 = blockIdx.y * blockDim.y + threadIdx.y;
+
+    if (i13 >= ne13 || i12 >= ne12) {
+        return;
+    }
+
+    int i03 = i13 / r3;
+    int i02 = i12 / r2;
+
+    ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02   + i03*nb03;
+    ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
+    ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)  dst_f16 + i12* nb2/2 + i13* nb3/2;
+}
+
+static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
+    const struct ggml_tensor * ids = dst->src[0];
+    const struct ggml_tensor * src1 = dst->src[1];
+    const struct ggml_tensor * src00 = dst->src[2];
+
+    const int id = dst->op_params[0];
+
+    GGML_ASSERT(!ggml_is_transposed(src00));
+    GGML_ASSERT(!ggml_is_transposed(src1));
+
+    GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
+    const int64_t ne01 = src00->ne[1];
+    const int64_t ne02 = src00->ne[2];
+    const int64_t ne03 = src00->ne[3];
+
+    //const int64_t nb01 = src00->nb[1];
+    const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
+    const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
+
+    const int64_t ne10 = src1->ne[0];
+    const int64_t ne11 = src1->ne[1];
+    const int64_t ne12 = src1->ne[2];
+    const int64_t ne13 = src1->ne[3];
+
+    //const int64_t nb11 = src1->nb[1];
+    const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
+    const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
+
+    const int64_t ne1 = ggml_nelements(src1);
+    const int64_t ne  = ggml_nelements(dst);
+
+    SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+    syclStream_t main_stream = g_syclStreams[g_main_device_index][0];
+
+    SYCL_CHECK(syclSetStream(g_sycl_handles[g_main_device_index], main_stream));
+
+    //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+    //void * src0_ddq = src0_extra->data_device[g_main_device_index];
+    //half * src0_as_f16 = (half *) src0_ddq;
+
+    ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+    float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
+
+    ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+    float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
+
+    // convert src1 to fp16
+    const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
+    GGML_ASSERT(to_fp16_sycl != nullptr);
+
+    size_t src1_as = 0;
+    half * src1_as_f16 = (half *) ggml_sycl_pool_malloc(ne1 * sizeof(half), &src1_as);
+    to_fp16_sycl(src1_ddf, src1_as_f16, ne1, main_stream);
+
+    size_t dst_as = 0;
+    half * dst_f16 = (half *) ggml_sycl_pool_malloc(ne * sizeof(half), &dst_as);
+
+    GGML_ASSERT(ne12 % ne02 == 0);
+    GGML_ASSERT(ne13 % ne03 == 0);
+
+    // broadcast factors
+    const int64_t r2 = ne12/ne02;
+    const int64_t r3 = ne13/ne03;
+
+    const half alpha_f16 = 1.0f;
+    const half beta_f16  = 0.0f;
+
+    // use syclGemmBatchedEx
+    const int ne23 = ne12*ne13;
+
+    const void ** ptrs_src = nullptr;
+          void ** ptrs_dst = nullptr;
+
+    size_t ptrs_src_s = 0;
+    size_t ptrs_dst_s = 0;
+
+    ptrs_src = (const void **) ggml_sycl_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
+    ptrs_dst = (      void **) ggml_sycl_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
+
+    int64_t src0_ne = ggml_nelements(src00);
+    half * src0_as_f16 = nullptr;
+    size_t src0_as = 0;
+    if (src00->type != GGML_TYPE_F16) {
+        src0_as_f16 = (half *) ggml_sycl_pool_malloc(src0_ne * sizeof(half), &src0_as);
+    }
+
+    static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
+    dim3 block_dims(ne13, ne12);
+    k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
+            ptrs_src, ptrs_dst,
+            ne12, ne13,
+            ne23,
+            ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
+            nb12, nb13,
+            dst->nb[2], dst->nb[3],
+            r2, r3,
+            src00->type, src0_as_f16, src0_ne,
+            src1_as_f16, dst_f16,
+            (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index], id,
+            dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device_index] : nullptr,
+            dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device_index] : nullptr,
+            dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device_index] : nullptr,
+            dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device_index] : nullptr
+    );
+    SYCL_CHECK(syclGetLastError());
+
+    SYCL_CHECK(
+    syclGemmBatchedEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N,
+            ne01, ne11, ne10,
+            &alpha_f16, (const void **) (ptrs_src + 0*ne23), SYCL_R_16F, ne00,
+                        (const void **) (ptrs_src + 1*ne23), SYCL_R_16F, ne10,
+            &beta_f16,  (      void **) (ptrs_dst + 0*ne23), SYCL_R_16F, ne01,
+            ne23,
+            CUBLAS_COMPUTE_16F,
+            CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+
+    if (src0_as != 0) {
+        ggml_sycl_pool_free(src0_as_f16, src0_as);
+    }
+    if (ptrs_src_s != 0) {
+        ggml_sycl_pool_free(ptrs_src, ptrs_src_s);
+    }
+    if (ptrs_dst_s != 0) {
+        ggml_sycl_pool_free(ptrs_dst, ptrs_dst_s);
+    }
+
+    const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
+    to_fp32_sycl(dst_f16, dst_ddf, ne, main_stream);
+
+    ggml_sycl_pool_free(src1_as_f16, src1_as);
+    ggml_sycl_pool_free(dst_f16, dst_as);
+}
+#endif
+
+static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
+                                 const ggml_tensor *src1,
+                                 ggml_tensor *dst) try {
+#if 0
+    ggml_sycl_mul_mat_id_sycl(dst);
+    // TODO: mmq/mmv support
+#endif
+
+    const int64_t nb11 = src1->nb[1];
+    const int64_t nb1  =  dst->nb[1];
+
+    const struct ggml_tensor * ids = src0;
+    const int32_t id = ((int32_t *) dst->op_params)[0];
+    const int32_t n_as = ((int32_t *) dst->op_params)[1];
+
+    std::vector<char> ids_host(ggml_nbytes(ids));
+
+    const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
+
+    if (ids->backend == GGML_BACKEND_GPU) {
+        const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index];
+        SYCL_CHECK(CHECK_TRY_ERROR(
+            stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
+        SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
+    } else {
+        memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
+    }
+
+    const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
+    const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
+
+    ggml_tensor_extra_gpu src1_row_extra;
+    ggml_tensor_extra_gpu dst_row_extra;
+
+    ggml_tensor src1_row = *src1;
+    ggml_tensor dst_row = *dst;
+
+    src1_row.backend = GGML_BACKEND_GPU;
+    dst_row.backend  = GGML_BACKEND_GPU;
+
+    src1_row.extra = &src1_row_extra;
+    dst_row.extra = &dst_row_extra;
+
+    char * src1_original = src1->backend == GGML_BACKEND_CPU ?
+        (char *) src1->data : (char *) src1_extra->data_device[g_main_device_index];
+    char * dst_original  =  dst->backend == GGML_BACKEND_CPU ?
+        (char *)  dst->data : (char *)  dst_extra->data_device[g_main_device_index];
+
+    if (src1->ne[1] == 1) {
+        GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
+        GGML_ASSERT(dst->backend  == GGML_BACKEND_GPU);
+
+        for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+            //int32_t row_id;
+            //SYCL_CHECK(syclMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), syclMemcpyDeviceToHost, g_syclStreams[g_main_device][0]));
+            //SYCL_CHECK(syclStreamSynchronize(g_syclStreams[g_main_device][0]));
+
+            const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
+
+            GGML_ASSERT(row_id >= 0 && row_id < n_as);
+
+            const struct ggml_tensor * src0_row = dst->src[row_id + 2];
+
+            src1_row_extra.data_device[g_main_device_index] = src1_original + i01*src1->nb[1];
+            src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
+
+            dst_row_extra.data_device[g_main_device_index] = dst_original + i01*dst->nb[1];
+            dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
+
+            ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
+        }
+    } else {
+        sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
+        sycl_pool_alloc<char>  dst_contiguous(sizeof(float)*ggml_nelements(dst));
+
+        src1_row_extra.data_device[g_main_device_index] = src1_contiguous.get();
+        dst_row_extra.data_device[g_main_device_index]  =  dst_contiguous.get();
+
+        for (int32_t row_id = 0; row_id < n_as; ++row_id) {
+            const struct ggml_tensor * src0_row = dst->src[row_id + 2];
+
+            int64_t num_src1_rows = 0;
+            for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+                const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
+
+                if (row_id_i != row_id) {
+                    continue;
+                }
+
+                GGML_ASSERT(row_id >= 0 && row_id < n_as);
+
+                SYCL_CHECK(CHECK_TRY_ERROR(
+                    stream->memcpy(src1_contiguous.get() + num_src1_rows * nb11,
+                                   src1_original + i01 * nb11, nb11)));
+                num_src1_rows++;
+            }
+
+            if (num_src1_rows == 0) {
+                continue;
+            }
+
+            src1_row.ne[1] = num_src1_rows;
+            dst_row.ne[1] = num_src1_rows;
+
+            src1_row.nb[1] = nb11;
+            src1_row.nb[2] = num_src1_rows*nb11;
+            src1_row.nb[3] = num_src1_rows*nb11;
+
+            dst_row.nb[1] = nb1;
+            dst_row.nb[2] = num_src1_rows*nb1;
+            dst_row.nb[3] = num_src1_rows*nb1;
+
+            ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
+
+            num_src1_rows = 0;
+            for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+                const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
+
+                if (row_id_i != row_id) {
+                    continue;
+                }
+
+                GGML_ASSERT(row_id >= 0 && row_id < n_as);
+
+                SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
+                    dst_original + i01 * nb1,
+                    dst_contiguous.get() + num_src1_rows * nb1, nb1)));
+                num_src1_rows++;
+            }
+        }
+    }
+
+    if (dst->backend == GGML_BACKEND_CPU) {
+        SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_scale);
+}
+
+static void ggml_sycl_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_clamp);
+}
+
+static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
+                          ggml_tensor *dst) try {
+    const int64_t ne = ggml_nelements(src0);
+    GGML_ASSERT(ne == ggml_nelements(src1));
+
+    GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
+    GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
+
+    GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
+    GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t ne02 = src0->ne[2];
+
+
+    const int64_t nb00 = src0->nb[0];
+    const int64_t nb01 = src0->nb[1];
+    const int64_t nb02 = src0->nb[2];
+    const int64_t nb03 = src0->nb[3];
+
+    const int64_t ne10 = src1->ne[0];
+    const int64_t ne11 = src1->ne[1];
+    const int64_t ne12 = src1->ne[2];
+
+
+    const int64_t nb10 = src1->nb[0];
+    const int64_t nb11 = src1->nb[1];
+    const int64_t nb12 = src1->nb[2];
+    const int64_t nb13 = src1->nb[3];
+
+    SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+    dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
+
+    const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+    const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+
+    char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
+    char * src1_ddc = (char *) src1_extra->data_device[g_main_device_index];
+
+    if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
+        ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
+        ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
+        ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
+        ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
+        ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
+        ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
+        ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
+        ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+    } else {
+        fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
+                ggml_type_name(src0->type), ggml_type_name(src1->type));
+        GGML_ASSERT(false);
+    }
+
+    (void) dst;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_sycl_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    // TODO: why do we pass dst as src1 here?
+    ggml_sycl_cpy(src0, dst, nullptr);
+    (void) src1;
+}
+
+static void ggml_sycl_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_diag_mask_inf);
+}
+
+static void ggml_sycl_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_soft_max);
+}
+
+static void ggml_sycl_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rope);
+}
+
+static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi);
+}
+
+static void ggml_sycl_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_im2col);
+}
+
+static void ggml_sycl_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(ggml_is_contiguous(src0));
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sum_rows);
+}
+
+static void ggml_sycl_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    GGML_ASSERT(ggml_is_contiguous(src0));
+    ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_argsort);
+}
+
+static void ggml_sycl_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    (void) src0;
+    (void) src1;
+    (void) dst;
+}
+
+static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
+    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+    return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
+}
+
+void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
+    const int64_t nrows = ggml_nrows(tensor);
+
+    const int64_t ne0 = tensor->ne[0];
+
+    const size_t nb1 = tensor->nb[1];
+
+    ggml_backend_type backend = tensor->backend;
+    ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
+    memset(extra, 0, sizeof(*extra));
+
+    for (int64_t id = 0; id < g_device_count; ++id) {
+        if (backend == GGML_BACKEND_GPU && id != g_main_device_index) {
+            continue;
+        }
+        ggml_sycl_set_device(get_device_id_by_index(id));
+        const dpct::queue_ptr stream = g_syclStreams[id][0];
+
+        int64_t row_low, row_high;
+        if (backend == GGML_BACKEND_GPU) {
+            row_low = 0;
+            row_high = nrows;
+        } else if (backend == GGML_BACKEND_GPU_SPLIT) {
+            const int64_t rounding = get_row_rounding(tensor->type);
+
+            row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
+            row_low -= row_low % rounding;
+
+            if (id == g_device_count - 1) {
+                row_high = nrows;
+            } else {
+                row_high = nrows*g_tensor_split[id + 1];
+                row_high -= row_high % rounding;
+            }
+        } else {
+            GGML_ASSERT(false);
+        }
+        if (row_low == row_high) {
+            continue;
+        }
+
+        int64_t nrows_split = row_high - row_low;
+
+        const size_t offset_split = row_low*nb1;
+        size_t size = ggml_nbytes_split(tensor, nrows_split);
+        const size_t original_size = size;
+
+        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+        if (ne0 % MATRIX_ROW_PADDING != 0) {
+            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+        }
+
+        char * buf;
+        SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
+                                        size, *stream)));
+        char * buf_host = (char *)data + offset_split;
+
+        // set padding to 0 to avoid possible NaN values
+        if (size > original_size) {
+            SYCL_CHECK(CHECK_TRY_ERROR(
+                (*stream)
+                .memset(buf + original_size, 0, size - original_size)
+                .wait()));
+        }
+
+        SYCL_CHECK(CHECK_TRY_ERROR((*stream)
+                                    .memcpy(buf, buf_host, original_size)
+                                    .wait()));
+
+        extra->data_device[id] = buf;
+
+        if (backend == GGML_BACKEND_GPU_SPLIT) {
+            for (int64_t is = 0; is < MAX_STREAMS; ++is) {
+                SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] =
+                                                new sycl::event()));
+            }
+        }
+    }
+
+    tensor->extra = extra;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
+    if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
+        return;
+    }
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+    for (int64_t id = 0; id < g_device_count; ++id) {
+        const dpct::queue_ptr stream = g_syclStreams[id][0];
+        if (extra->data_device[id] != nullptr) {
+            SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
+            SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(extra->data_device[id], *stream)));
+        }
+
+        for (int64_t is = 0; is < MAX_STREAMS; ++is) {
+            if (extra->events[id][is] != nullptr) {
+                SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
+                SYCL_CHECK(CHECK_TRY_ERROR(
+                    dpct::destroy_event(extra->events[id][is])));
+            }
+        }
+    }
+
+    delete extra;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
+static size_t g_temp_tensor_extra_index = 0;
+
+static ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
+    if (g_temp_tensor_extras == nullptr) {
+        g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
+    }
+
+    size_t alloc_index = g_temp_tensor_extra_index;
+    g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
+    ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
+    memset(extra, 0, sizeof(*extra));
+
+    return extra;
+}
+
+static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
+                                          bool scratch, bool force_inplace,
+                                          bool no_alloc) try {
+    if (scratch && g_scratch_size == 0) {
+        return;
+    }
+
+    tensor->backend = GGML_BACKEND_GPU;
+
+    if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
+        const ggml_op src0_op = tensor->src[0]->op;
+        if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
+            ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
+        }
+    }
+    if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
+        ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
+    }
+
+    if (scratch && no_alloc) {
+        return;
+    }
+
+    ggml_tensor_extra_gpu * extra;
+
+    const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
+        tensor->op == GGML_OP_VIEW ||
+        force_inplace;
+    const size_t size = ggml_nbytes(tensor);
+
+    SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+    const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
+
+    if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
+        ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
+        char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
+        size_t offset = 0;
+        if (tensor->op == GGML_OP_VIEW) {
+            memcpy(&offset, tensor->op_params, sizeof(size_t));
+        }
+        extra = ggml_sycl_alloc_temp_tensor_extra();
+        extra->data_device[g_main_device_index] = src0_ddc + offset;
+    } else if (tensor->op == GGML_OP_CPY) {
+        ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
+        void * src1_ddv = src1_extra->data_device[g_main_device_index];
+        extra = ggml_sycl_alloc_temp_tensor_extra();
+        extra->data_device[g_main_device_index] = src1_ddv;
+    } else if (scratch) {
+        GGML_ASSERT(size <= g_scratch_size);
+        if (g_scratch_offset + size > g_scratch_size) {
+            g_scratch_offset = 0;
+        }
+
+        char * data = (char *) g_scratch_buffer;
+        if (data == nullptr) {
+            SYCL_CHECK(CHECK_TRY_ERROR(
+                data = (char *)sycl::malloc_device(
+                    g_scratch_size, *stream)));
+            g_scratch_buffer = data;
+        }
+        extra = ggml_sycl_alloc_temp_tensor_extra();
+        extra->data_device[g_main_device_index] = data + g_scratch_offset;
+
+        g_scratch_offset += size;
+
+        GGML_ASSERT(g_scratch_offset <= g_scratch_size);
+    } else { // allocate new buffers outside of scratch
+        void * data;
+        SYCL_CHECK(CHECK_TRY_ERROR(data = (void *)sycl::malloc_device(
+                                        size, *stream)));
+        SYCL_CHECK(CHECK_TRY_ERROR(
+            (*stream).memset(data, 0, size).wait()));
+        extra = new ggml_tensor_extra_gpu;
+        memset(extra, 0, sizeof(*extra));
+        extra->data_device[g_main_device_index] = data;
+    }
+
+    tensor->extra = extra;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+void ggml_sycl_assign_scratch_offset(struct ggml_tensor *tensor,
+                                     size_t offset) try {
+    if (g_scratch_size == 0) {
+        return;
+    }
+    if (g_scratch_buffer == nullptr) {
+        ggml_sycl_set_device(g_main_device);
+        const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
+        SYCL_CHECK(
+            CHECK_TRY_ERROR(g_scratch_buffer = (void *)sycl::malloc_device(
+                                 g_scratch_size, *stream)));
+    }
+
+    ggml_tensor_extra_gpu * extra = ggml_sycl_alloc_temp_tensor_extra();
+
+    const bool inplace = tensor->view_src != nullptr;
+
+    if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
+        ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
+        char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
+        size_t view_offset = 0;
+        if (tensor->op == GGML_OP_VIEW) {
+            memcpy(&view_offset, tensor->op_params, sizeof(size_t));
+        }
+        extra->data_device[g_main_device_index] = src0_ddc + view_offset;
+    } else {
+        extra->data_device[g_main_device_index] = (char *) g_scratch_buffer + offset;
+    }
+
+    tensor->extra = extra;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+    GGML_ASSERT(ggml_is_contiguous(tensor));
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+    SYCL_CHECK(ggml_sycl_set_device(g_main_device));
+    const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
+    SYCL_CHECK(CHECK_TRY_ERROR((*stream)
+                                    .memcpy(extra->data_device[g_main_device_index],
+                                            tensor->data, ggml_nbytes(tensor))
+                                    .wait()));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+void ggml_sycl_assign_buffers(struct ggml_tensor * tensor) {
+    ggml_sycl_assign_buffers_impl(tensor, true, false, false);
+}
+
+void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
+    ggml_sycl_assign_buffers_impl(tensor, true, false, true);
+}
+
+void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
+    ggml_sycl_assign_buffers_impl(tensor, false, false, false);
+}
+
+void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
+    ggml_sycl_assign_buffers_impl(tensor, false, true, false);
+}
+
+void ggml_sycl_set_main_device(const int main_device) try {
+
+    if (main_device >= g_all_sycl_device_count) {
+        fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
+                main_device, g_all_sycl_device_count, g_main_device);
+        return;
+    }
+
+    if (g_main_device != main_device && g_device_count >= 1) {
+        g_main_device = main_device;
+        g_main_device_index = get_device_index_by_id(g_main_device);
+        dpct::device_info prop;
+        SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+            prop, dpct::dev_mgr::instance().get_device(g_main_device))));
+        fprintf(stderr, "Using device %d (%s) as main device\n",
+                g_main_device, prop.get_name());
+    }
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+void ggml_sycl_set_scratch_size(const size_t scratch_size) {
+    // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
+    // it still won't always work as expected, but it's better than nothing
+    if (scratch_size > g_scratch_size) {
+        ggml_sycl_free_scratch();
+    }
+    g_scratch_size = std::max(g_scratch_size, scratch_size);
+}
+
+void ggml_sycl_free_scratch() try {
+    if (g_scratch_buffer == nullptr) {
+        return;
+    }
+    ggml_sycl_set_device(g_main_device);
+    const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
+
+    SYCL_CHECK(CHECK_TRY_ERROR(
+        sycl::free(g_scratch_buffer, *stream)));
+    g_scratch_buffer = nullptr;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
+    if (!g_sycl_loaded) return false;
+
+    ggml_sycl_func_t func;
+    const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
+        || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
+        || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
+
+    if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
+        return false;
+    }
+
+    if (tensor->op == GGML_OP_MUL_MAT) {
+        if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
+#ifndef NDEBUG
+            fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
+#endif
+            return false;
+        }
+    }
+
+    switch (tensor->op) {
+        case GGML_OP_REPEAT:
+            func = ggml_sycl_repeat;
+            break;
+        case GGML_OP_GET_ROWS:
+            func = ggml_sycl_get_rows;
+            break;
+        case GGML_OP_DUP:
+            func = ggml_sycl_dup;
+            break;
+        case GGML_OP_ADD:
+            func = ggml_sycl_add;
+            break;
+        case GGML_OP_ACC:
+            func = ggml_sycl_acc;
+            break;
+        case GGML_OP_MUL:
+            func = ggml_sycl_mul;
+            break;
+        case GGML_OP_DIV:
+            func = ggml_sycl_div;
+            break;
+        case GGML_OP_UNARY:
+            switch (ggml_get_unary_op(tensor)) {
+                case GGML_UNARY_OP_GELU:
+                    func = ggml_sycl_gelu;
+                    break;
+                case GGML_UNARY_OP_SILU:
+                    func = ggml_sycl_silu;
+                    break;
+                case GGML_UNARY_OP_GELU_QUICK:
+                    func = ggml_sycl_gelu_quick;
+                    break;
+                case GGML_UNARY_OP_TANH:
+                    func = ggml_sycl_tanh;
+                    break;
+                case GGML_UNARY_OP_RELU:
+                    func = ggml_sycl_relu;
+                    break;
+                default:
+                    return false;
+            }
+            break;
+        case GGML_OP_NORM:
+            func = ggml_sycl_norm;
+            break;
+        case GGML_OP_GROUP_NORM:
+            func = ggml_sycl_group_norm;
+            break;
+        case GGML_OP_CONCAT:
+            func = ggml_sycl_concat;
+            break;
+        case GGML_OP_UPSCALE:
+            func = ggml_sycl_upscale;
+            break;
+        case GGML_OP_PAD:
+            func = ggml_sycl_pad;
+            break;
+        case GGML_OP_LEAKY_RELU:
+            func = ggml_sycl_leaky_relu;
+            break;
+        case GGML_OP_RMS_NORM:
+            func = ggml_sycl_rms_norm;
+            break;
+        case GGML_OP_MUL_MAT:
+            if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
+                return false;
+            }
+            func = ggml_sycl_mul_mat;
+            break;
+        case GGML_OP_MUL_MAT_ID:
+            if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
+                return false;
+            }
+            func = ggml_sycl_mul_mat_id;
+            break;
+        case GGML_OP_SCALE:
+            func = ggml_sycl_scale;
+            break;
+        case GGML_OP_SQR:
+            func = ggml_sycl_sqr;
+            break;
+        case GGML_OP_CLAMP:
+            func = ggml_sycl_clamp;
+            break;
+        case GGML_OP_CPY:
+            func = ggml_sycl_cpy;
+            break;
+        case GGML_OP_CONT:
+            func = ggml_sycl_dup;
+            break;
+        case GGML_OP_NONE:
+        case GGML_OP_RESHAPE:
+        case GGML_OP_VIEW:
+        case GGML_OP_PERMUTE:
+        case GGML_OP_TRANSPOSE:
+            func = ggml_sycl_nop;
+            break;
+        case GGML_OP_DIAG_MASK_INF:
+            func = ggml_sycl_diag_mask_inf;
+            break;
+        case GGML_OP_SOFT_MAX:
+            func = ggml_sycl_soft_max;
+            break;
+        case GGML_OP_ROPE:
+            func = ggml_sycl_rope;
+            break;
+        case GGML_OP_ALIBI:
+            func = ggml_sycl_alibi;
+            break;
+        case GGML_OP_IM2COL:
+            func = ggml_sycl_im2col;
+            break;
+        case GGML_OP_SUM_ROWS:
+            func = ggml_sycl_sum_rows;
+            break;
+        case GGML_OP_ARGSORT:
+            func = ggml_sycl_argsort;
+            break;
+        default:
+            return false;
+    }
+
+    if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
+        ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
+    }
+
+    if (params->ith != 0) {
+        return true;
+    }
+    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+        return true;
+    }
+    func(tensor->src[0], tensor->src[1], tensor);
+    return true;
+}
+
+GGML_API GGML_CALL void   ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
+    int max_compute_units = -1;
+    for(int i=0;i<max_len;i++) id_list[i] = 0;
+
+    int device_count = dpct::dev_mgr::instance().device_count();
+
+    for(int id=0; id< device_count; id++){
+        sycl::device device = dpct::dev_mgr::instance().get_device(id);
+        if (!device.is_gpu()) continue;
+        dpct::device_info prop;
+        dpct::get_device_info(prop, device);
+        if(max_compute_units < prop.get_max_compute_units()) max_compute_units = prop.get_max_compute_units();
+    }
+
+    for(int id=0;id< device_count;id++){
+        sycl::device device = dpct::dev_mgr::instance().get_device(id);
+        if (!device.is_gpu()) continue;
+        dpct::device_info prop;
+        dpct::get_device_info(prop, device);
+        if(max_compute_units == prop.get_max_compute_units() && prop.get_major_version() == 1 ){
+            id_list[id] = 1;
+        }
+    }
+    return;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+int ggml_sycl_get_device_count() try {
+    int device_count;
+    if (CHECK_TRY_ERROR(device_count =
+                             dpct::dev_mgr::instance().device_count()) != 0) {
+        return 0;
+    }
+    return device_count;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
+                                      size_t description_size) try {
+    dpct::device_info prop;
+    SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
+        prop, dpct::dev_mgr::instance().get_device(device))));
+    snprintf(description, description_size, "%s", prop.get_name());
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+// backend interface
+
+#define UNUSED GGML_UNUSED
+
+struct ggml_backend_sycl_context {
+    int device;
+    std::string name;
+};
+
+// sycl buffer
+
+struct ggml_backend_sycl_buffer_context {
+    int device;
+    void * dev_ptr = nullptr;
+    ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
+    size_t temp_tensor_extra_index = 0;
+    std::string name;
+
+     ggml_backend_sycl_buffer_context(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr) {}
+
+    ~ ggml_backend_sycl_buffer_context() {
+        delete[] temp_tensor_extras;
+    }
+
+    ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
+        if (temp_tensor_extras == nullptr) {
+            temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
+        }
+
+        size_t alloc_index = temp_tensor_extra_index;
+        temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
+        ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
+        memset(extra, 0, sizeof(*extra));
+
+        return extra;
+    }
+};
+
+GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
+    ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
+    return ctx->name.c_str();
+}
+
+GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
+    return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
+}
+
+static void
+ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
+     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+    ggml_sycl_set_device(ctx->device);
+    int device_index = get_device_index_by_id(ctx->device);
+    const dpct::queue_ptr stream = g_syclStreams[device_index][0];
+
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(sycl::free(ctx->dev_ptr, *stream)));
+    delete ctx;
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
+     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+    return ctx->dev_ptr;
+}
+
+static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
+                                                 ggml_tensor *tensor) try {
+     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+
+    if (tensor->view_src != NULL && tensor->view_offs == 0) {
+        assert(tensor->view_src->buffer->buft == buffer->buft);
+        tensor->backend = tensor->view_src->backend;
+        tensor->extra = tensor->view_src->extra;
+        return;
+    }
+
+    ggml_tensor_extra_gpu * extra = ctx->ggml_sycl_alloc_temp_tensor_extra();
+
+    extra->data_device[ctx->device] = tensor->data;
+
+    tensor->backend = GGML_BACKEND_GPU;
+    tensor->extra = extra;
+
+    if (ggml_is_quantized(tensor->type)) {
+        // initialize padding to 0 to avoid possible NaN values
+        int64_t row_low = 0;
+        int64_t row_high = ggml_nrows(tensor);
+        int64_t nrows_split = row_high - row_low;
+
+        size_t original_size = ggml_nbytes_split(tensor, nrows_split);
+        size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
+
+        if (padded_size > original_size && tensor->view_src == nullptr) {
+            SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[ctx->device][0]->memset(
+                (char *)tensor->data + original_size, 0,
+                padded_size - original_size)));
+        }
+    }
+
+    UNUSED(buffer);
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
+                                                ggml_tensor *tensor,
+                                                const void *data, size_t offset,
+                                                size_t size) try {
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+
+    ggml_sycl_set_device(ctx->device);
+    int device_index = get_device_index_by_id(ctx->device);
+    const dpct::queue_ptr stream = g_syclStreams[device_index][0];
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
+
+    SYCL_CHECK(
+        CHECK_TRY_ERROR((*stream)
+                             .memcpy((char *)tensor->data + offset, data, size)
+                             .wait()));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
+                                                const ggml_tensor *tensor,
+                                                void *data, size_t offset,
+                                                size_t size) try {
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+
+    ggml_sycl_set_device(ctx->device);
+    int device_index = get_device_index_by_id(ctx->device);
+    const dpct::queue_ptr stream = g_syclStreams[device_index][0];
+
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
+
+    SYCL_CHECK(CHECK_TRY_ERROR(
+        (*stream)
+            .memcpy(data, (const char *)tensor->data + offset, size)
+            .wait()));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
+                                           uint8_t value) try {
+     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
+
+    ggml_sycl_set_device(ctx->device);
+    int device_index = get_device_index_by_id(ctx->device);
+    const dpct::queue_ptr stream = g_syclStreams[device_index][0];
+    SYCL_CHECK(
+        CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
+
+    SYCL_CHECK(CHECK_TRY_ERROR((*stream)
+                                    .memset(ctx->dev_ptr, value, buffer->size)
+                                    .wait()));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
+    /* .get_name        = */ ggml_backend_sycl_buffer_get_name,
+    /* .free_buffer     = */ ggml_backend_sycl_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_sycl_buffer_get_base,
+    /* .init_tensor     = */ ggml_backend_sycl_buffer_init_tensor,
+    /* .set_tensor      = */ ggml_backend_sycl_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_sycl_buffer_get_tensor,
+    /* .cpy_tensor      = */ NULL,
+    /* .clear           = */ ggml_backend_sycl_buffer_clear,
+    /* .reset           = */ NULL,
+};
+
+// sycl buffer type
+struct ggml_backend_sycl_buffer_type_context {
+    int device;
+    std::string name;
+};
+
+GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
+
+    return ctx->name.c_str();
+}
+
+static ggml_backend_buffer_t
+ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
+                                           size_t size) try {
+    int device = (int) (intptr_t) buft->context;
+
+    ggml_sycl_set_device(device);
+    int device_index = get_device_index_by_id(device);
+    const dpct::queue_ptr stream = g_syclStreams[device_index][0];
+    size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
+
+    void * dev_ptr;
+    SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
+                                    size, *stream)));
+
+     ggml_backend_sycl_buffer_context * ctx = new  ggml_backend_sycl_buffer_context(device, dev_ptr);
+
+    return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    return 128;
+
+    UNUSED(buft);
+}
+
+static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+    return dpct::get_current_device().get_max_mem_alloc_size();
+
+    UNUSED(buft);
+}
+
+static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+    int64_t row_low = 0;
+    int64_t row_high = ggml_nrows(tensor);
+    int64_t nrows_split = row_high - row_low;
+
+    size_t size = ggml_nbytes_split(tensor, nrows_split);
+
+    int64_t ne0 = tensor->ne[0];
+
+    if (ggml_is_quantized(tensor->type)) {
+        if (ne0 % MATRIX_ROW_PADDING != 0) {
+            size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+        }
+    }
+
+    return size;
+
+    UNUSED(buft);
+}
+
+static bool ggml_backend_sycl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    return ggml_backend_is_sycl(backend);
+
+    UNUSED(buft);
+}
+
+static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
+    /* .get_name         = */ ggml_backend_sycl_buffer_type_name,
+    /* .alloc_buffer     = */ ggml_backend_sycl_buffer_type_alloc_buffer,
+    /* .get_alignment    = */ ggml_backend_sycl_buffer_type_get_alignment,
+    /* .get_max_size     = */ ggml_backend_sycl_buffer_type_get_max_size,
+    /* .get_alloc_size   = */ ggml_backend_sycl_buffer_type_get_alloc_size,
+    /* .supports_backend = */ ggml_backend_sycl_buffer_type_supports_backend,
+    /* .is_host          = */ nullptr,
+};
+
+ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
+    static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
+
+    static bool ggml_backend_sycl_buffer_type_initialized = false;
+
+    if (!ggml_backend_sycl_buffer_type_initialized) {
+        for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
+            ggml_backend_sycl_buffer_types[i] = {
+                /* .iface    = */ ggml_backend_sycl_buffer_type_interface,
+                /* .context  = */ (ggml_backend_buffer_type_context_t) (intptr_t) i,
+            };
+        }
+        ggml_backend_sycl_buffer_type_initialized = true;
+    }
+
+    return &ggml_backend_sycl_buffer_types[device];
+}
+
+// host buffer type
+
+GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    return GGML_SYCL_NAME "_Host";
+
+    UNUSED(buft);
+}
+
+GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
+    return GGML_SYCL_NAME "_Host";
+
+    UNUSED(buffer);
+}
+
+static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+    ggml_sycl_host_free(buffer->context);
+}
+
+static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    void * ptr = ggml_sycl_host_malloc(size);
+
+    if (ptr == nullptr) {
+        // fallback to cpu buffer
+        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
+    }
+
+    // FIXME: this is a hack to avoid having to implement a new buffer type
+    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+    buffer->buft = buft;
+    buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
+
+    return buffer;
+}
+
+ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
+    static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
+        /* .iface    = */ {
+            /* .get_name         = */ ggml_backend_sycl_host_buffer_type_name,
+            /* .alloc_buffer     = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
+            /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
+            /* .get_max_size     = */ NULL, // TODO: return device.maxBufferLength
+            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
+            /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
+            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
+        },
+        /* .context  = */ nullptr,
+    };
+
+    return &ggml_backend_sycl_buffer_type_host;
+}
+
+// backend
+
+struct ggml_backend_context_sycl {
+    int device;
+};
+
+static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
+    return GGML_SYCL_NAME;
+
+    UNUSED(backend);
+}
+
+static void ggml_backend_sycl_free(ggml_backend_t backend) {
+    ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context;
+
+    delete sycl_ctx;
+    delete backend;
+}
+
+static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
+    ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context;
+
+    return ggml_backend_sycl_buffer_type(sycl_ctx->device);
+}
+
+static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
+                                               ggml_tensor *tensor,
+                                               const void *data, size_t offset,
+                                               size_t size) try {
+    ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context;
+
+    GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+    SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
+        (char *)tensor->data + offset, data, size)));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
+                                               const ggml_tensor *tensor,
+                                               void *data, size_t offset,
+                                               size_t size) try {
+    ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context;
+
+    GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+    SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
+        data, (const char *)tensor->data + offset, size)));
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
+    ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context;
+
+    SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->wait()));
+
+    UNUSED(backend);
+}
+catch (sycl::exception const &exc) {
+  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+            << ", line:" << __LINE__ << std::endl;
+  std::exit(1);
+}
+
+static ggml_backend_graph_plan_t ggml_backend_sycl_graph_plan_create(ggml_backend_t backend, const ggml_cgraph * cgraph) {
+    GGML_ASSERT(!"not implemented");
+
+    return nullptr;
+
+    UNUSED(backend);
+    UNUSED(cgraph);
+}
+
+static void ggml_backend_sycl_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+    GGML_ASSERT(!"not implemented");
+
+    UNUSED(backend);
+    UNUSED(plan);
+}
+
+static void ggml_backend_sycl_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+    GGML_ASSERT(!"not implemented");
+
+    UNUSED(backend);
+    UNUSED(plan);
+}
+
+static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+    ggml_backend_context_sycl * sycl_ctx = (ggml_backend_context_sycl *)backend->context;
+
+    ggml_sycl_set_main_device(sycl_ctx->device);
+
+    ggml_compute_params params = {};
+    params.type = GGML_TASK_COMPUTE;
+    params.ith = 0;
+    for (int i = 0; i < cgraph->n_nodes; i++) {
+        ggml_tensor * node = cgraph->nodes[i];
+
+        if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
+            continue;
+
+        assert(node->backend == GGML_BACKEND_GPU);
+        assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
+        assert(node->extra != nullptr);
+
+        for (int j = 0; j < GGML_MAX_SRC; j++) {
+            if (node->src[j] != nullptr) {
+                assert(node->src[j]->backend == GGML_BACKEND_GPU);
+                assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
+                assert(node->src[j]->extra != nullptr);
+            }
+        }
+
+        bool ok = ggml_sycl_compute_forward(&params, node);
+        if (!ok) {
+            fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
+        }
+        GGML_ASSERT(ok);
+
+#if 0
+        if (node->type == GGML_TYPE_F32) {
+            syclDeviceSynchronize();
+            std::vector<float> tmp(ggml_nelements(node), 0.0f);
+            syclMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), syclMemcpyDeviceToHost);
+            printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op),
+                ggml_type_name(node->src[0]->type),
+                node->src[1] ? ggml_type_name(node->src[1]->type) : "none",
+                node->src[0]->name,
+                node->src[1] ? node->src[1]->name : "none");
+            double sum = 0.0;
+            double sq_sum = 0.0;
+            for (int i = 0; i < ggml_nelements(node); i++) {
+                printf("%f ", tmp[i]);
+                sum += tmp[i];
+                sq_sum += tmp[i]*tmp[i];
+            }
+            printf("\n");
+            printf("sum: %f, ", sum);
+            printf("sq_sum: %f\n", sq_sum);
+        }
+#endif
+    }
+
+    UNUSED(backend);
+    return true;
+}
+
+static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+    switch (op->op) {
+        case GGML_OP_UNARY:
+            switch (ggml_get_unary_op(op)) {
+                case GGML_UNARY_OP_GELU:
+                case GGML_UNARY_OP_SILU:
+                case GGML_UNARY_OP_RELU:
+                case GGML_UNARY_OP_GELU_QUICK:
+                case GGML_UNARY_OP_TANH:
+                    return true;
+                default:
+                    return false;
+            }
+            break;
+        case GGML_OP_MUL_MAT:
+        case GGML_OP_MUL_MAT_ID:
+            {
+                struct ggml_tensor * a;
+                struct ggml_tensor * b;
+                if (op->op == GGML_OP_MUL_MAT) {
+                    a = op->src[0];
+                    b = op->src[1];
+                } else {
+                    a = op->src[2];
+                    b = op->src[1];
+                }
+                if (a->ne[3] != b->ne[3]) {
+                    return false;
+                }
+
+                if (a->type == GGML_TYPE_IQ2_XXS) {
+                    return false;
+                }
+                if (a->type == GGML_TYPE_IQ2_XS) {
+                    return false;
+                }
+
+                return true;
+            } break;
+        case GGML_OP_GET_ROWS:
+            {
+                switch (op->src[0]->type) {
+                    case GGML_TYPE_F16:
+                    case GGML_TYPE_F32:
+                    case GGML_TYPE_Q4_0:
+                    case GGML_TYPE_Q4_1:
+                    case GGML_TYPE_Q5_0:
+                    case GGML_TYPE_Q5_1:
+                    case GGML_TYPE_Q8_0:
+                        return true;
+                    default:
+                        return false;
+                }
+            } break;
+        case GGML_OP_CPY:
+            {
+                ggml_type src0_type = op->src[0]->type;
+                ggml_type src1_type = op->src[1]->type;
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
+                    return true;
+                }
+                return false;
+            } break;
+        case GGML_OP_CONCAT:
+            {
+                ggml_type src0_type = op->src[0]->type;
+                if (src0_type == GGML_TYPE_F32) {
+                    return true;
+                } else {
+                    return false;
+                }
+            } break;
+        case GGML_OP_NONE:
+        case GGML_OP_RESHAPE:
+        case GGML_OP_VIEW:
+        case GGML_OP_PERMUTE:
+        case GGML_OP_TRANSPOSE:
+        case GGML_OP_NORM:
+        case GGML_OP_REPEAT:
+        case GGML_OP_DUP:
+        case GGML_OP_ADD:
+        case GGML_OP_MUL:
+        case GGML_OP_DIV:
+        case GGML_OP_RMS_NORM:
+        case GGML_OP_SCALE:
+        case GGML_OP_SQR:
+        case GGML_OP_CLAMP:
+        case GGML_OP_CONT:
+        case GGML_OP_DIAG_MASK_INF:
+        case GGML_OP_SOFT_MAX:
+        case GGML_OP_ROPE:
+        case GGML_OP_ALIBI:
+        case GGML_OP_IM2COL:
+        case GGML_OP_SUM_ROWS:
+        case GGML_OP_ARGSORT:
+        case GGML_OP_ACC:
+        case GGML_OP_GROUP_NORM:
+        case GGML_OP_UPSCALE:
+        case GGML_OP_PAD:
+        case GGML_OP_LEAKY_RELU:
+            return true;
+        default:
+            return false;
+    }
+
+    UNUSED(backend);
+}
+
+static ggml_backend_i ggml_backend_sycl_interface = {
+    /* .get_name                = */ ggml_backend_sycl_name,
+    /* .free                    = */ ggml_backend_sycl_free,
+    /* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
+    /* .set_tensor_async        = */ ggml_backend_sycl_set_tensor_async,
+    /* .get_tensor_async        = */ ggml_backend_sycl_get_tensor_async,
+    /* .cpy_tensor_async        = */ NULL,
+    /* .synchronize             = */ ggml_backend_sycl_synchronize,
+    /* .graph_plan_create       = */ ggml_backend_sycl_graph_plan_create,
+    /* .graph_plan_free         = */ ggml_backend_sycl_graph_plan_free,
+    /* .graph_plan_compute      = */ ggml_backend_sycl_graph_plan_compute,
+    /* .graph_compute           = */ ggml_backend_sycl_graph_compute,
+    /* .supports_op             = */ ggml_backend_sycl_supports_op,
+};
+
+ggml_backend_t ggml_backend_sycl_init(int device) {
+    ggml_init_sycl(); // TODO: remove from ggml.c
+
+    if (device < 0 || device >= ggml_sycl_get_device_count()) {
+        fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
+        return nullptr;
+    }
+
+    // not strictly necessary, but it may reduce the overhead of the first graph_compute
+    ggml_sycl_set_main_device(device);
+
+    ggml_backend_context_sycl * ctx = new ggml_backend_context_sycl {
+        /* .device = */ device
+    };
+
+    ggml_backend_t sycl_backend = new ggml_backend {
+        /* .interface = */ ggml_backend_sycl_interface,
+        /* .context   = */ ctx
+    };
+
+    return sycl_backend;
+}
+
+bool ggml_backend_is_sycl(ggml_backend_t backend) {
+    return backend->iface.get_name == ggml_backend_sycl_name;
+}
+
+static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
+    ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
+    return sycl_backend;
+
+    UNUSED(params);
+}
+
+extern "C" int ggml_backend_sycl_reg_devices();
+
+int ggml_backend_sycl_reg_devices() {
+    int device_count = ggml_sycl_get_device_count();
+
+    for (int i = 0; i < device_count; i++) {
+        char name[128];
+        snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
+        ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
+    }
+    return device_count;
+}
diff --git a/ggml-sycl.h b/ggml-sycl.h
new file mode 100644 (file)
index 0000000..891f2d0
--- /dev/null
@@ -0,0 +1,29 @@
+//
+//  MIT license
+//  Copyright (C) 2024 Intel Corporation
+//  SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include "ggml.h"
+#include "ggml-backend.h"
+
+#ifdef  __cplusplus
+extern "C" {
+#endif
+
+#define GGML_SYCL_MAX_DEVICES       16
+#define GGML_SYCL_NAME "SYCL"
+
+GGML_API void   ggml_init_sycl(void);
+GGML_API bool   ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
+GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
+GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
+GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
+GGML_API void   ggml_backend_sycl_print_sycl_devices(void);
+GGML_API GGML_CALL void   ggml_sycl_get_gpu_list(int *id_list, int max_len);
+GGML_API GGML_CALL void   ggml_sycl_get_device_description(int device, char *description, size_t description_size);
+#ifdef  __cplusplus
+}
+#endif
diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp
new file mode 100644 (file)
index 0000000..254f648
--- /dev/null
@@ -0,0 +1,5726 @@
+#include "ggml-vulkan.h"
+
+#ifdef GGML_VULKAN_RUN_TESTS
+#include <chrono>
+#endif
+
+#include <vulkan/vulkan.hpp>
+
+#include <algorithm>
+#include <cmath>
+#include <iostream>
+#include <iomanip>
+#include <limits>
+#include <tuple>
+#include <vector>
+#include <sstream>
+#include <utility>
+#include <memory>
+
+#include "ggml.h"
+#include "ggml-backend-impl.h"
+
+#include "ggml-vulkan-shaders.hpp"
+
+#define VK_API_VERSION VK_API_VERSION_1_2
+
+#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
+
+#define VK_VENDOR_ID_AMD 0x1002
+#define VK_VENDOR_ID_INTEL 0x8086
+#define VK_VENDOR_ID_NVIDIA 0x10de
+
+#define VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN 0
+#define VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI 1
+#define VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE 2
+
+#define VK_NUM_TYPES 16
+
+#define GGML_VK_MAX_NODES 8192
+
+#define MAX_VK_BUFFERS 256
+
+#ifndef K_QUANTS_PER_ITERATION
+#define K_QUANTS_PER_ITERATION 1
+#else
+static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
+#endif
+
+#define VK_CHECK(err, msg)                                          \
+    do {                                                            \
+        vk::Result err_ = (err);                                    \
+        if (err_ != vk::Result::eSuccess) {                         \
+            fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n",  \
+                #err, to_string(err_).c_str(), __FILE__, __LINE__); \
+            exit(1);                                                \
+        }                                                           \
+    } while (0)
+
+struct ggml_backend_vk_context;
+
+struct vk_queue {
+    uint32_t queue_family_index;
+    vk::Queue queue;
+    vk::CommandPool pool;
+    uint32_t cmd_buffer_idx;
+    std::vector<vk::CommandBuffer> cmd_buffers;
+
+    vk::PipelineStageFlags stage_flags;
+};
+
+struct vk_device {
+    vk::PhysicalDevice physical_device;
+    vk::PhysicalDeviceProperties properties;
+    std::string name;
+    uint64_t max_memory_allocation_size;
+    bool fp16;
+    vk::Device device;
+    uint32_t vendor_id;
+    vk_queue compute_queue;
+    vk_queue transfer_queue;
+    bool single_queue;
+    uint32_t descriptor_set_mode;
+    uint32_t subgroup_size;
+    bool uma;
+
+    ~vk_device() {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "destroy device " << name << std::endl;
+#endif
+        device.destroy();
+    }
+};
+
+struct vk_buffer_struct {
+    vk::Buffer buffer;
+    vk::DeviceMemory device_memory;
+    vk::MemoryPropertyFlags memory_property_flags;
+    void * ptr;
+    size_t size = 0;
+
+    ggml_backend_vk_context * ctx;
+
+    std::shared_ptr<vk_device> device;
+
+    ~vk_buffer_struct() {
+        if (size == 0) {
+            return;
+        }
+#ifdef GGML_VULKAN_DEBUG
+        std::cerr << "~vk_buffer_struct(" << buffer << ", " << size << ")" << std::endl;
+#endif
+
+        device->device.freeMemory(device_memory);
+        device->device.destroyBuffer(buffer);
+    }
+};
+
+typedef std::shared_ptr<vk_buffer_struct> vk_buffer;
+typedef std::weak_ptr<vk_buffer_struct> vk_buffer_ref;
+
+struct vk_subbuffer {
+    vk_buffer buffer;
+    uint64_t offset;
+    uint64_t size;
+};
+
+struct vk_pipeline {
+    std::string name;
+    vk::ShaderModule shader_module;
+    vk::DescriptorSetLayout dsl;
+    std::vector<vk::DescriptorPool> descriptor_pools;
+    std::vector<vk::DescriptorSet> descriptor_sets;
+    uint32_t descriptor_set_idx;
+    vk::PipelineLayout layout;
+    vk::Pipeline pipeline;
+    uint32_t push_constant_size;
+    uint32_t parameter_count;
+    std::array<uint32_t, 3> wg_denoms;
+    uint32_t align;
+};
+
+struct vk_semaphore {
+    vk::Semaphore s;
+    uint64_t value;
+};
+
+struct vk_submission {
+    vk::CommandBuffer buffer;
+    std::vector<vk_semaphore> wait_semaphores;
+    std::vector<vk_semaphore> signal_semaphores;
+};
+
+typedef std::vector<vk_submission> vk_sequence;
+
+struct vk_op_push_constants {
+    uint32_t KX;
+    uint32_t KY;
+    float param1;
+    float param2;
+};
+
+struct vk_op_cpy_push_constants {
+    uint32_t ne;
+    uint32_t ne00; uint32_t ne01; uint32_t nb00; uint32_t nb01; uint32_t nb02;
+    uint32_t ne10; uint32_t ne11; uint32_t nb10; uint32_t nb11; uint32_t nb12;
+    uint32_t d_offset;
+};
+
+struct vk_op_diag_mask_push_constants {
+    uint32_t ncols;
+    uint32_t rows_per_channel;
+    int32_t n_past;
+};
+
+struct vk_op_rope_push_constants {
+    uint32_t ncols;
+    float freq_scale;
+    uint32_t p_delta_rows;
+    float freq_base;
+    float ext_factor;
+    float attn_factor;
+    float corr_dims[4];
+};
+
+struct vk_op_rope_neox_push_constants {
+    uint32_t ncols;
+    uint32_t ndims;
+    float freq_scale;
+    uint32_t p_delta_rows;
+    float freq_base;
+    float ext_factor;
+    float attn_factor;
+    float corr_dims[4];
+    float theta_scale;
+    float inv_ndims;
+};
+
+// Allow pre-recording command buffers
+struct vk_staging_memcpy {
+    vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
+
+    void * dst;
+    const void * src;
+    size_t n;
+};
+
+struct vk_context {
+    size_t idx;
+
+    vk_submission * s;
+    std::vector<vk_sequence> seqs;
+
+    ggml_tensor * exit_tensor;
+
+    std::vector<vk_staging_memcpy> in_memcpys;
+    std::vector<vk_staging_memcpy> out_memcpys;
+
+    vk_queue * q;
+};
+
+struct ggml_tensor_extra_gpu {
+    bool ready;
+
+    size_t ctx_idx;
+
+    vk_buffer_ref buffer_gpu;
+    uint64_t offset;
+
+    void reset() {
+        ready = false;
+        ctx_idx = 0;
+        buffer_gpu.reset();
+        offset = 0;
+    }
+};
+
+struct ggml_vk_garbage_collector {
+    std::vector<vk_pipeline *> pipelines;
+    std::vector<vk_semaphore> tl_semaphores;
+    std::vector<vk_semaphore> semaphores;
+    std::vector<vk::Event> events;
+    std::vector<vk_buffer> temp_buffers;
+    std::vector<vk_context> contexts;
+};
+
+struct ggml_backend_vk_context {
+    std::string name;
+
+    std::weak_ptr<vk_device> device;
+    vk_pipeline pipeline_matmul_f32_l, pipeline_matmul_f32_m, pipeline_matmul_f32_s;
+    vk_pipeline pipeline_matmul_f32_aligned_l, pipeline_matmul_f32_aligned_m, pipeline_matmul_f32_aligned_s;
+    vk_pipeline pipeline_matmul_f16_l, pipeline_matmul_f16_m, pipeline_matmul_f16_s;
+    vk_pipeline pipeline_matmul_f16_aligned_l, pipeline_matmul_f16_aligned_m, pipeline_matmul_f16_aligned_s;
+    vk_pipeline pipeline_matmul_f16_f32_l, pipeline_matmul_f16_f32_m, pipeline_matmul_f16_f32_s;
+    vk_pipeline pipeline_matmul_f16_f32_aligned_l, pipeline_matmul_f16_f32_aligned_m, pipeline_matmul_f16_f32_aligned_s;
+    vk_pipeline pipeline_matmul_split_k_reduce;
+    vk_pipeline pipeline_dequant[VK_NUM_TYPES];
+    vk_pipeline pipeline_dequant_mul_mat_vec_f32[VK_NUM_TYPES];
+    vk_pipeline pipeline_mul_mat_vec_p021_f16_f32;
+    vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
+    vk_pipeline pipeline_get_rows[VK_NUM_TYPES];
+    vk_pipeline pipeline_get_rows_f32[VK_NUM_TYPES];
+    vk_pipeline pipeline_mul_f32;
+    vk_pipeline pipeline_add_f32;
+    vk_pipeline pipeline_scale_f32;
+    vk_pipeline pipeline_sqr_f32;
+    vk_pipeline pipeline_clamp_f32;
+    vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
+    vk_pipeline pipeline_norm_f32;
+    vk_pipeline pipeline_rms_norm_f32;
+    vk_pipeline pipeline_gelu_f32;
+    vk_pipeline pipeline_silu_f32;
+    vk_pipeline pipeline_relu_f32;
+    vk_pipeline pipeline_diag_mask_inf_f32;
+    vk_pipeline pipeline_soft_max_f32;
+    vk_pipeline pipeline_rope_f32, pipeline_rope_f16;
+    vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16;
+
+    size_t semaphore_idx, event_idx;
+    ggml_vk_garbage_collector gc;
+    std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
+    size_t prealloc_size_qx, prealloc_size_qy, prealloc_size_x, prealloc_size_y, prealloc_size_split_k;
+    vk_buffer prealloc_qx, prealloc_qy, prealloc_x, prealloc_y, prealloc_split_k;
+    vk::Fence fence;
+    vk_buffer staging;
+    size_t staging_size;
+    size_t staging_offset;
+    vk_buffer sync_staging;
+
+    vk_buffer buffer_pool[MAX_VK_BUFFERS];
+
+    vk_context * compute_ctx;
+    vk_context * transfer_ctx;
+
+    bool disable;
+    bool initialized;
+
+    size_t idx;
+};
+
+struct vk_instance {
+    vk::Instance instance;
+
+    std::vector<size_t> device_indices;
+
+    std::shared_ptr<vk_device> devices[GGML_VK_MAX_DEVICES];
+    ggml_backend_t backends[GGML_VK_MAX_DEVICES];
+    ggml_backend_vk_context contexts[GGML_VK_MAX_DEVICES];
+    ggml_backend_buffer_type buffer_types[GGML_VK_MAX_DEVICES];
+    bool initialized[GGML_VK_MAX_DEVICES];
+};
+
+#ifdef GGML_VULKAN_CHECK_RESULTS
+static size_t vk_skip_checks;
+static size_t vk_output_tensor;
+
+static void ggml_vk_print_tensor(ggml_backend * ctx, const ggml_tensor * tensor, const char * name);
+static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor);
+static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor);
+#endif
+
+typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
+
+static bool vk_instance_initialized = false;
+static vk_instance vk_instance;
+
+GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend);
+
+static void ggml_vk_create_pipeline(ggml_backend_vk_context * ctx, vk_pipeline& pipeline, const std::string& name, size_t spv_size, const void* spv_data, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t>&& specialization_constants, uint32_t align) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_pipeline(" << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl;
+#endif
+    GGML_ASSERT(parameter_count > 0);
+    GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
+
+    pipeline.name = name;
+    pipeline.parameter_count = parameter_count;
+    pipeline.push_constant_size = push_constant_size;
+    pipeline.wg_denoms = wg_denoms;
+    pipeline.align = align;
+
+    vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
+    pipeline.shader_module = ctx->device.lock()->device.createShaderModule(shader_module_create_info);
+
+    std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
+    std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
+    for (uint32_t i = 0; i < parameter_count; i++) {
+        dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
+        dsl_binding_flags.push_back({});
+    }
+
+    vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
+
+    vk::PushConstantRange pcr(
+        vk::ShaderStageFlagBits::eCompute,
+        0,
+        pipeline.push_constant_size
+    );
+
+    vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
+        {},
+        dsl_binding);
+    descriptor_set_layout_create_info.setPNext(&dslbfci);
+    pipeline.dsl = ctx->device.lock()->device.createDescriptorSetLayout(descriptor_set_layout_create_info);
+
+    // Check if device supports multiple descriptors per pool
+    if (ctx->device.lock()->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN) {
+        const uint32_t alloc_count = 2;
+
+        // Try allocating multiple sets from one pool
+        // This fails on AMD for some reason, so add a fall back to allocating one pool per set
+        vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
+        vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, alloc_count, descriptor_pool_size);
+        vk::DescriptorPool pool = ctx->device.lock()->device.createDescriptorPool(descriptor_pool_create_info);
+
+        std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
+        for (uint32_t i = 0; i < alloc_count; i++) {
+            layouts[i] = pipeline.dsl;
+        }
+        try {
+            vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pool, alloc_count, layouts.data());
+            std::vector<vk::DescriptorSet> sets = ctx->device.lock()->device.allocateDescriptorSets(descriptor_set_alloc_info);
+        } catch(vk::OutOfPoolMemoryError const&) {
+            ctx->device.lock()->descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE;
+        }
+
+        ctx->device.lock()->device.destroyDescriptorPool(pool);
+    }
+
+    if (ctx->device.lock()->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) {
+        vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
+        vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 128, descriptor_pool_size);
+        pipeline.descriptor_pools.push_back(ctx->device.lock()->device.createDescriptorPool(descriptor_pool_create_info));
+    }
+
+    pipeline.descriptor_set_idx = 0;
+
+    vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline.dsl, pcr);
+    pipeline.layout = ctx->device.lock()->device.createPipelineLayout(pipeline_layout_create_info);
+
+    std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size());
+
+    for (size_t i = 0; i < specialization_constants.size(); i++) {
+        specialization_entries[i].constantID = i;
+        specialization_entries[i].offset = i * sizeof(uint32_t);
+        specialization_entries[i].size = sizeof(uint32_t);
+    }
+
+    vk::SpecializationInfo specialization_info(
+        specialization_entries.size(),
+        specialization_entries.data(),
+        specialization_constants.size() * sizeof(uint32_t),
+        specialization_constants.data()
+    );
+
+    vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
+            vk::PipelineShaderStageCreateFlags(),
+            vk::ShaderStageFlagBits::eCompute,
+            pipeline.shader_module,
+            entrypoint.c_str(),
+            &specialization_info);
+    vk::ComputePipelineCreateInfo compute_pipeline_create_info(
+        vk::PipelineCreateFlags(),
+        pipeline_shader_create_info,
+        pipeline.layout);
+    pipeline.pipeline = ctx->device.lock()->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
+
+    ctx->gc.pipelines.push_back(&pipeline);
+}
+
+static void ggml_vk_destroy_pipeline(ggml_backend_vk_context * ctx, vk_pipeline * pipeline) {
+    for (auto& pool : pipeline->descriptor_pools) {
+        ctx->device.lock()->device.destroyDescriptorPool(pool);
+    }
+    pipeline->descriptor_pools.clear();
+    pipeline->descriptor_sets.clear();
+    pipeline->descriptor_set_idx = 0;
+
+    ctx->device.lock()->device.destroyDescriptorSetLayout(pipeline->dsl);
+
+    ctx->device.lock()->device.destroyPipelineLayout(pipeline->layout);
+
+    ctx->device.lock()->device.destroyShaderModule(pipeline->shader_module);
+
+    ctx->device.lock()->device.destroyPipeline(pipeline->pipeline);
+}
+
+static void ggml_pipeline_allocate_descriptor_sets(ggml_backend_vk_context * ctx, vk_pipeline& pipeline, uint32_t n) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_pipeline_allocate_descriptor_sets(" << pipeline.name << ", " << n << ")" << std::endl;
+#endif
+    if (pipeline.descriptor_sets.size() >= pipeline.descriptor_set_idx + n) {
+        // Enough descriptors are available
+        return;
+    }
+
+    if (ctx->device.lock()->descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) {
+        const uint32_t alloc_count = pipeline.descriptor_set_idx + n - pipeline.descriptor_sets.size();
+
+        std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
+        for (uint32_t i = 0; i < alloc_count; i++) {
+            layouts[i] = pipeline.dsl;
+        }
+        vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[0], alloc_count, layouts.data());
+        std::vector<vk::DescriptorSet> sets = ctx->device.lock()->device.allocateDescriptorSets(descriptor_set_alloc_info);
+        pipeline.descriptor_sets.insert(pipeline.descriptor_sets.end(), sets.begin(), sets.end());
+    } else {
+        for (uint32_t i = pipeline.descriptor_sets.size(); i < pipeline.descriptor_set_idx + n; i++) {
+            vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
+            vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 1, descriptor_pool_size);
+            pipeline.descriptor_pools.push_back(ctx->device.lock()->device.createDescriptorPool(descriptor_pool_create_info));
+
+            vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[i], 1, &pipeline.dsl);
+            std::vector<vk::DescriptorSet> sets = ctx->device.lock()->device.allocateDescriptorSets(descriptor_set_alloc_info);
+            pipeline.descriptor_sets.push_back(sets[0]);
+        }
+    }
+}
+
+static void ggml_pipeline_cleanup(vk_pipeline& pipeline) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_pipeline_cleanup(" << pipeline.name << ")" << std::endl;
+#endif
+    pipeline.descriptor_set_idx = 0;
+}
+
+static vk::CommandBuffer ggml_vk_create_cmd_buffer(ggml_backend_vk_context * ctx, vk_queue& q) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_cmd_buffer()" << std::endl;
+#endif
+    if (q.cmd_buffers.size() > q.cmd_buffer_idx) {
+        // Reuse command buffer
+        return q.cmd_buffers[q.cmd_buffer_idx++];
+    }
+
+    vk::CommandBufferAllocateInfo command_buffer_alloc_info(
+        q.pool,
+        vk::CommandBufferLevel::ePrimary,
+        1);
+    const std::vector<vk::CommandBuffer> cmd_buffers = ctx->device.lock()->device.allocateCommandBuffers(command_buffer_alloc_info);
+    auto buf = cmd_buffers.front();
+
+    q.cmd_buffers.push_back(buf);
+    q.cmd_buffer_idx++;
+
+    return buf;
+}
+
+static vk_submission ggml_vk_create_submission(ggml_backend_vk_context * ctx, vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_submission()" << std::endl;
+#endif
+    vk_submission s;
+    s.buffer = ggml_vk_create_cmd_buffer(ctx, q);
+    s.wait_semaphores = std::move(wait_semaphores);
+    s.signal_semaphores = std::move(signal_semaphores);
+    return s;
+}
+
+static void ggml_vk_submit(vk_context * ctx, vk::Fence fence) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_submit(" << ctx->seqs.size() << ", " << fence << ")" << std::endl;
+#endif
+    if (ctx->seqs.empty()) {
+        return;
+    }
+
+    std::vector<std::vector<uint64_t>> tl_wait_vals;
+    std::vector<std::vector<uint64_t>> tl_signal_vals;
+    std::vector<std::vector<vk::Semaphore>> tl_wait_semaphores;
+    std::vector<std::vector<vk::Semaphore>> tl_signal_semaphores;
+    std::vector<vk::TimelineSemaphoreSubmitInfo> tl_submit_infos;
+    std::vector<vk::SubmitInfo> submit_infos;
+    int idx = -1;
+    std::vector<std::vector<vk::PipelineStageFlags>> stage_flags;
+
+    size_t reserve = 0;
+
+    for (const auto& sequence : ctx->seqs) {
+        reserve += sequence.size();
+    }
+
+    // Pre-reserve vectors to prevent reallocation, which invalidates pointers
+    tl_wait_semaphores.reserve(reserve);
+    tl_wait_vals.reserve(reserve);
+    tl_signal_semaphores.reserve(reserve);
+    tl_signal_vals.reserve(reserve);
+    tl_submit_infos.reserve(reserve);
+    submit_infos.reserve(reserve);
+    stage_flags.reserve(reserve);
+
+    for (const auto& sequence : ctx->seqs) {
+        for (const auto& submission : sequence) {
+            stage_flags.push_back({});
+            idx++;
+            tl_wait_vals.push_back({});
+            tl_wait_semaphores.push_back({});
+            tl_signal_vals.push_back({});
+            tl_signal_semaphores.push_back({});
+            for (size_t i = 0; i < submission.wait_semaphores.size(); i++) {
+                stage_flags[idx].push_back(ctx->q->stage_flags);
+                tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value);
+                tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s);
+            }
+            for (size_t i = 0; i < submission.signal_semaphores.size(); i++) {
+                tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value);
+                tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s);
+            }
+            tl_submit_infos.push_back({
+                (uint32_t) submission.wait_semaphores.size(),
+                tl_wait_vals[idx].data(),
+                (uint32_t) submission.signal_semaphores.size(),
+                tl_signal_vals[idx].data(),
+            });
+            tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo;
+            tl_submit_infos[idx].pNext = nullptr;
+            vk::SubmitInfo si{
+                (uint32_t) submission.wait_semaphores.size(),
+                tl_wait_semaphores[idx].data(),
+                stage_flags[idx].data(),
+                1,
+                &submission.buffer,
+                (uint32_t) submission.signal_semaphores.size(),
+                tl_signal_semaphores[idx].data(),
+            };
+            si.setPNext(&tl_submit_infos[idx]);
+            submit_infos.push_back(si);
+        }
+    }
+
+    ctx->q->queue.submit(submit_infos, fence);
+
+    ctx->seqs.clear();
+}
+
+static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyProperties>& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_find_queue_family_index()" << std::endl;
+#endif
+    const uint32_t qfsize = queue_family_props.size();
+
+    // Try with avoid preferences first
+    for (uint32_t i = 0; i < qfsize; i++) {
+        if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) {
+            return i;
+        }
+    }
+
+    // Fall back to only required
+    for (size_t i = 0; i < qfsize; i++) {
+        if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) {
+            return i;
+        }
+    }
+
+    // Fall back to reusing compute queue
+    for (size_t i = 0; i < qfsize; i++) {
+        if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) {
+            return i;
+        }
+    }
+
+    // Fall back to ignoring min_num_queries
+    for (size_t i = 0; i < qfsize; i++) {
+        if (queue_family_props[i].queueFlags & required) {
+            return i;
+        }
+    }
+
+    std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
+
+    for(auto &q_family : queue_family_props) {
+        std::cerr << "Queue number: "  + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl;
+    }
+    abort();
+}
+
+static void ggml_vk_create_queue(ggml_backend_vk_context * ctx, vk_queue& q, uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_queue()" << std::endl;
+#endif
+    q.queue_family_index = queue_family_index;
+
+    vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index);
+    q.pool = ctx->device.lock()->device.createCommandPool(command_pool_create_info_compute);
+
+    q.cmd_buffer_idx = 0;
+
+    q.queue = ctx->device.lock()->device.getQueue(queue_family_index, queue_index);
+
+    q.stage_flags = stage_flags;
+}
+
+static vk_context * ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_context()" << std::endl;
+#endif
+    ctx->gc.contexts.emplace_back();
+    vk_context * result = &ctx->gc.contexts[ctx->gc.contexts.size() - 1];
+    memset((void *) result, 0, sizeof(vk_context));
+    result->idx = ctx->gc.contexts.size() - 1;
+    result->q = &q;
+    return result;
+}
+
+static vk_semaphore * ggml_vk_create_binary_semaphore(ggml_backend_vk_context * ctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl;
+#endif
+    vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 };
+    vk::SemaphoreCreateInfo ci{};
+    ci.setPNext(&tci);
+    vk::Semaphore semaphore = ctx->device.lock()->device.createSemaphore(ci);
+    ctx->gc.semaphores.push_back({ semaphore, 0 });
+    return &ctx->gc.semaphores[ctx->gc.semaphores.size() - 1];
+}
+
+static vk_semaphore * ggml_vk_create_timeline_semaphore(ggml_backend_vk_context * ctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl;
+#endif
+    if (ctx->semaphore_idx >= ctx->gc.tl_semaphores.size()) {
+        vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 };
+        vk::SemaphoreCreateInfo ci{};
+        ci.setPNext(&tci);
+        vk::Semaphore semaphore = ctx->device.lock()->device.createSemaphore(ci);
+        ctx->gc.tl_semaphores.push_back({ semaphore, 0 });
+    }
+    return &ctx->gc.tl_semaphores[ctx->semaphore_idx++];
+}
+
+static vk::Event ggml_vk_create_event(ggml_backend_vk_context * ctx) {
+    if (ctx->event_idx >= ctx->gc.events.size()) {
+        ctx->gc.events.push_back(ctx->device.lock()->device.createEvent({}));
+    }
+    return ctx->gc.events[ctx->event_idx++];
+}
+
+static void ggml_vk_queue_cleanup(ggml_backend_vk_context * ctx, vk_queue& q) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_queue_cleanup()" << std::endl;
+#endif
+    // Requires command buffers to be done
+
+    ctx->device.lock()->device.resetCommandPool(q.pool);
+    q.cmd_buffer_idx = 0;
+}
+
+static vk_buffer ggml_vk_create_buffer(ggml_backend_vk_context * ctx, size_t size, vk::MemoryPropertyFlags req_flags) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_buffer(" << size << ", " << to_string(req_flags) << ")" << std::endl;
+#endif
+    vk_buffer buf = std::make_shared<vk_buffer_struct>();
+
+    if (size == 0) {
+        buf->size = 0;
+        return buf;
+    }
+
+    buf->size = size;
+    vk::BufferCreateInfo buffer_create_info{
+        vk::BufferCreateFlags(),
+        size,
+        vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst,
+        vk::SharingMode::eExclusive,
+        0,
+        nullptr,
+    };
+
+    buf->buffer = ctx->device.lock()->device.createBuffer(buffer_create_info);
+
+    vk::MemoryRequirements mem_req = ctx->device.lock()->device.getBufferMemoryRequirements(buf->buffer);
+
+    vk::PhysicalDeviceMemoryProperties mem_props = ctx->device.lock()->physical_device.getMemoryProperties();
+
+    uint32_t memory_type_index = UINT32_MAX;
+
+    for (uint32_t i = 0; i < mem_props.memoryTypeCount; ++i) {
+        vk::MemoryType memory_type = mem_props.memoryTypes[i];
+        if ((mem_req.memoryTypeBits & ((uint64_t)1 << i)) && (req_flags & memory_type.propertyFlags) == req_flags && mem_props.memoryHeaps[memory_type.heapIndex].size >= mem_req.size) {
+            memory_type_index = i;
+            break;
+        }
+    }
+
+    if (memory_type_index >= mem_props.memoryTypeCount) {
+        ctx->device.lock()->device.destroyBuffer(buf->buffer);
+        buf->size = 0;
+        throw vk::OutOfDeviceMemoryError("No suitable memory type found");
+    }
+
+    try {
+        buf->device_memory = ctx->device.lock()->device.allocateMemory({ mem_req.size, memory_type_index });
+    } catch (const vk::SystemError& e) {
+        // Out of Host/Device memory, clean up buffer
+        ctx->device.lock()->device.destroyBuffer(buf->buffer);
+        buf->size = 0;
+        throw e;
+    }
+    buf->memory_property_flags = req_flags;
+    buf->ptr = nullptr;
+
+    if (req_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
+        buf->ptr = ctx->device.lock()->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE);
+    }
+
+    ctx->device.lock()->device.bindBufferMemory(buf->buffer, buf->device_memory, 0);
+
+    buf->ctx = ctx;
+
+    buf->device = ctx->device.lock();
+
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "Created buffer " << buf->buffer << std::endl;
+#endif
+
+    return buf;
+}
+
+static vk_buffer ggml_vk_create_buffer_check(ggml_backend_vk_context * ctx, size_t size, vk::MemoryPropertyFlags req_flags) {
+    try {
+        return ggml_vk_create_buffer(ctx, size, req_flags);
+    } catch (const vk::SystemError& e) {
+        std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
+        std::cerr << "ggml_vulkan: " << e.what() << std::endl;
+        throw e;
+    }
+}
+
+static vk_buffer ggml_vk_create_buffer_device(ggml_backend_vk_context * ctx, size_t size) {
+    vk_buffer buf;
+    try {
+        buf = ggml_vk_create_buffer(ctx, size, vk::MemoryPropertyFlagBits::eDeviceLocal);
+    } catch (const vk::SystemError& e) {
+        if (ctx->device.lock()->uma) {
+            // Fall back to host memory type
+            buf = ggml_vk_create_buffer_check(ctx, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
+        } else {
+            std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
+            std::cerr << "ggml_vulkan: " << e.what() << std::endl;
+            throw e;
+        }
+    }
+
+    return buf;
+}
+
+static void ggml_vk_destroy_buffer(vk_buffer& buf) {
+    buf.reset();
+}
+
+static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
+    return { buf, 0, VK_WHOLE_SIZE };
+}
+
+static void ggml_vk_sync_buffers(vk_context * ctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_sync_buffers()" << std::endl;
+#endif
+    const std::vector<vk::MemoryBarrier> mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } };
+
+    ctx->s->buffer.pipelineBarrier(
+        ctx->q->stage_flags,
+        ctx->q->stage_flags,
+        {},
+        mem_barriers,
+        {},
+        {}
+    );
+}
+
+static void ggml_vk_wait_events(vk_context * ctx, std::vector<vk::Event>&& events) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_wait_events()" << std::endl;
+#endif
+    if (events.empty()) {
+        return;
+    }
+
+    ctx->s->buffer.waitEvents(
+        events,
+        ctx->q->stage_flags,
+        ctx->q->stage_flags,
+        {},
+        {},
+        {}
+    );
+}
+
+static bool ggml_vk_build_shader(ggml_type type) {
+    switch(type) {
+    case GGML_TYPE_F16:
+    case GGML_TYPE_Q4_0:
+    case GGML_TYPE_Q4_1:
+    case GGML_TYPE_Q5_0:
+    case GGML_TYPE_Q5_1:
+    case GGML_TYPE_Q8_0:
+    case GGML_TYPE_Q2_K:
+    case GGML_TYPE_Q3_K:
+    case GGML_TYPE_Q4_K:
+    case GGML_TYPE_Q5_K:
+    case GGML_TYPE_Q6_K:
+        return true;
+    default:
+        return false;
+    }
+}
+
+static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_load_shaders(" << ctx->name << ")" << std::endl;
+#endif
+
+    // mulmat
+    std::initializer_list<uint32_t> warptile_l = { 128, 128, 128, 16, ctx->device.lock()->subgroup_size * 2, 64, 2, 4, 4, ctx->device.lock()->subgroup_size };
+    std::initializer_list<uint32_t> warptile_m = { 128,  64,  64, 16, ctx->device.lock()->subgroup_size, 32, 2, 4, 2, ctx->device.lock()->subgroup_size };
+    std::initializer_list<uint32_t> warptile_s = { ctx->device.lock()->subgroup_size,  32,  32, 16, 32, 32, 2, 2, 2, ctx->device.lock()->subgroup_size };
+
+    std::array<uint32_t, 3> l_wg_denoms = {128, 128, 1 };
+    std::array<uint32_t, 3> m_wg_denoms = { 64,  64, 1 };
+    std::array<uint32_t, 3> s_wg_denoms = { 32,  32, 1 };
+
+    uint32_t l_align = 128;
+    uint32_t m_align =  64;
+    uint32_t s_align =  32;
+
+    if (ctx->device.lock()->fp16) {
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_l, "matmul_f32_l", matmul_f32_l_len, matmul_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_m, "matmul_f32_m", matmul_f32_m_len, matmul_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_s, "matmul_f32_s", matmul_f32_s_len, matmul_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_l, "matmul_f32_aligned_l", matmul_f32_aligned_l_len, matmul_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_m, "matmul_f32_aligned_m", matmul_f32_aligned_m_len, matmul_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_s, "matmul_f32_aligned_s", matmul_f32_aligned_s_len, matmul_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
+
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_l, "matmul_f16_l", matmul_f16_l_len, matmul_f16_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_m, "matmul_f16_m", matmul_f16_m_len, matmul_f16_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_s, "matmul_f16_s", matmul_f16_s_len, matmul_f16_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_l, "matmul_f16_aligned_l", matmul_f16_aligned_l_len, matmul_f16_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_m, "matmul_f16_aligned_m", matmul_f16_aligned_m_len, matmul_f16_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_s, "matmul_f16_aligned_s", matmul_f16_aligned_s_len, matmul_f16_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
+
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_l, "matmul_f16_f32_l", matmul_f16_f32_l_len, matmul_f16_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_m, "matmul_f16_f32_m", matmul_f16_f32_m_len, matmul_f16_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_s, "matmul_f16_f32_s", matmul_f16_f32_s_len, matmul_f16_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_l, "matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_len, matmul_f16_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_m, "matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_len, matmul_f16_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_s, "matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_len, matmul_f16_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
+    } else {
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_l, "matmul_f32_l", matmul_f32_l_fp32_len, matmul_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_m, "matmul_f32_m", matmul_f32_m_fp32_len, matmul_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_s, "matmul_f32_s", matmul_f32_s_fp32_len, matmul_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_l, "matmul_f32_aligned_l", matmul_f32_aligned_l_fp32_len, matmul_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_m, "matmul_f32_aligned_m", matmul_f32_aligned_m_fp32_len, matmul_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f32_aligned_s, "matmul_f32_aligned_s", matmul_f32_aligned_s_fp32_len, matmul_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
+
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_l, "matmul_f16_l", matmul_f16_l_fp32_len, matmul_f16_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_m, "matmul_f16_m", matmul_f16_m_fp32_len, matmul_f16_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_s, "matmul_f16_s", matmul_f16_s_fp32_len, matmul_f16_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_l, "matmul_f16_aligned_l", matmul_f16_aligned_l_fp32_len, matmul_f16_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_m, "matmul_f16_aligned_m", matmul_f16_aligned_m_fp32_len, matmul_f16_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_aligned_s, "matmul_f16_aligned_s", matmul_f16_aligned_s_fp32_len, matmul_f16_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
+
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_l, "matmul_f16_f32_l", matmul_f16_f32_l_fp32_len, matmul_f16_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_m, "matmul_f16_f32_m", matmul_f16_f32_m_fp32_len, matmul_f16_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_s, "matmul_f16_f32_s", matmul_f16_f32_s_fp32_len, matmul_f16_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_l, "matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_fp32_len, matmul_f16_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_m, "matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_fp32_len, matmul_f16_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
+        ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_f16_f32_aligned_s, "matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_fp32_len, matmul_f16_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
+    }
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32",  mul_mat_vec_f16_f32_len,  mul_mat_vec_f16_f32_data,  "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32", mul_mat_vec_q4_0_f32_len, mul_mat_vec_q4_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32", mul_mat_vec_q4_1_f32_len, mul_mat_vec_q4_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32", mul_mat_vec_q5_0_f32_len, mul_mat_vec_q5_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32", mul_mat_vec_q5_1_f32_len, mul_mat_vec_q5_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32", mul_mat_vec_q8_0_f32_len, mul_mat_vec_q8_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_K_f32", mul_mat_vec_q2_K_f32_len, mul_mat_vec_q2_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_K_f32", mul_mat_vec_q3_K_f32_len, mul_mat_vec_q3_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_K_f32", mul_mat_vec_q4_K_f32_len, mul_mat_vec_q4_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_K_f32", mul_mat_vec_q5_K_f32_len, mul_mat_vec_q5_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_K_f32", mul_mat_vec_q6_K_f32_len, mul_mat_vec_q6_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
+
+    // dequant shaders
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16",   f32_to_f16_len,   f32_to_f16_data,   "main", 2, 4 * sizeof(int), {      64, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_F16 ], "dequant_f16",  dequant_f16_len,  dequant_f16_data,  "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q4_0], "dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q4_1], "dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q5_0], "dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q5_1], "dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q8_0], "dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q2_K], "dequant_q2_K", dequant_q2_K_len, dequant_q2_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q3_K], "dequant_q3_K", dequant_q3_K_len, dequant_q3_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q4_K], "dequant_q4_K", dequant_q4_K_len, dequant_q4_K_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q5_K], "dequant_q5_K", dequant_q5_K_len, dequant_q5_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_dequant[GGML_TYPE_Q6_K], "dequant_q6_K", dequant_q6_K_len, dequant_q6_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
+
+    // get_rows
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16",  get_rows_f16_len,  get_rows_f16_data,  "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q5_1], "get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows[GGML_TYPE_Q8_0], "get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f16_f32",  get_rows_f16_f32_len,  get_rows_f16_f32_data,  "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q5_1], "get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_get_rows_f32[GGML_TYPE_Q8_0], "get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, "mul_mat_vec_p021_f16_f32", mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
+
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
+    ggml_vk_create_pipeline(ctx, ctx->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
+}
+
+static void ggml_vk_print_gpu_info(size_t idx) {
+    GGML_ASSERT(idx < vk_instance.device_indices.size());
+    size_t dev_num = vk_instance.device_indices[idx];
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_print_gpu_info(" << dev_num << ")" << std::endl;
+#endif
+    GGML_ASSERT(vk_instance.initialized);
+
+    std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
+
+    if (dev_num >= devices.size()) {
+        std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
+        throw std::runtime_error("Device not found");
+    }
+
+    vk::PhysicalDevice physical_device = devices[dev_num];
+    std::vector<vk::ExtensionProperties> ext_props = physical_device.enumerateDeviceExtensionProperties();
+
+    vk::PhysicalDeviceProperties2 props2;
+    vk::PhysicalDeviceMaintenance3Properties props3;
+    vk::PhysicalDeviceSubgroupProperties subgroup_props;
+    props2.pNext = &props3;
+    props3.pNext = &subgroup_props;
+    physical_device.getProperties2(&props2);
+
+    const size_t subgroup_size = subgroup_props.subgroupSize;
+    const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
+
+    bool fp16_storage = false;
+    bool fp16_compute = false;
+
+    for (auto properties : ext_props) {
+        if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
+            fp16_storage = true;
+        } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
+            fp16_compute = true;
+        }
+    }
+
+    const char* GGML_VULKAN_DISABLE_F16 = getenv("GGML_VULKAN_DISABLE_F16");
+    bool force_disable_f16 = GGML_VULKAN_DISABLE_F16 != nullptr;
+
+    bool fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
+
+    vk::PhysicalDeviceFeatures device_features = physical_device.getFeatures();
+
+    VkPhysicalDeviceFeatures2 device_features2;
+    device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
+    device_features2.pNext = nullptr;
+    device_features2.features = (VkPhysicalDeviceFeatures)device_features;
+
+    VkPhysicalDeviceVulkan11Features vk11_features;
+    vk11_features.pNext = nullptr;
+    vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
+    device_features2.pNext = &vk11_features;
+
+    VkPhysicalDeviceVulkan12Features vk12_features;
+    vk12_features.pNext = nullptr;
+    vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
+    vk11_features.pNext = &vk12_features;
+
+    vkGetPhysicalDeviceFeatures2(physical_device, &device_features2);
+
+    fp16 = fp16 && vk12_features.shaderFloat16;
+
+    std::string device_name = props2.properties.deviceName.data();
+    std::cerr << GGML_VK_NAME << idx << ": " << device_name << " | uma: " << uma << " | fp16: " << fp16 << " | warp size: " << subgroup_size << std::endl;
+
+    if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) {
+        std::cerr << "ggml_vulkan: Warning: Device type is CPU. This is probably not the device you want." << std::endl;
+    }
+}
+
+void ggml_vk_instance_init() {
+    if (vk_instance_initialized) {
+        return;
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_instance_init()" << std::endl;
+#endif
+
+    vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
+    const std::vector<const char*> layers = {
+#ifdef GGML_VULKAN_VALIDATE
+        "VK_LAYER_KHRONOS_validation",
+#endif
+    };
+    const std::vector<const char*> extensions = {
+#ifdef GGML_VULKAN_VALIDATE
+        "VK_EXT_validation_features",
+#endif
+    };
+    vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions);
+#ifdef GGML_VULKAN_VALIDATE
+    const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
+    vk::ValidationFeaturesEXT validation_features = {
+        features_enable,
+        {},
+    };
+    validation_features.setPNext(nullptr);
+    instance_create_info.setPNext(&validation_features);
+
+    std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
+#endif
+    vk_instance.instance = vk::createInstance(instance_create_info);
+
+    memset(vk_instance.initialized, 0, sizeof(bool) * GGML_VK_MAX_DEVICES);
+
+    size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
+
+    // Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan
+    char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES");
+    if (devices_env != nullptr) {
+        std::string devices(devices_env);
+        std::replace(devices.begin(), devices.end(), ',', ' ');
+
+        std::stringstream ss(devices);
+        size_t tmp;
+        while (ss >> tmp) {
+            if(tmp >= num_available_devices) {
+                std::cerr << "ggml_vulkan: Invalid device index " << tmp << " in GGML_VK_VISIBLE_DEVICES." << std::endl;
+                throw std::runtime_error("Invalid Vulkan device index");
+            }
+            vk_instance.device_indices.push_back(tmp);
+        }
+    } else {
+        vk_instance.device_indices.push_back(0);
+    }
+
+    vk_instance_initialized = true;
+}
+
+void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
+    GGML_ASSERT(idx < vk_instance.device_indices.size());
+    size_t dev_num = vk_instance.device_indices[idx];
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_init(" << ctx->name << ", " << dev_num << ")" << std::endl;
+#endif
+    ggml_vk_instance_init();
+
+    std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
+
+    if (dev_num >= devices.size()) {
+        std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
+        throw std::runtime_error("Device not found");
+    }
+
+    vk_instance.devices[idx] = std::make_shared<vk_device>();
+    ctx->device = vk_instance.devices[idx];
+    ctx->device.lock()->physical_device = devices[dev_num];
+    std::vector<vk::ExtensionProperties> ext_props = ctx->device.lock()->physical_device.enumerateDeviceExtensionProperties();
+
+    bool maintenance4_support = false;
+
+    // Check if maintenance4 is supported
+    for (auto properties : ext_props) {
+        if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
+            maintenance4_support = true;
+        }
+    }
+
+    vk::PhysicalDeviceProperties2 props2;
+    vk::PhysicalDeviceMaintenance3Properties props3;
+    vk::PhysicalDeviceMaintenance4Properties props4;
+    vk::PhysicalDeviceSubgroupProperties subgroup_props;
+    props2.pNext = &props3;
+    props3.pNext = &subgroup_props;
+    if (maintenance4_support) {
+        subgroup_props.pNext = &props4;
+    }
+    ctx->device.lock()->physical_device.getProperties2(&props2);
+    ctx->device.lock()->properties = props2.properties;
+
+    if (maintenance4_support) {
+        ctx->device.lock()->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
+    } else {
+        ctx->device.lock()->max_memory_allocation_size = props3.maxMemoryAllocationSize;
+    }
+
+    ctx->device.lock()->vendor_id = ctx->device.lock()->properties.vendorID;
+    ctx->device.lock()->subgroup_size = subgroup_props.subgroupSize;
+    ctx->device.lock()->uma = ctx->device.lock()->properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
+
+    bool fp16_storage = false;
+    bool fp16_compute = false;
+
+    for (auto properties : ext_props) {
+        if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
+            fp16_storage = true;
+        } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
+            fp16_compute = true;
+        }
+    }
+
+    const char* GGML_VULKAN_DISABLE_F16 = getenv("GGML_VULKAN_DISABLE_F16");
+    bool force_disable_f16 = GGML_VULKAN_DISABLE_F16 != nullptr;
+
+    ctx->device.lock()->fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
+
+    std::vector<vk::QueueFamilyProperties> queue_family_props = ctx->device.lock()->physical_device.getQueueFamilyProperties();
+
+    // Try to find a non-graphics compute queue and transfer-focused queues
+    const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1);
+    const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1);
+
+    const float priorities[] = { 1.0f, 1.0f };
+    ctx->device.lock()->single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1;
+
+    std::vector<vk::DeviceQueueCreateInfo> device_queue_create_infos;
+    if (compute_queue_family_index != transfer_queue_family_index) {
+        device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
+        device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1});
+    } else if(!ctx->device.lock()->single_queue) {
+        device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities});
+    } else {
+        device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
+    }
+    vk::DeviceCreateInfo device_create_info;
+    std::vector<const char *> device_extensions;
+    vk::PhysicalDeviceFeatures device_features = ctx->device.lock()->physical_device.getFeatures();
+
+    VkPhysicalDeviceFeatures2 device_features2;
+    device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
+    device_features2.pNext = nullptr;
+    device_features2.features = (VkPhysicalDeviceFeatures)device_features;
+
+    VkPhysicalDeviceVulkan11Features vk11_features;
+    vk11_features.pNext = nullptr;
+    vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
+    device_features2.pNext = &vk11_features;
+
+    VkPhysicalDeviceVulkan12Features vk12_features;
+    vk12_features.pNext = nullptr;
+    vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
+    vk11_features.pNext = &vk12_features;
+
+    vkGetPhysicalDeviceFeatures2(ctx->device.lock()->physical_device, &device_features2);
+
+    ctx->device.lock()->fp16 = ctx->device.lock()->fp16 && vk12_features.shaderFloat16;
+
+    if (!vk11_features.storageBuffer16BitAccess) {
+        std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl;
+        throw std::runtime_error("Unsupported device");
+    }
+
+    device_extensions.push_back("VK_KHR_16bit_storage");
+
+#ifdef GGML_VULKAN_VALIDATE
+    device_extensions.push_back("VK_KHR_shader_non_semantic_info");
+#endif
+
+    if (ctx->device.lock()->fp16) {
+        device_extensions.push_back("VK_KHR_shader_float16_int8");
+    }
+    ctx->device.lock()->name = ctx->device.lock()->properties.deviceName.data();
+
+    device_create_info = {
+        vk::DeviceCreateFlags(),
+        device_queue_create_infos,
+        {},
+        device_extensions
+    };
+    device_create_info.setPNext(&device_features2);
+    ctx->device.lock()->device = ctx->device.lock()->physical_device.createDevice(device_create_info);
+
+    ctx->device.lock()->descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN;
+
+    // Shaders
+    ggml_vk_load_shaders(ctx);
+
+    // Queues
+    ggml_vk_create_queue(ctx, ctx->device.lock()->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer });
+    if (!ctx->device.lock()->single_queue) {
+        const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0;
+        ggml_vk_create_queue(ctx, ctx->device.lock()->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer });
+    } else {
+        // TODO: Use pointer or reference to avoid copy
+        ctx->device.lock()->transfer_queue = ctx->device.lock()->compute_queue;
+    }
+
+    ctx->fence = ctx->device.lock()->device.createFence({});
+
+    ctx->compute_ctx = nullptr;
+    ctx->transfer_ctx = nullptr;
+
+    ctx->disable = false;
+    ctx->initialized = true;
+
+    ctx->idx = idx;
+
+#ifdef GGML_VULKAN_CHECK_RESULTS
+    const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS");
+    vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks));
+    const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR");
+    vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor));
+#endif
+}
+
+static vk_pipeline* ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type type) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_get_to_fp16()" << std::endl;
+#endif
+    switch (type) {
+        case GGML_TYPE_F32:
+        case GGML_TYPE_Q4_0:
+        case GGML_TYPE_Q4_1:
+        case GGML_TYPE_Q5_0:
+        case GGML_TYPE_Q5_1:
+        case GGML_TYPE_Q8_0:
+        case GGML_TYPE_Q2_K:
+        case GGML_TYPE_Q3_K:
+        case GGML_TYPE_Q4_K:
+        case GGML_TYPE_Q5_K:
+        case GGML_TYPE_Q6_K:
+            break;
+        default:
+            return nullptr;
+    }
+
+    return &ctx->pipeline_dequant[type];
+}
+
+static vk_pipeline* ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type type) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_get_dequantize_mul_mat_vec()" << std::endl;
+#endif
+    switch (type) {
+        case GGML_TYPE_F16:
+        case GGML_TYPE_Q4_0:
+        case GGML_TYPE_Q4_1:
+        case GGML_TYPE_Q5_0:
+        case GGML_TYPE_Q5_1:
+        case GGML_TYPE_Q8_0:
+        case GGML_TYPE_Q2_K:
+        case GGML_TYPE_Q3_K:
+        case GGML_TYPE_Q4_K:
+        case GGML_TYPE_Q5_K:
+        case GGML_TYPE_Q6_K:
+            break;
+        default:
+            return nullptr;
+    }
+
+    return &ctx->pipeline_dequant_mul_mat_vec_f32[type];
+}
+
+static vk_buffer ggml_vk_pool_malloc(ggml_backend_vk_context * ctx, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_pool_malloc(" << size << ")" << std::endl;
+#endif
+    int best_i = -1;
+    size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
+    int worst_i = -1;
+    size_t worst_size = 0; //largest unused buffer seen so far
+    for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
+        vk_buffer &b = ctx->buffer_pool[i];
+        if (b != nullptr && b->size >= size && b->size < best_size) {
+            best_i = i;
+            best_size = b->size;
+        }
+        if (b != nullptr && b->size > worst_size) {
+            worst_i = i;
+            worst_size = b->size;
+        }
+    }
+    if(best_i != -1) {
+        //found the smallest buffer that fits our needs
+        vk_buffer b = ctx->buffer_pool[best_i];
+        ctx->buffer_pool[best_i].reset();
+        return b;
+    }
+    if(worst_i != -1) {
+        //no buffer that fits our needs, resize largest one to save memory
+        vk_buffer& b = ctx->buffer_pool[worst_i];
+        ggml_vk_destroy_buffer(b);
+    }
+
+    return ggml_vk_create_buffer_check(ctx, size, vk::MemoryPropertyFlagBits::eDeviceLocal);
+}
+
+static void ggml_vk_pool_free(ggml_backend_vk_context * ctx, vk_buffer& buffer) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_pool_free(" << buffer->size << ")" << std::endl;
+#endif
+    for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
+        vk_buffer& b = ctx->buffer_pool[i];
+        if (b == nullptr) {
+            b = buffer;
+            return;
+        }
+    }
+    std::cerr << "ggml_vulkan: WARNING: vk buffer pool full, increase MAX_VK_BUFFERS" << std::endl;
+    ggml_vk_destroy_buffer(buffer);
+}
+
+// Returns an available temporary buffer that may only be used temporarily, it will be reused
+static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_t size) {
+    // Try to find existing temp buffer with enough capacity
+    for (auto& buffer : ctx->gc.temp_buffers) {
+        if (buffer->size >= size) {
+            return buffer;
+        }
+    }
+
+    // Otherwise create new buffer
+    vk_buffer buf = ggml_vk_pool_malloc(ctx, size);
+    ctx->gc.temp_buffers.push_back(buf);
+
+    return buf;
+}
+
+static void * ggml_vk_host_malloc(ggml_backend_vk_context * ctx, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_host_malloc(" << size << ")" << std::endl;
+#endif
+    vk_buffer buf = ggml_vk_create_buffer(ctx, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
+
+    if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
+        fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n",
+            size/1024.0/1024.0);
+        ctx->device.lock()->device.freeMemory(buf->device_memory);
+        ctx->device.lock()->device.destroyBuffer(buf->buffer);
+        return nullptr;
+    }
+
+    ctx->pinned_memory.push_back(std::make_tuple(buf->ptr, size, buf));
+
+    return buf->ptr;
+}
+
+static void ggml_vk_host_free(ggml_backend_vk_context * ctx, void* ptr) {
+    if (ptr == nullptr) {
+        return;
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_host_free(" << ptr << ")" << std::endl;
+#endif
+    vk_buffer buf;
+    size_t index;
+    for (size_t i = 0; i < ctx->pinned_memory.size(); i++) {
+        const uint8_t* addr = (const uint8_t*) std::get<0>(ctx->pinned_memory[i]);
+        const uint8_t* endr = addr + std::get<1>(ctx->pinned_memory[i]);
+        if (ptr >= addr && ptr < endr) {
+            buf = std::get<2>(ctx->pinned_memory[i]);
+            index = i;
+            break;
+        }
+    }
+    if (buf == nullptr) {
+        fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n");
+        return;
+    }
+
+    ggml_vk_destroy_buffer(buf);
+
+    ctx->pinned_memory.erase(ctx->pinned_memory.begin() + index);
+}
+
+static void ggml_vk_host_get(ggml_backend_vk_context * ctx, const void * ptr, vk_buffer& buf, size_t& buf_offset) {
+    buf = nullptr;
+    buf_offset = 0;
+    for (size_t i = 0; i < ctx->pinned_memory.size(); i++) {
+        const uint8_t* addr = (const uint8_t*) std::get<0>(ctx->pinned_memory[i]);
+        const uint8_t* endr = addr + std::get<1>(ctx->pinned_memory[i]);
+        if (ptr >= addr && ptr < endr) {
+            buf = std::get<2>(ctx->pinned_memory[i]);
+            buf_offset = ((const uint8_t *)ptr) - addr;
+            break;
+        }
+    }
+}
+
+static vk_submission ggml_vk_begin_submission(ggml_backend_vk_context * ctx, vk_queue& q, bool one_time = true) {
+    vk_submission s;
+    s.buffer = ggml_vk_create_cmd_buffer(ctx, q);
+    if (one_time) {
+        s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
+    } else {
+        s.buffer.begin({ vk::CommandBufferUsageFlags{} });
+    }
+
+    return s;
+}
+
+static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, std::vector<vk_subbuffer>&& buffers, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
+    const uint32_t wg0 = CEIL_DIV(elements[0], pipeline.wg_denoms[0]);
+    const uint32_t wg1 = CEIL_DIV(elements[1], pipeline.wg_denoms[1]);
+    const uint32_t wg2 = CEIL_DIV(elements[2], pipeline.wg_denoms[2]);
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_dispatch_pipeline(" << pipeline.name << ", (" << wg0 << "," << wg1 << "," << wg2 << "))" << std::endl;
+#endif
+    std::vector<vk::DescriptorBufferInfo> descriptor_buffer_infos;
+    std::vector<vk::WriteDescriptorSet> write_descriptor_sets;
+    GGML_ASSERT(pipeline.descriptor_set_idx < pipeline.descriptor_sets.size());
+    GGML_ASSERT(buffers.size() == pipeline.parameter_count);
+    vk::DescriptorSet& descriptor_set = pipeline.descriptor_sets[pipeline.descriptor_set_idx++];
+    for (uint32_t i = 0; i < pipeline.parameter_count; i++) {
+        descriptor_buffer_infos.push_back({buffers[i].buffer->buffer, buffers[i].offset, buffers[i].size});
+    }
+    for (uint32_t i = 0; i < pipeline.parameter_count; i++) {
+        write_descriptor_sets.push_back({descriptor_set, i, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &descriptor_buffer_infos[i]});
+    }
+
+    ctx->device.lock()->device.updateDescriptorSets(write_descriptor_sets, {});
+
+    subctx->s->buffer.pushConstants(pipeline.layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
+    subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.pipeline);
+    subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
+                                pipeline.layout,
+                                0,
+                                { descriptor_set },
+                                {});
+    subctx->s->buffer.dispatch(wg0, wg1, wg2);
+}
+
+static void ggml_vk_end_submission(vk_submission& s, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
+    s.buffer.end();
+
+    s.wait_semaphores = std::move(wait_semaphores);
+    s.signal_semaphores = std::move(signal_semaphores);
+}
+
+static void ggml_vk_ctx_end(vk_context * ctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")" << std::endl;
+#endif
+    if (ctx->s == nullptr) {
+        return;
+    }
+
+    ctx->s->buffer.end();
+    ctx->s = nullptr;
+}
+
+static void ggml_vk_ctx_begin(ggml_backend_vk_context * ctx, vk_context * subctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_ctx_begin(" << ctx << ")" << std::endl;
+#endif
+    if (subctx->s != nullptr) {
+        ggml_vk_ctx_end(subctx);
+    }
+
+    subctx->seqs.push_back({ ggml_vk_begin_submission(ctx, *subctx->q) });
+    subctx->s = subctx->seqs[subctx->seqs.size() - 1].data();
+}
+
+static size_t ggml_vk_align_size(size_t width, size_t align) {
+    return CEIL_DIV(width, align) * align;
+}
+
+static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector<vk_staging_memcpy>* memcpys = nullptr) {
+    if (memcpys == nullptr) {
+        memcpy(dst, src, size);
+    } else {
+        memcpys->emplace_back(dst, src, size);
+    }
+}
+
+static void ggml_vk_ensure_sync_staging_buffer(ggml_backend_vk_context * ctx, size_t size) {
+    if (ctx->sync_staging == nullptr || ctx->sync_staging->size < size) {
+        ggml_vk_destroy_buffer(ctx->sync_staging);
+        ctx->sync_staging = ggml_vk_create_buffer_check(ctx, size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
+    }
+}
+
+static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_write_nc_async(" << tensor << ")" << std::endl;
+#endif
+    GGML_ASSERT(!ggml_is_contiguous(tensor));
+    // Buffer is already mapped
+    if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
+        std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
+        GGML_ASSERT(false);
+    }
+    // Check if src is pinned memory
+    vk_buffer buf;
+    size_t buf_offset;
+    ggml_vk_host_get(ctx, tensor->data, buf, buf_offset);
+
+    const uint64_t ne0 = tensor->ne[0];
+    const uint64_t ne1 = tensor->ne[1];
+    const uint64_t ne2 = tensor->ne[2];
+    const uint64_t ne3 = tensor->ne[3];
+    const uint64_t nb0 = tensor->nb[0];
+    const uint64_t nb1 = tensor->nb[1];
+    const uint64_t nb2 = tensor->nb[2];
+    const uint64_t nb3 = tensor->nb[3];
+    const ggml_type type = tensor->type;
+    const uint64_t ts = ggml_type_size(type);
+    const uint64_t bs = ggml_blck_size(type);
+
+    const uint64_t dstnb0 = ts;
+    const uint64_t dstnb1 = dstnb0*(ne0/bs);
+    const uint64_t dstnb2 = dstnb1*ne1;
+    const uint64_t dstnb3 = dstnb2*ne2;
+
+    const uint64_t ne = ggml_nelements(tensor);
+
+    if (buf != nullptr) {
+        // Memory is pinned, use as staging buffer
+        std::vector<vk::BufferCopy> slices;
+
+        for (uint64_t i3 = 0; i3 < ne3; i3++) {
+            for (uint64_t i2 = 0; i2 < ne2; i2++) {
+                // Find longest contiguous slice
+                if (ne1*nb1 == dstnb2) {
+                    slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 });
+                } else {
+                    for (uint64_t i1 = 0; i1 < ne1; i1++) {
+                        if (ne0*nb0/bs == dstnb1) {
+                            slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 });
+                        } else {
+                            const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
+                            const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
+                            for (uint64_t i0 = 0; i0 < ne0; i0++) {
+                                slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 });
+                            }
+                        }
+                    }
+                }
+            }
+        }
+
+        ggml_vk_sync_buffers(subctx);
+        subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
+        return;
+    }
+
+    // Staging buffer required
+    vk_buffer staging = ctx->staging;
+    size_t staging_offset = ctx->staging_offset;
+    const size_t copy_size = ts*ne/bs;
+    if (ctx->staging->size < ctx->staging_offset + copy_size) {
+        if (sync_staging) {
+            // Create temporary larger buffer
+            ggml_vk_ensure_sync_staging_buffer(ctx, copy_size);
+
+            staging = ctx->sync_staging;
+            staging_offset = 0;
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+
+    VkBufferCopy buf_copy{ staging_offset, offset, copy_size };
+
+    ggml_vk_sync_buffers(subctx);
+    vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
+
+    for (uint64_t i3 = 0; i3 < ne3; i3++) {
+        for (uint64_t i2 = 0; i2 < ne2; i2++) {
+            // Find longest contiguous slice
+            if (ne1*nb1 == dstnb2) {
+                deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys);
+            } else {
+                for (uint64_t i1 = 0; i1 < ne1; i1++) {
+                    if (ne0*nb0/bs == dstnb1) {
+                        deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys);
+                    } else {
+                        const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
+                        const uint64_t d_off = staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
+                        for (uint64_t i0 = 0; i0 < ne0; i0++) {
+                            deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &subctx->in_memcpys);
+                        }
+                    }
+                }
+            }
+        }
+    }
+}
+
+static void ggml_vk_buffer_write_2d_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")" << std::endl;
+#endif
+    // Make sure ctx owns the buffer
+    GGML_ASSERT(dst->ctx == ctx);
+
+    // Buffer is already mapped
+    if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
+        std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
+        GGML_ASSERT(false);
+    }
+    // Check if src is pinned memory
+    vk_buffer buf = nullptr;
+    size_t buf_offset;
+    ggml_vk_host_get(ctx, src, buf, buf_offset);
+
+    if (buf != nullptr) {
+        // Memory is pinned, use as staging buffer
+        std::vector<vk::BufferCopy> slices(1);
+        if (width == spitch) {
+            // Only do single write if stride is equal
+            slices[0].srcOffset = buf_offset;
+            slices[0].dstOffset = offset;
+            slices[0].size = width * height;
+        } else {
+            slices.resize(height);
+            for (size_t i = 0; i < height; i++) {
+                slices[i].srcOffset = buf_offset + i * spitch;
+                slices[i].dstOffset = offset + i * width;
+                slices[i].size = width;
+            }
+        }
+
+        ggml_vk_sync_buffers(subctx);
+        subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
+        return;
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "STAGING" << std::endl;
+#endif
+
+    // Staging buffer required
+    vk_buffer staging = ctx->staging;
+    size_t staging_offset = ctx->staging_offset;
+    const size_t copy_size = width*height;
+    if (ctx->staging == nullptr || ctx->staging->size < ctx->staging_offset + copy_size) {
+        if (sync_staging) {
+            ggml_vk_ensure_sync_staging_buffer(ctx, copy_size);
+
+            staging = ctx->sync_staging;
+            staging_offset = 0;
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+
+    VkBufferCopy buf_copy = {
+        staging_offset,
+        offset,
+        copy_size};
+
+    ggml_vk_sync_buffers(subctx);
+    vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
+
+    if (width == spitch) {
+        deferred_memcpy((uint8_t *)staging->ptr + staging_offset, src, width * height, &subctx->in_memcpys);
+    } else {
+        for (size_t i = 0; i < height; i++) {
+            deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys);
+        }
+    }
+}
+
+static void ggml_vk_buffer_write_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, bool sync_staging = false) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_write_async(" << size << ")" << std::endl;
+#endif
+    return ggml_vk_buffer_write_2d_async(ctx, subctx, dst, offset, src, size, size, 1, sync_staging);
+}
+
+static void ggml_vk_buffer_write_2d(ggml_backend_vk_context * ctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_write_2d(" << width << ", " << height << ")" << std::endl;
+#endif
+    // Buffer is already mapped
+    if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
+        GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
+
+        for (size_t i = 0; i < height; i++) {
+            memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width);
+        }
+    } else {
+        vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue);
+        ggml_vk_ctx_begin(ctx, subctx);
+        ggml_vk_buffer_write_2d_async(ctx, subctx, dst, offset, src, spitch, width, height, true);
+        ggml_vk_ctx_end(subctx);
+
+        for (auto& cpy : subctx->in_memcpys) {
+            memcpy(cpy.dst, cpy.src, cpy.n);
+        }
+
+        ggml_vk_submit(subctx, ctx->fence);
+        VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences");
+        ctx->device.lock()->device.resetFences({ ctx->fence });
+    }
+}
+
+static void ggml_vk_buffer_write(ggml_backend_vk_context * ctx, vk_buffer& dst, size_t offset, const void * src, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_write(" << size << ")" << std::endl;
+#endif
+    ggml_vk_buffer_write_2d(ctx, dst, offset, src, 0, size, 1);
+}
+
+static void ggml_vk_buffer_read_2d_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")" << std::endl;
+#endif
+    GGML_ASSERT(width > 0);
+    GGML_ASSERT(height > 0);
+    GGML_ASSERT(src != nullptr);
+    // Make sure ctx owns the buffer
+    GGML_ASSERT(src->ctx == ctx);
+
+    // Check if dst is pinned memory
+    vk_buffer buf = nullptr;
+    size_t buf_offset;
+    ggml_vk_host_get(ctx, dst, buf, buf_offset);
+
+    std::vector<vk::BufferCopy> slices(1);
+    if (width == spitch && width == dpitch) {
+        // Only do single write if stride is equal
+        slices[0].srcOffset = offset;
+        slices[0].dstOffset = buf_offset;
+        slices[0].size = width * height;
+    } else {
+        slices.resize(height);
+        for (size_t i = 0; i < height; i++) {
+            slices[i].srcOffset = offset + i * spitch;
+            slices[i].dstOffset = buf_offset + i * dpitch;
+            slices[i].size = width;
+        }
+    }
+
+    if (buf != nullptr) {
+        // Memory is pinned, use as staging buffer
+        ggml_vk_sync_buffers(subctx);
+        subctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices);
+
+        return;
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "STAGING" << std::endl;
+#endif
+
+    // Fall back to staging buffer
+    vk_buffer staging = ctx->staging;
+    const size_t copy_size = dpitch * height;
+    if (ctx->staging == nullptr || ctx->staging->size < ctx->staging_offset + copy_size) {
+        if (sync_staging) {
+            // Create temporary larger buffer
+            ggml_vk_ensure_sync_staging_buffer(ctx, copy_size);
+
+            staging = ctx->sync_staging;
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+
+    ggml_vk_sync_buffers(subctx);
+    subctx->s->buffer.copyBuffer(src->buffer, staging->buffer, slices);
+
+    deferred_memcpy(dst, staging->ptr, copy_size, &subctx->out_memcpys);
+}
+
+static void ggml_vk_buffer_read_async(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
+    return ggml_vk_buffer_read_2d_async(ctx, subctx, src, offset, dst, size, size, size, 1, sync_staging);
+}
+
+static void ggml_vk_buffer_read(ggml_backend_vk_context * ctx, vk_buffer& src, size_t offset, void * dst, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_read(" << offset << ", " << size << ")" << std::endl;
+#endif
+    if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
+        GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
+
+        memcpy(dst, (uint8_t *) src->ptr + offset, size);
+    } else {
+        vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue);
+        ggml_vk_ctx_begin(ctx, subctx);
+        ggml_vk_buffer_read_async(ctx, subctx, src, offset, dst, size, true);
+        ggml_vk_ctx_end(subctx);
+
+        ggml_vk_submit(subctx, ctx->fence);
+        VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_buffer_read waitForFences");
+        ctx->device.lock()->device.resetFences({ ctx->fence });
+
+        for (auto& cpy : subctx->out_memcpys) {
+            memcpy(cpy.dst, cpy.src, cpy.n);
+        }
+    }
+}
+
+static void ggml_vk_buffer_copy_async(vk_context * ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_copy_async(" << size << ")" << std::endl;
+#endif
+    // Make sure both buffers are on same ctx
+    GGML_ASSERT(src->ctx == dst->ctx);
+
+    VkBufferCopy bc{ src_offset, dst_offset, size };
+
+    vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc);
+}
+
+static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
+    if (src->ctx == dst->ctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")" << std::endl;
+#endif
+        // Copy within the device
+        ggml_backend_vk_context * ctx = src->ctx;
+
+        VkBufferCopy bc{ src_offset, dst_offset, size };
+
+        vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue);
+        ggml_vk_ctx_begin(ctx, subctx);
+        ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size);
+        ggml_vk_ctx_end(subctx);
+        ggml_vk_submit(subctx, ctx->fence);
+        VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences");
+        ctx->device.lock()->device.resetFences({ ctx->fence });
+    } else {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")" << std::endl;
+#endif
+        // Copy device to device
+        ggml_backend_vk_context * src_ctx = src->ctx;
+        ggml_backend_vk_context * dst_ctx = dst->ctx;
+
+        ggml_vk_ensure_sync_staging_buffer(src_ctx, size);
+        ggml_vk_ensure_sync_staging_buffer(dst_ctx, size);
+
+        // Copy to src staging buffer
+        ggml_vk_buffer_copy(src_ctx->sync_staging, 0, src, src_offset, size);
+        // memcpy to dst staging buffer
+        memcpy(dst_ctx->sync_staging->ptr, src_ctx->sync_staging->ptr, size);
+        // Copy to dst buffer
+        ggml_vk_buffer_copy(dst, dst_offset, dst_ctx->sync_staging, 0, size);
+    }
+}
+
+static void ggml_vk_buffer_memset(ggml_backend_vk_context * ctx, vk_buffer& dst, size_t offset, uint32_t c, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")" << std::endl;
+#endif
+    // Make sure ctx owns the buffer
+    GGML_ASSERT(dst->ctx == ctx);
+
+    vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue);
+    ggml_vk_ctx_begin(ctx, subctx);
+    subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
+    ggml_vk_ctx_end(subctx);
+
+    ggml_vk_submit(subctx, ctx->fence);
+    VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "vk_memset waitForFences");
+    ctx->device.lock()->device.resetFences({ ctx->fence });
+}
+
+static void ggml_vk_h2d_tensor_2d(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& dst, size_t offset, const ggml_tensor * src, uint64_t i3, uint64_t i2, uint64_t i1) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_h2d_tensor_2d(dst=" << dst << ", offset=" << offset << ", src=" << src << ", i3=" << i3 << ", i2=" << i2 << ", i1=" << i1 << ")" << std::endl;
+#endif
+    const uint64_t ne0 = src->ne[0];
+    const uint64_t ne1 = src->ne[1];
+    const uint64_t nb0 = src->nb[0];
+    const uint64_t nb1 = src->nb[1];
+    const uint64_t nb2 = src->nb[2];
+    const uint64_t nb3 = src->nb[3];
+    const enum ggml_type type = src->type;
+    const size_t ts = ggml_type_size(type);
+    const size_t bs = ggml_blck_size(type);
+    const size_t row_length = ts*ne0/bs;
+
+    const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
+    if (nb0 == ts && nb1 == row_length) {
+        return ggml_vk_buffer_write_async(ctx, subctx, dst, offset, x, i1*nb1);
+    }
+    if (nb0 == ts && (i1 == ne1 || !ggml_is_permuted(src))) {
+        return ggml_vk_buffer_write_2d_async(ctx, subctx, dst, offset, x, nb1, row_length, i1);
+    }
+
+    GGML_ASSERT(i3 == 0);
+    GGML_ASSERT(i2 == 0);
+    GGML_ASSERT(i1 == (uint64_t) ggml_nrows(src));
+
+    return ggml_vk_buffer_write_nc_async(ctx, subctx, dst, offset, src);
+}
+
+static void ggml_vk_d2h_tensor_2d(ggml_backend_vk_context * ctx, vk_context * subctx, vk_buffer& src, size_t offset, const ggml_tensor * dst) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_d2h_tensor_2d()" << std::endl;
+#endif
+    const uint64_t ne0 = dst->ne[0];
+    const uint64_t ne1 = dst->ne[1];
+    const uint64_t ne2 = dst->ne[2];
+    const uint64_t ne3 = dst->ne[3];
+    const uint64_t nb0 = dst->nb[0];
+    const uint64_t nb1 = dst->nb[1];
+    // const uint64_t nb2 = dst->nb[2];
+    // const uint64_t nb3 = dst->nb[3];
+    const enum ggml_type type = dst->type;
+    const size_t ts = ggml_type_size(type);
+    const size_t bs = ggml_blck_size(type);
+    const size_t row_length = ts*ne0/bs;
+
+    if (ggml_is_contiguous(dst)) {
+        return ggml_vk_buffer_read_async(ctx, subctx, src, offset, dst->data, ne1*nb1*ne2*ne3);
+    }
+    if (nb0 == ts) {
+        return ggml_vk_buffer_read_2d_async(ctx, subctx, src, offset, dst->data, nb1, nb1, row_length, ne1*ne2*ne3);
+    }
+    GGML_ASSERT(false);
+}
+
+static uint32_t ggml_vk_guess_split_k(int m, int n, int k) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")";
+#endif
+    if (k > 128 && (m < 128 || n < 128) && m > 2 && n > 2) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " = 4" << std::endl;
+#endif
+        return 4;
+    }
+
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " = 1" << std::endl;
+#endif
+    return 1;
+}
+
+static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, int m, int n) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")" << std::endl;
+#endif
+    if (m <= 32 || n <= 32) {
+        return ctx->pipeline_matmul_f32_aligned_s.align;
+    }
+    if (ctx->device.lock()->subgroup_size == 64 || m <= 64 || n <= 64) {
+        return ctx->pipeline_matmul_f32_aligned_m.align;
+    }
+    return ctx->pipeline_matmul_f32_aligned_l.align;
+}
+
+static vk_pipeline* ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, bool bit16_x, bool bit16_y, int m, int n, bool aligned) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_guess_matmul_pipeline(" << bit16_x << ", " << bit16_y << ", " << m << ", " << n << ", " << aligned << ")";
+#endif
+    if (bit16_x && bit16_y) {
+        if (ctx->device.lock()->vendor_id == VK_VENDOR_ID_INTEL || m <= 32 || n <= 32) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " S" << std::endl;
+#endif
+            return aligned ? &ctx->pipeline_matmul_f16_aligned_s : &ctx->pipeline_matmul_f16_s;
+        }
+        if (ctx->device.lock()->subgroup_size == 64 || m <= 64 || n <= 64) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " M" << std::endl;
+#endif
+            return aligned ? &ctx->pipeline_matmul_f16_aligned_m : &ctx->pipeline_matmul_f16_m;
+        }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " L" << std::endl;
+#endif
+        return aligned ? &ctx->pipeline_matmul_f16_aligned_l : &ctx->pipeline_matmul_f16_l;
+    }
+    if (bit16_x && !bit16_y) {
+        if (ctx->device.lock()->vendor_id == VK_VENDOR_ID_INTEL || m <= 32 || n <= 32) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " S" << std::endl;
+#endif
+            return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_s : &ctx->pipeline_matmul_f16_f32_s;
+        }
+        if (ctx->device.lock()->subgroup_size == 64 || m <= 64 || n <= 64) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " M" << std::endl;
+#endif
+            return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_m : &ctx->pipeline_matmul_f16_f32_m;
+        }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " L" << std::endl;
+#endif
+        return aligned ? &ctx->pipeline_matmul_f16_f32_aligned_l : &ctx->pipeline_matmul_f16_f32_l;
+    }
+    if (!bit16_x && bit16_y) {
+        GGML_ASSERT(false);
+    }
+
+    if (ctx->device.lock()->vendor_id == VK_VENDOR_ID_INTEL || m <= 32 || n <= 32) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " S" << std::endl;
+#endif
+        return aligned ? &ctx->pipeline_matmul_f32_aligned_s : &ctx->pipeline_matmul_f32_s;
+    }
+    if (ctx->device.lock()->subgroup_size == 64 || m <= 64 || n <= 64) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " M" << std::endl;
+#endif
+        return aligned ? &ctx->pipeline_matmul_f32_aligned_m : &ctx->pipeline_matmul_f32_m;
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << " L" << std::endl;
+#endif
+    return aligned ? &ctx->pipeline_matmul_f32_aligned_l : &ctx->pipeline_matmul_f32_l;
+}
+
+static void ggml_vk_matmul(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), c: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << split_k_buffer.buffer->buffer << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ")" << std::endl;
+#endif
+    ggml_vk_sync_buffers(subctx);
+    if (split_k == 1) {
+        const std::array<uint32_t, 14> pc = { m, n, k, stride_a, stride_b, stride_d, k, ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d };
+        ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, pc.size() * sizeof(uint32_t), pc.data(), { m, n, batch });
+        return;
+    }
+
+    GGML_ASSERT(batch_stride_d == m * n);
+
+    const std::array<uint32_t, 14> pc1 = { m, n, k, stride_a, stride_b, stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d };
+    // Make sure enough workgroups get assigned for split k to work
+    ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, pc1.size() * sizeof(uint32_t), pc1.data(), { (CEIL_DIV(m, pipeline.wg_denoms[0]) * pipeline.wg_denoms[0]) * split_k, n, batch });
+    ggml_vk_sync_buffers(subctx);
+    const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k };
+    ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 });
+}
+
+static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
+    return
+        tensor->nb[0] == ggml_type_size(tensor->type) &&
+        tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
+        tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
+}
+
+static vk_pipeline * ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, ggml_type from, ggml_type to) {
+    if (from == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
+        return &ctx->pipeline_cpy_f32_f32;
+    }
+    if (from == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
+        return &ctx->pipeline_cpy_f32_f16;
+    }
+    if (from == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
+        return &ctx->pipeline_cpy_f16_f16;
+    }
+
+    std::cerr << "Missing CPY op for types: " << ggml_type_name(from) << " " << ggml_type_name(to) << std::endl;
+    GGML_ASSERT(false);
+}
+
+static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline * pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out, ggml_type buffer_type, bool aligned=true) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
+    std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")" << std::endl;
+#endif
+    const int tensor_type_size = ggml_type_size(tensor->type);
+    const int dst_type_size = ggml_type_size(buffer_type);
+
+    const uint32_t ne = tensor->ne[0] * tensor->ne[1] * tensor->ne[2];
+
+    const uint32_t nb2 = aligned ? ggml_vk_align_size(dst_type_size * tensor->ne[0] * tensor->ne[1], ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size : tensor->ne[0] * tensor->ne[1];
+
+    const vk_op_cpy_push_constants pc = {
+        (uint32_t)ne,
+        (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size,
+        (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1],                       1                   , (uint32_t)tensor->ne[0]                   , nb2,
+        0,
+    };
+    ggml_vk_sync_buffers(subctx);
+    ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { in, out }, sizeof(vk_op_cpy_push_constants), &pc, { ne, 1, 1 });
+}
+
+static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
+    std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
+    std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
+#endif
+    GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);  // NOLINT
+    GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);  // NOLINT
+
+    const uint64_t ne00 = src0->ne[0];
+    const uint64_t ne01 = src0->ne[1];
+    const uint64_t ne02 = src0->ne[2];
+    const uint64_t ne03 = src0->ne[3];
+
+    const uint64_t ne10 = src1->ne[0];
+    const uint64_t ne11 = src1->ne[1];
+    const uint64_t ne12 = src1->ne[2];
+    const uint64_t ne13 = src1->ne[3];
+
+    const uint64_t ne20 = dst->ne[0];
+    const uint64_t ne21 = dst->ne[1];
+
+    const uint64_t r2 = ne12 / ne02;
+    const uint64_t r3 = ne13 / ne03;
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
+    ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
+    ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+
+    vk_buffer d_Qx;
+    size_t qx_buf_offset = 0;
+    vk_buffer d_Qy;
+    size_t qy_buf_offset = 0;
+
+    bool src0_uma = false;
+    bool src1_uma = false;
+
+    if (ctx->device.lock()->uma) {
+        ggml_vk_host_get(ctx, src0->data, d_Qx, qx_buf_offset);
+        ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset);
+        src0_uma = d_Qx != nullptr;
+        src1_uma = d_Qy != nullptr;
+    }
+
+    const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
+    const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
+
+    const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
+    const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
+
+    const bool f16_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
+
+    const bool qx_needs_dequant = src0->type != GGML_TYPE_F16 || x_non_contig;
+    const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
+
+    // Not implemented
+    GGML_ASSERT(y_non_contig || !qy_needs_dequant);  // NOLINT
+
+    const int x_ne = ne01 * ne00;
+    const int y_ne = ne11 * ne10;
+    const int d_ne = ne11 * ne01;
+
+    const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, ne01, ne11));
+    const bool aligned = ne10 == kpad;
+
+    const uint32_t split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
+
+    vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(ctx, true, !f16_f32_kernel, ne01, ne11, aligned);
+
+    const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
+    const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
+    const uint64_t x_sz = sizeof(ggml_fp16_t) * x_ne;
+    const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
+    const uint64_t d_sz = sizeof(float) * d_ne;
+
+    vk_buffer d_D = extra->buffer_gpu.lock();
+    const uint64_t d_buf_offset = extra->offset;
+    GGML_ASSERT(d_D != nullptr);
+    GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
+    vk_buffer d_X;
+    uint64_t x_buf_offset = 0;
+    vk_buffer d_Y;
+    uint64_t y_buf_offset = 0;
+    if (load_x) {
+        d_Qx = ctx->prealloc_qx;
+    } else if (!src0_uma) {
+        d_Qx = extra_src0->buffer_gpu.lock();
+        qx_buf_offset = extra_src0->offset;
+        GGML_ASSERT(d_Qx != nullptr);
+    }
+    if (load_y) {
+        d_Qy = ctx->prealloc_qy;
+    } else if (!src1_uma) {
+        d_Qy = extra_src1->buffer_gpu.lock();
+        qy_buf_offset = extra_src1->offset;
+        GGML_ASSERT(d_Qy != nullptr);
+    }
+    if (qx_needs_dequant) {
+        d_X = ctx->prealloc_x;
+        GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03);
+    } else {
+        d_X = d_Qx;
+        x_buf_offset = qx_buf_offset;
+        GGML_ASSERT(qx_sz == x_sz);  // NOLINT
+    }
+    if (qy_needs_dequant) {
+        d_Y = ctx->prealloc_y;
+        GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03);
+    } else {
+        d_Y = d_Qy;
+        y_buf_offset = qy_buf_offset;
+        GGML_ASSERT(qy_sz == y_sz);
+    }
+
+    vk_pipeline * to_fp16_vk_0 = nullptr;
+    vk_pipeline * to_fp16_vk_1 = nullptr;
+
+    if (x_non_contig) {
+        to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, GGML_TYPE_F16);
+    } else {
+        to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
+    }
+    if (y_non_contig) {
+        to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, GGML_TYPE_F16);
+    } else {
+        to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
+    }
+    GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr);  // NOLINT
+    GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr);  // NOLINT
+
+    // Allocate descriptor sets
+    ggml_pipeline_allocate_descriptor_sets(ctx, *pipeline, ne12 * ne13);
+    if (qx_needs_dequant) {
+        ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_0, x_non_contig ? 1 : ne12 * ne13);
+    }
+    if (qy_needs_dequant) {
+        ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13);
+    }
+    if (split_k > 1) {
+        ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_matmul_split_k_reduce, ne12 * ne13);
+    }
+
+    if (x_non_contig) {
+        ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }, dst->type, false);
+    } else if (load_x || qx_needs_dequant) {
+        if (load_x) {
+            // copy data to device
+            ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0));
+            ctx->staging_offset = qx_sz * ne02 * ne03;
+        }
+
+        if (qx_needs_dequant) {
+            const std::vector<int> pc = { (int)ne01, (int)ne10, (int)ne10, (int)ne10 };
+            ggml_vk_sync_buffers(subctx);
+            ggml_vk_dispatch_pipeline(ctx, subctx, *to_fp16_vk_0, { { d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
+        }
+    }
+    if (y_non_contig) {
+        ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, dst->type);
+    } else if (load_y) {
+        ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1));
+    }
+
+    uint32_t stride_batch_x = ne00*ne01;
+    uint32_t stride_batch_y = ne10*ne11;
+
+    if (!ggml_vk_dim01_contiguous(src0) && !load_x && !qx_needs_dequant) {
+        stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
+    }
+
+    if (!ggml_vk_dim01_contiguous(src1) && !load_y && !qy_needs_dequant) {
+        stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
+    }
+
+    // compute
+    ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21);  // NOLINT
+
+    if (dst->backend == GGML_BACKEND_CPU) {
+        // copy dst to host
+        float * d = (float *) ((char *) dst->data);
+        ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
+    }
+}
+
+static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ",  backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
+    std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ",  backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
+    std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ",  backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
+#endif
+    GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);  // NOLINT
+    GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);  // NOLINT
+
+    const uint64_t ne00 = src0->ne[0];
+    const uint64_t ne01 = src0->ne[1];
+    const uint64_t ne02 = src0->ne[2];
+    const uint64_t ne03 = src0->ne[3];
+
+    const uint64_t ne10 = src1->ne[0];
+    const uint64_t ne11 = src1->ne[1];
+    const uint64_t ne12 = src1->ne[2];
+    const uint64_t ne13 = src1->ne[3];
+
+    GGML_ASSERT(ne11 == 1);
+
+    const uint64_t nb2  = dst->nb[2];
+    const uint64_t nb3  = dst->nb[3];
+
+    const uint64_t r2 = ne12 / ne02;
+    const uint64_t r3 = ne13 / ne03;
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
+    ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
+    ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+
+    vk_buffer d_Qx;
+    size_t qx_buf_offset = 0;
+    vk_buffer d_Qy;
+    size_t qy_buf_offset = 0;
+
+    bool src0_uma = false;
+    bool src1_uma = false;
+
+    if (ctx->device.lock()->uma) {
+        ggml_vk_host_get(ctx, src0->data, d_Qx, qx_buf_offset);
+        ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset);
+        src0_uma = d_Qx != nullptr;
+        src1_uma = d_Qy != nullptr;
+    }
+
+    const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
+    const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
+
+    const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
+    const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
+
+    const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
+
+    const bool qx_needs_dequant = x_non_contig;
+    const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
+
+    const uint64_t x_ne = ne01 * ne00;
+    const uint64_t y_ne = ne11 * ne10;
+    const uint64_t d_ne = ne11 * ne01;
+
+    const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
+    const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
+    const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
+    const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
+    const uint64_t d_sz = sizeof(float) * d_ne;
+
+    vk_buffer d_D = extra->buffer_gpu.lock();
+    const uint64_t d_buf_offset = extra->offset;
+    GGML_ASSERT(d_D != nullptr);
+    vk_buffer d_X;
+    uint64_t x_buf_offset = 0;
+    vk_buffer d_Y;
+    uint64_t y_buf_offset = 0;
+    if (load_x) {
+        d_Qx = ctx->prealloc_qx;
+    } else if(!src1_uma) {
+        d_Qx = extra_src0->buffer_gpu.lock();
+        qx_buf_offset = extra_src0->offset;
+        GGML_ASSERT(d_Qx != nullptr);
+    }
+    if (load_y) {
+        d_Qy = ctx->prealloc_qy;
+    } else if(!src1_uma) {
+        d_Qy = extra_src1->buffer_gpu.lock();
+        qy_buf_offset = extra_src1->offset;
+        GGML_ASSERT(d_Qy != nullptr);
+    }
+    if (qx_needs_dequant) {
+        d_X = ctx->prealloc_x;
+    } else {
+        d_X = d_Qx;
+        x_buf_offset = qx_buf_offset;
+        GGML_ASSERT(qx_sz == x_sz);
+    }
+    if (qy_needs_dequant) {
+        d_Y = ctx->prealloc_y;
+    } else {
+        d_Y = d_Qy;
+        y_buf_offset = qy_buf_offset;
+        GGML_ASSERT(qy_sz == y_sz);
+    }
+
+    vk_pipeline * to_fp16_vk_0 = nullptr;
+    vk_pipeline* to_fp16_vk_1 = nullptr;
+    if (x_non_contig) {
+        to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0->type, src0->type);
+    }
+    if (y_non_contig) {
+        to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1->type, src1->type);
+    } else {
+        to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
+    }
+    vk_pipeline* dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type);
+    GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr);  // NOLINT
+    GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr);  // NOLINT
+    GGML_ASSERT(dmmv != nullptr);
+
+    // Allocate descriptor sets
+    if (qx_needs_dequant) {
+        ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_0, 1);
+    }
+    if (qy_needs_dequant) {
+        ggml_pipeline_allocate_descriptor_sets(ctx, *to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13);
+    }
+    ggml_pipeline_allocate_descriptor_sets(ctx, *dmmv, ne12 * ne13);
+
+    if (x_non_contig) {
+        GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment));
+        ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE }, src0->type);
+    } else if (load_x) {
+        // copy data to device
+        ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0));
+    }
+    if (y_non_contig) {
+        GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
+        ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, src1->type);
+    } else if (load_y) {
+        ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1));
+    }
+
+    for (uint64_t i13 = 0; i13 < ne13; i13++) {
+        const uint64_t i03 = i13 / r3;
+        for (uint64_t i12 = 0; i12 < ne12; i12++) {
+            const uint64_t i02 = i12 / r2;
+
+            const uint64_t it_idx0 = (i03 * ne02 + i02);
+            const uint64_t it_idx1 = (i13 * ne12 + i12);
+            const uint64_t x_offset = x_buf_offset + x_sz * it_idx0;
+            const uint64_t qy_offset = qy_buf_offset + qy_sz * it_idx1;
+            const uint64_t y_offset = y_buf_offset + y_sz * it_idx1;
+            const uint64_t d_offset = d_buf_offset + d_sz * it_idx1;
+
+            const uint64_t y_buffer_offset = (y_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+            const uint64_t y_shader_offset = y_offset - y_buffer_offset;
+
+            const uint64_t d_buffer_offset = (d_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+            const uint64_t d_shader_offset = d_offset - d_buffer_offset;
+
+            if (!y_non_contig && qy_needs_dequant) {
+                const std::vector<int> pc = { (int)ne11, (int)ne10, (int)ne10, (int)ne10 };
+                ggml_vk_sync_buffers(subctx);
+                ggml_vk_dispatch_pipeline(ctx, subctx, *to_fp16_vk_1, { { d_Qy, qy_offset, qy_sz }, { d_Y, y_offset, y_sz } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)y_ne, 1, 1});
+            }
+
+            // compute
+            const std::array<int, 3> pc = { (int)ne00, (int)(y_shader_offset / ggml_type_size(src1->type)), (int)(d_shader_offset / ggml_type_size(dst->type))};
+            ggml_vk_sync_buffers(subctx);
+            ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
+
+            if (dst->backend == GGML_BACKEND_CPU) {
+                // copy dst to host
+                float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
+                ggml_vk_sync_buffers(subctx);
+                ggml_vk_buffer_read_async(ctx, subctx, d_D, d_offset, d, sizeof(float) * d_ne);
+            }
+        }
+    }
+}
+
+static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_mul_mat_p021_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ",  backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
+    std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ",  backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
+    std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ",  backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
+#endif
+    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
+    GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
+    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]);  // NOLINT
+    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]);  // NOLINT
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    const uint64_t ne00 = src0->ne[0];
+    const uint64_t ne01 = src0->ne[1];
+    const uint64_t ne02 = src0->ne[2];
+    // const uint64_t ne03 = src0->ne[3];
+
+    const uint64_t ne10 = src1->ne[0];
+    const uint64_t ne11 = src1->ne[1];
+    const uint64_t ne12 = src1->ne[2];
+    // const uint64_t ne13 = src1->ne[3];
+
+    GGML_ASSERT(ne11 == 1);
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
+    ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
+    ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+
+    vk_buffer d_Qy;
+    size_t qy_buf_offset = 0;
+
+    bool src1_uma = false;
+
+    if (ctx->device.lock()->uma) {
+        ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset);
+        src1_uma = d_Qy != nullptr;
+    }
+
+    const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
+
+    const uint64_t x_ne = ne00 * ne01 * ne02;
+    const uint64_t y_ne = ne10 * ne11 * ne12;
+    const uint64_t d_ne = ne01 * ne11 * ne12;
+
+    const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
+    const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
+    const uint64_t d_sz = sizeof(float) * d_ne;
+
+    vk_buffer d_D = extra->buffer_gpu.lock();
+    const uint64_t d_buf_offset = extra->offset;
+    GGML_ASSERT(d_D != nullptr);
+    vk_buffer d_Qx = extra_src0->buffer_gpu.lock();
+    const uint64_t qx_buf_offset = extra_src0->offset;
+    GGML_ASSERT(d_Qx != nullptr);
+    if (load_y) {
+        d_Qy = ctx->prealloc_qy;
+    } else if (!src1_uma) {
+        d_Qy = extra_src1->buffer_gpu.lock();
+        qy_buf_offset = extra_src1->offset;
+        GGML_ASSERT(d_Qx != nullptr);
+    }
+
+    // Allocate descriptor sets
+    ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, 1);
+
+    const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+    const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
+
+    const uint64_t d_buffer_offset = (d_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+    const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
+
+    if (load_y) {
+        ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1));
+    }
+
+    // compute
+    const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
+    ggml_vk_sync_buffers(subctx);
+    ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
+
+    if (dst->backend == GGML_BACKEND_CPU) {
+        // copy dst to host
+        float * d = (float *) dst->data;
+        ggml_vk_sync_buffers(subctx);
+        ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
+    }
+}
+
+static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ",  backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
+    std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ",  backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
+    std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ",  backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
+#endif
+    GGML_ASSERT(!ggml_is_transposed(src0));
+    GGML_ASSERT(!ggml_is_transposed(src1));
+    GGML_ASSERT(!ggml_is_permuted(src0));
+    GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
+    const uint64_t ne00 = src0->ne[0];
+    const uint64_t ne01 = src0->ne[1];
+    const uint64_t ne02 = src0->ne[2];
+    // const uint64_t ne03 = src0->ne[3];
+
+    const uint64_t nb01 = src0->nb[1];
+    const uint64_t nb02 = src0->nb[2];
+
+    // const uint64_t ne10 = src1->ne[0];
+    const uint64_t ne11 = src1->ne[1];
+    const uint64_t ne12 = src1->ne[2];
+    // const uint64_t ne13 = src1->ne[3];
+
+    GGML_ASSERT(ne11 == 1);
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
+    ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
+    ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
+
+    vk_buffer d_Qy = nullptr;
+    size_t qy_buf_offset = 0;
+
+    bool src1_uma = false;
+
+    if (ctx->device.lock()->uma) {
+        ggml_vk_host_get(ctx, src1->data, d_Qy, qy_buf_offset);
+        src1_uma = d_Qy != nullptr;
+    }
+
+    const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
+
+    const uint64_t d_ne = ne01 * ne11 * ne12;
+
+    const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
+    const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
+
+    const uint64_t qx_sz = ggml_nbytes(src0);
+    const uint64_t qy_sz = ggml_nbytes(src1);
+    const uint64_t d_sz = sizeof(float) * d_ne;
+
+    vk_buffer d_D = extra->buffer_gpu.lock();
+    const uint64_t d_buf_offset = extra->offset;
+    GGML_ASSERT(d_D != nullptr);
+    vk_buffer d_Qx = extra_src0->buffer_gpu.lock();
+    const uint64_t qx_buf_offset = extra_src0->offset;
+    GGML_ASSERT(d_Qx != nullptr);
+    if (load_y) {
+        d_Qy = ctx->prealloc_qy;
+    } else {
+        d_Qy = extra_src1->buffer_gpu.lock();
+        qy_buf_offset = extra_src1->offset;
+        GGML_ASSERT(d_Qx != nullptr);
+    }
+
+    // Allocate descriptor sets
+    ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, 1);
+
+    const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+    const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
+
+    const uint64_t d_buffer_offset = (d_buf_offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+    const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
+
+    if (load_y) {
+        ggml_vk_h2d_tensor_2d(ctx, subctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1));
+    }
+
+    // compute
+    const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
+    ggml_vk_sync_buffers(subctx);
+    ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
+
+    if (dst->backend == GGML_BACKEND_CPU) {
+        // copy dst to host
+        float * d = (float *) dst->data;
+        ggml_vk_sync_buffers(subctx);
+        ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
+    }
+}
+
+static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * dst) {
+    const uint64_t ne10 = src1->ne[0];
+
+    const uint64_t ne0 = dst->ne[0];
+    const uint64_t ne1 = dst->ne[1];
+
+    // TODO: find the optimal values for these
+    return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
+           (src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
+           dst->type == GGML_TYPE_F32 &&
+           ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU);
+}
+
+static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")" << std::endl;
+#endif
+    if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
+        ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst);
+    } else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
+        ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst);
+    } else if (src1->ne[1] == 1 && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
+        ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst);
+    } else {
+        ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst);
+    }
+}
+
+static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    // guaranteed to be an integer due to the check in ggml_can_repeat
+    const uint64_t ne0 = dst->ne[0];
+    const uint64_t ne1 = dst->ne[1];
+    const uint64_t ne2 = dst->ne[2];
+    const uint64_t ne3 = dst->ne[3];
+
+    const uint64_t ne00 = src0->ne[0];
+    const uint64_t ne01 = src0->ne[1];
+    const uint64_t ne02 = src0->ne[2];
+    const uint64_t ne03 = src0->ne[3];
+
+    const uint64_t nb0 = dst->nb[0];
+    const uint64_t nb1 = dst->nb[1];
+    const uint64_t nb2 = dst->nb[2];
+    const uint64_t nb3 = dst->nb[3];
+
+    const uint64_t nb00 = src0->nb[0];
+    const uint64_t nb01 = src0->nb[1];
+    const uint64_t nb02 = src0->nb[2];
+    const uint64_t nb03 = src0->nb[3];
+
+    const uint64_t nr0 = ne0/ne00;
+    const uint64_t nr1 = ne1/ne01;
+    const uint64_t nr2 = ne2/ne02;
+    const uint64_t nr3 = ne3/ne03;
+
+    // TODO: support for transposed / permuted tensors
+    GGML_ASSERT(nb0  == sizeof(float));
+    GGML_ASSERT(nb00 == sizeof(float));
+    GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
+    GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
+    ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
+
+    const vk_buffer src_buf = extra_src0->buffer_gpu.lock();
+    const uint64_t src_offset = extra_src0->offset;
+    vk_buffer dst_buf = extra->buffer_gpu.lock();
+    const uint64_t dst_offset = extra->offset;
+
+    std::vector<vk::BufferCopy> copies;
+
+    for                         (uint64_t i3 = 0; i3 < nr3;  i3++) {
+        for                     (uint64_t k3 = 0; k3 < ne03; k3++) {
+            for                 (uint64_t i2 = 0; i2 < nr2;  i2++) {
+                for             (uint64_t k2 = 0; k2 < ne02; k2++) {
+                    for         (uint64_t i1 = 0; i1 < nr1;  i1++) {
+                        for     (uint64_t k1 = 0; k1 < ne01; k1++) {
+                            for (uint64_t i0 = 0; i0 < nr0;  i0++) {
+                                copies.push_back({
+                                    src_offset + (i3*ne03 + k3)*nb3  + (i2*ne02 + k2)*nb2  + (i1*ne01 + k1)*nb1  + (i0*ne00)*nb0,
+                                    dst_offset + (          k3)*nb03 + (          k2)*nb02 + (          k1)*nb01,
+                                    ne00*nb0,
+                                });
+                            }
+                        }
+                    }
+                }
+            }
+        }
+    }
+
+    ggml_vk_sync_buffers(subctx);
+    subctx->s->buffer.copyBuffer(src_buf->buffer, dst_buf->buffer, copies);
+
+    GGML_UNUSED(ctx);
+    GGML_UNUSED(src1);
+}
+
+
+static vk_pipeline* ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
+    switch (op) {
+    case GGML_OP_ADD:
+        if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_add_f32;
+        }
+        return nullptr;
+    case GGML_OP_GET_ROWS:
+        GGML_ASSERT(src1->type == GGML_TYPE_I32);
+        if (dst->type == GGML_TYPE_F16) {
+            return &ctx->pipeline_get_rows[src0->type];
+        }
+        if (dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_get_rows_f32[src0->type];
+        }
+        return nullptr;
+    case GGML_OP_MUL:
+        if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_mul_f32;
+        }
+        return nullptr;
+    case GGML_OP_SCALE:
+        if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_scale_f32;
+        }
+        return nullptr;
+    case GGML_OP_SQR:
+        if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_sqr_f32;
+        }
+        return nullptr;
+    case GGML_OP_CLAMP:
+        if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_clamp_f32;
+        }
+        return nullptr;
+    case GGML_OP_CPY:
+    case GGML_OP_CONT:
+    case GGML_OP_DUP:
+        return ggml_vk_get_cpy_pipeline(ctx, src0->type, dst->type);
+    case GGML_OP_NORM:
+        if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_norm_f32;
+        }
+        return nullptr;
+    case GGML_OP_RMS_NORM:
+        if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_rms_norm_f32;
+        }
+        return nullptr;
+    case GGML_OP_UNARY:
+        switch (ggml_get_unary_op(dst)) {
+            case GGML_UNARY_OP_SILU:
+                if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+                    return &ctx->pipeline_silu_f32;
+                }
+                break;
+            case GGML_UNARY_OP_GELU:
+                if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+                    return &ctx->pipeline_gelu_f32;
+                }
+                break;
+            case GGML_UNARY_OP_RELU:
+                if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+                    return &ctx->pipeline_relu_f32;
+                }
+                break;
+            default:
+                break;
+        }
+        return nullptr;
+    case GGML_OP_DIAG_MASK_INF:
+        if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_diag_mask_inf_f32;
+        }
+        return nullptr;
+    case GGML_OP_SOFT_MAX:
+        if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+            return &ctx->pipeline_soft_max_f32;
+        }
+        return nullptr;
+    case GGML_OP_ROPE:
+        {
+            const int mode = ((const int32_t *) dst->op_params)[2];
+            const bool is_neox = mode & 2;
+            const bool is_glm  = mode & 4;
+
+            if (is_glm) {
+                return nullptr;
+            }
+
+            if (is_neox) {
+                if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+                    return &ctx->pipeline_rope_neox_f32;
+                }
+                if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+                    return &ctx->pipeline_rope_neox_f16;
+                }
+            } else {
+                if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+                    return &ctx->pipeline_rope_f32;
+                }
+                if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+                    return &ctx->pipeline_rope_f16;
+                }
+            }
+            return nullptr;
+        }
+    default:
+        return nullptr;
+    }
+}
+
+static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
+    switch(op) {
+    case GGML_OP_REPEAT:
+        return ggml_vk_op_repeat;
+    default:
+        return nullptr;
+    }
+}
+
+template<typename PC>
+static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
+    if (src1 != nullptr) {
+        std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
+    }
+    std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
+#endif
+    GGML_ASSERT(!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)));  // NOLINT
+    GGML_ASSERT(op == GGML_OP_CPY || ggml_vk_dim01_contiguous(src0));  // NOLINT
+    GGML_ASSERT(src1 == nullptr || ggml_vk_dim01_contiguous(src1));  // NOLINT
+    GGML_ASSERT(dst->extra != nullptr);
+    const uint64_t ne00 = src0->ne[0];
+    const uint64_t ne01 = src0->ne[1];
+    const uint64_t ne02 = src0->ne[2];
+    const uint64_t ne03 = src0->ne[3];
+    const uint64_t ne0 = ne00 * ne01;
+    const bool use_src1 = src1 != nullptr;
+    const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
+    const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
+    const uint64_t ne12 = use_src1 ? src1->ne[2] : 0;
+    const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
+    const uint64_t ne1 = ne10 * ne11;
+    // const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
+    const uint64_t nb2  = dst->nb[2];
+    const uint64_t nb3  = dst->nb[3];
+
+    vk_pipeline * pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op);
+    ggml_vk_func_t op_func;
+
+    if (pipeline == nullptr) {
+        op_func = ggml_vk_op_get_func(op);
+        if (op_func == nullptr) {
+            std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type);
+            if (src1 != nullptr) {
+                std::cerr << " and " << ggml_type_name(src1->type);
+            }
+            std::cerr << " to " << ggml_type_name(dst->type) << std::endl;
+            GGML_ASSERT(false);
+        }
+
+        op_func(ctx, subctx, src0, src1, dst);
+        return;
+    }
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
+    ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
+    ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
+
+    vk_buffer d_X = nullptr;
+    size_t x_buf_offset = 0;
+    vk_buffer d_Y = nullptr;
+    size_t y_buf_offset = 0;
+
+    bool src0_uma = false;
+    bool src1_uma = false;
+
+    if (ctx->device.lock()->uma) {
+        ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
+        src0_uma = d_X != nullptr;
+        if (use_src1) {
+            ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
+            src1_uma = d_Y != nullptr;
+        }
+    }
+
+    const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
+    const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
+
+    uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
+    uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0;
+    uint64_t d_sz = ggml_type_size(dst->type) * ne0;
+
+    vk_buffer d_D = extra->buffer_gpu.lock();
+
+    // Workaround for tiny tensor inputs on ROPE
+    if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > d_D->size) {
+        y_sz = VK_WHOLE_SIZE;
+    }
+
+    GGML_ASSERT(d_D != nullptr);
+    uint64_t d_buf_offset = (extra->offset / ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+    GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY);  // NOLINT
+    if (transfer_src0) {
+        d_X = ctx->prealloc_qx;
+    } else if(!src0_uma) {
+        d_X = extra_src0->buffer_gpu.lock();
+        x_buf_offset = extra_src0->offset;
+        GGML_ASSERT(d_X != nullptr);
+    }
+    if (transfer_src1) {
+        d_Y = ctx->prealloc_qy;
+    } else if (use_src1 && !src1_uma) {
+        d_Y = extra_src1->buffer_gpu.lock();
+        y_buf_offset = extra_src1->offset;
+        GGML_ASSERT(d_Y != nullptr);
+    }
+
+    if (op == GGML_OP_CPY) {
+        GGML_ASSERT(!transfer_src0);
+        GGML_ASSERT(!transfer_src1);
+        x_sz = ggml_nbytes(src0);
+        d_sz = ggml_nbytes(dst);
+
+        if (extra_src0->offset + x_sz >= d_X->size) {
+            x_sz = VK_WHOLE_SIZE;
+        }
+        if (extra->offset + d_sz >= d_D->size) {
+            d_sz = VK_WHOLE_SIZE;
+        }
+    }
+
+    std::array<uint32_t, 3> elements;
+
+    // copy src0 to device
+    if (transfer_src0) {
+        ggml_vk_h2d_tensor_2d(ctx, subctx, d_X, 0, src0, 0, 0, ggml_nrows(src0));
+        ctx->staging_offset = x_sz * ne02 * ne03;
+    }
+    if (transfer_src1) {
+        ggml_vk_h2d_tensor_2d(ctx, subctx, d_Y, 0, src1, 0, 0, ggml_nrows(src1));
+    }
+
+    // Single call if dimension 2 is contiguous
+    if (op == GGML_OP_CPY || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))) {
+        ggml_pipeline_allocate_descriptor_sets(ctx, *pipeline, 1);
+
+        switch (dst->op) {
+        case GGML_OP_NORM:
+        case GGML_OP_RMS_NORM:
+        case GGML_OP_SOFT_MAX:
+            elements = { (uint32_t)ggml_nrows(src0), 1, 1 };
+            break;
+        case GGML_OP_DIAG_MASK_INF:
+        case GGML_OP_ROPE:
+            elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 };
+            break;
+        default:
+            elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
+            break;
+        }
+
+        if (op != GGML_OP_CPY) {
+            if (x_sz != VK_WHOLE_SIZE) {
+                x_sz *= ne02 * ne03;
+            }
+            if (y_sz != VK_WHOLE_SIZE) {
+                y_sz *= ne12 * ne13;
+            }
+            if (d_sz != VK_WHOLE_SIZE) {
+                d_sz *= ne02 * ne03;
+            }
+        }
+
+        if (!use_src1 && op == GGML_OP_SOFT_MAX) {
+            // Empty src1 is possible on soft_max, but the shader needs a buffer
+            ggml_vk_sync_buffers(subctx);
+            ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { ctx->prealloc_y, 0, ctx->prealloc_y->size }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
+        } else if (use_src1) {
+            ggml_vk_sync_buffers(subctx);
+            ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
+        } else {
+            ggml_vk_sync_buffers(subctx);
+            ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
+        }
+        if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) {
+            ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst);
+        } else if(dst->backend == GGML_BACKEND_CPU) {
+            // copy dst to host
+            float * d = (float *) dst->data;
+            ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz);
+        }
+    } else {
+        ggml_pipeline_allocate_descriptor_sets(ctx, *pipeline, ne02 * ne03);
+
+        switch (dst->op) {
+        case GGML_OP_NORM:
+        case GGML_OP_RMS_NORM:
+        case GGML_OP_SOFT_MAX:
+            elements = { (uint32_t)ne01, 1, 1 };
+            break;
+        case GGML_OP_DIAG_MASK_INF:
+        case GGML_OP_ROPE:
+            elements = { (uint32_t)ne01, (uint32_t)ne00, 1 };
+            break;
+        default:
+            elements = { (uint32_t)ne0, 1, 1 };
+            break;
+        }
+
+        for (uint64_t i03 = 0; i03 < ne03; i03++) {
+            for (uint64_t i02 = 0; i02 < ne02; i02++) {
+                const uint32_t it_idx0 = (i03 * ne02 + i02);
+                const uint32_t it_idx1 = use_src1 ? ((i03 % ne13) * ne12 + (i02 % ne12)) : 0;
+                const uint32_t x_offset = x_sz * it_idx0;
+                const uint32_t y_offset = y_sz * it_idx1;
+                const uint32_t d_offset = d_sz * it_idx0;
+
+                if (!use_src1 && op == GGML_OP_SOFT_MAX) {
+                    // Empty src1 is possible on soft_max, but the shader needs a buffer
+                    ggml_vk_sync_buffers(subctx);
+                    ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { ctx->prealloc_y, 0, ctx->prealloc_y->size }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
+                } else if (use_src1) {
+                    ggml_vk_sync_buffers(subctx);
+                    ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_Y, y_buf_offset + y_offset, y_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
+                } else {
+                    ggml_vk_sync_buffers(subctx);
+                    ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
+                }
+                if (dst->backend == GGML_BACKEND_CPU) {
+                    // copy dst to host
+                    ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
+                }
+            }
+        }
+    }
+}
+
+static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
+}
+
+static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
+}
+
+static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
+}
+
+static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
+}
+
+static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    float * op_params = (float *)dst->op_params;
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f });
+}
+
+static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
+}
+
+static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    float * op_params = (float *)dst->op_params;
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, { (uint32_t)ggml_nelements(src0), 0, op_params[0], op_params[1] });
+}
+
+static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
+    const int src0_type_size = ggml_type_size(src0->type);
+    const int dst_type_size = ggml_type_size(dst->type);
+    const uint32_t d_offset = (extra->offset % ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
+    ggml_vk_op_f32<vk_op_cpy_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, {
+        (uint32_t)ggml_nelements(src0),
+        (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size,
+        (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->nb[0] /  dst_type_size, (uint32_t) dst->nb[1] /  dst_type_size, (uint32_t) dst->nb[2] /  dst_type_size,
+        d_offset,
+    });
+}
+
+static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f });
+}
+
+static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    float * op_params = (float *)dst->op_params;
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
+}
+
+static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
+}
+
+static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    int32_t * op_params = (int32_t *)dst->op_params;
+    ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
+}
+
+static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    float * op_params = (float *)dst->op_params;
+    ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, { (uint32_t)src0->ne[0], (uint32_t)(src1 != nullptr ? ggml_nrows(src1) : 0), op_params[0], 0.0f });
+}
+
+static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+    const int n_dims        = ((int32_t *) dst->op_params)[1];
+    const int mode          = ((int32_t *) dst->op_params)[2];
+    // const int n_ctx         = ((int32_t *) dst->op_params)[3];
+    const int n_orig_ctx    = ((int32_t *) dst->op_params)[4];
+    const float freq_base   = ((float *)   dst->op_params)[5];
+    const float freq_scale  = ((float *)   dst->op_params)[6];
+    const float ext_factor  = ((float *)   dst->op_params)[7];
+    const float attn_factor = ((float *)   dst->op_params)[8];
+    const float beta_fast   = ((float *)   dst->op_params)[9];
+    const float beta_slow   = ((float *)   dst->op_params)[10];
+
+    const bool is_neox = mode & 2;
+    const bool is_glm  = mode & 4;
+
+    GGML_ASSERT(!is_glm);
+
+    float corr_dims[2];
+    ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
+
+    if (is_neox) {
+        const float theta_scale = powf(freq_base, -2.0f/n_dims);
+        const float inv_ndims = -1.0f / n_dims;
+        ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f, theta_scale, inv_ndims });
+    } else {
+        ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f });
+    }
+}
+
+static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
+    // If backend is CPU, data from src0 has to be copied off the device
+    if (dst->backend == GGML_BACKEND_CPU) {
+        ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
+        vk_buffer d_D = extra_src0->buffer_gpu.lock();
+        ggml_vk_sync_buffers(subctx);
+        ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, dst->data, d_D->size);
+    }
+}
+
+#ifdef GGML_VULKAN_RUN_TESTS
+static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) {
+    if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) {
+        return;
+    }
+    i0 = std::max(i0, 5);
+    i1 = std::max(i1, 5);
+    i2 = std::max(i2, 0);
+    fprintf(stderr, "         ");
+    for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
+        fprintf(stderr, "%7d ", idx1);
+    }
+    fprintf(stderr, "\n");
+    for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
+        fprintf(stderr, "%7d: ", idx0);
+        for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
+            if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) {
+                float val;
+                if (type == GGML_TYPE_F32) {
+                    val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0);
+                } else if (type == GGML_TYPE_F16) {
+                    val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0));
+                }
+                fprintf(stderr, "% 7.2f ", val);
+            } else {
+                fprintf(stderr, "        ");
+            }
+        }
+        fprintf(stderr, "\n");
+    }
+}
+
+template <typename X_TYPE, typename Y_TYPE>
+static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")" << std::endl;
+#endif
+    const size_t x_ne = m * k * batch;
+    const size_t y_ne = k * n * batch;
+    const size_t d_ne = m * n * batch;
+
+    vk_pipeline * p;
+    std::string shname;
+    if (shader_size == 0) {
+        if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f32_aligned_s;
+            shname = "F32_ALIGNED_S";
+        } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f16_f32_aligned_s;
+            shname = "F16_F32_ALIGNED_S";
+        } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f16_aligned_s;
+            shname = "F16_ALIGNED_S";
+        } else {
+            GGML_ASSERT(false);
+        }
+    } else if (shader_size == 1) {
+        if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f32_aligned_m;
+            shname = "F32_ALIGNED_M";
+        } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f16_f32_aligned_m;
+            shname = "F16_F32_ALIGNED_M";
+        } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f16_aligned_m;
+            shname = "F16_ALIGNED_M";
+        } else {
+            GGML_ASSERT(false);
+        }
+    } else if (shader_size == 2) {
+        if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f32_aligned_l;
+            shname = "F32_ALIGNED_L";
+        } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f16_f32_aligned_l;
+            shname = "F16_F32_ALIGNED_L";
+        } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
+            p = &ctx->pipeline_matmul_f16_aligned_l;
+            shname = "F16_ALIGNED_L";
+        } else {
+            GGML_ASSERT(false);
+        }
+    } else {
+        GGML_ASSERT(0);
+    }
+
+    const size_t kpad = ggml_vk_align_size(k, p->align);
+
+    if (k != kpad) {
+        if (shader_size == 0) {
+            if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f32_s;
+                shname = "F32_S";
+            } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f16_f32_s;
+                shname = "F16_F32_S";
+            } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f16_s;
+                shname = "F16_S";
+            }
+        } else if (shader_size == 1) {
+            if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f32_m;
+                shname = "F32_M";
+            } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f16_f32_m;
+                shname = "F16_F32_M";
+            } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f16_m;
+                shname = "F16_M";
+            }
+        } else if (shader_size == 2) {
+            if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f32_l;
+                shname = "F32_L";
+            } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f16_f32_l;
+                shname = "F16_F32_L";
+            } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
+                p = &ctx->pipeline_matmul_f16_l;
+                shname = "F16_L";
+            }
+        }
+    }
+
+    ggml_pipeline_allocate_descriptor_sets(ctx, *p, num_it);
+    if (split_k > 1) {
+        ggml_pipeline_allocate_descriptor_sets(ctx, ctx->pipeline_matmul_split_k_reduce, num_it);
+
+        if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
+            // Resize buffer
+            if (ctx->prealloc_split_k != nullptr) {
+                ggml_vk_destroy_buffer(ctx->prealloc_split_k);
+            }
+            ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
+        }
+    }
+
+    vk_buffer d_X = ggml_vk_create_buffer_check(ctx, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
+    vk_buffer d_Y = ggml_vk_create_buffer_check(ctx, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
+    vk_buffer d_D = ggml_vk_create_buffer_check(ctx, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
+
+    X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
+    Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
+    float* d = (float *) malloc(sizeof(float) * d_ne);
+
+    for (size_t i = 0; i < x_ne; i++) {
+        if (std::is_same<float, X_TYPE>()) {
+            x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
+        } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
+            x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+    for (size_t i = 0; i < y_ne; i++) {
+        if (std::is_same<float, Y_TYPE>()) {
+            y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
+        } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
+            y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+
+    ggml_vk_buffer_write(ctx, d_X, 0, x, sizeof(X_TYPE) * k * m * batch);
+    ggml_vk_buffer_write(ctx, d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch);
+
+    vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue);
+    for (size_t i = 0; i < num_it; i++) {
+        ggml_vk_ctx_begin(ctx, subctx);
+        ggml_vk_matmul(ctx, subctx, *p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(ctx->prealloc_split_k), m, n, k, k, k, m, split_k, batch, batch, batch, 1, 1, k*m, k*n, m*n);
+        ggml_vk_ctx_end(subctx);
+    }
+
+    auto begin = std::chrono::high_resolution_clock::now();
+    ggml_vk_submit(subctx, ctx->fence);
+    VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences");
+    ctx->device.lock()->device.resetFences({ ctx->fence });
+
+    auto end = std::chrono::high_resolution_clock::now();
+    double time = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
+
+    // copy dst to host
+    ggml_vk_buffer_read(ctx, d_D, 0, d, sizeof(float) * d_ne);
+
+    float * d_chk = (float *) malloc(sizeof(float) * d_ne);
+
+    ggml_init_params iparams = {
+        /*.mem_size   =*/ 1024*1024*1024,
+        /*.mem_buffer =*/ NULL,
+        /*.no_alloc   =*/ true,
+    };
+
+    ggml_context * ggml_ctx = ggml_init(iparams);
+
+    ggml_type src0_type;
+    ggml_type src1_type;
+
+    if (std::is_same<float, X_TYPE>()) {
+        src0_type = GGML_TYPE_F32;
+    } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
+        src0_type = GGML_TYPE_F16;
+    } else {
+        GGML_ASSERT(false);
+    }
+    if (std::is_same<float, Y_TYPE>()) {
+        src1_type = GGML_TYPE_F32;
+    } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
+        src1_type = GGML_TYPE_F16;
+    } else {
+        GGML_ASSERT(false);
+    }
+
+    ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch);
+    ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch);
+    ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
+
+    src0_ggml->data = x;
+    src1_ggml->data = y;
+    tensor_ggml->data = d_chk;
+
+    ctx->disable = true;
+
+    ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
+    ggml_build_forward_expand(cgraph, tensor_ggml);
+
+    ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
+
+    ctx->disable = false;
+
+    ggml_free(ggml_ctx);
+
+    double avg_err = 0.0;
+    int first_err_n = -1;
+    int first_err_m = -1;
+    int first_err_b = -1;
+
+    for (size_t i = 0; i < m*n*batch; i++) {
+        double err = std::fabs(d[i] - d_chk[i]);
+        avg_err += err;
+
+        if (err > 0.05f && first_err_n == -1) {
+            first_err_b = i / (m * n);
+            first_err_n = (i % (m * n)) / m;
+            first_err_m = (i % (m * n)) % m;
+        }
+    }
+
+    avg_err /= m * n;
+
+    std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms avg_err=" << avg_err << std::endl;
+
+    if (avg_err > 0.1) {
+        std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
+        std::cerr << "Actual result: " << std::endl << std::endl;
+        ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
+        std::cerr << "Expected result: " << std::endl << std::endl;
+        ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
+
+        if (split_k > 1) {
+            float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
+            ggml_vk_buffer_read(ctx, ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
+
+            std::cerr << "d_buf0: " << std::endl << std::endl;
+            ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
+
+            std::cerr << "d_buf1: " << std::endl << std::endl;
+            ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
+
+            std::cerr << "d_buf2: " << std::endl << std::endl;
+            ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
+
+            std::cerr << "d_buf3: " << std::endl << std::endl;
+            ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
+
+            free(split_k_buf);
+        }
+    }
+
+    free(d_chk);
+
+    ggml_vk_queue_cleanup(ctx, ctx->device.lock()->transfer_queue);
+    ggml_vk_queue_cleanup(ctx, ctx->device.lock()->compute_queue);
+
+    ggml_vk_destroy_buffer(d_X);
+    ggml_vk_destroy_buffer(d_Y);
+    ggml_vk_destroy_buffer(d_D);
+
+    ggml_pipeline_cleanup(*p);
+    ggml_pipeline_cleanup(ctx->pipeline_matmul_split_k_reduce);
+
+    free(x);
+    free(y);
+    free(d);
+}
+
+static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
+    if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
+        return;
+    }
+    i0 = std::max(i0, 5);
+    i1 = std::max(i1, 5);
+    i2 = std::max(i2, 0);
+    i3 = std::max(i3, 0);
+    fprintf(stderr, "         ");
+    for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
+        fprintf(stderr, "%7d ", idx1);
+    }
+    fprintf(stderr, "\n");
+    for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
+        fprintf(stderr, "%7d: ", idx0);
+        for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
+            if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
+                float val;
+                if (tensor->type == GGML_TYPE_F32) {
+                    val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
+                } else if (tensor->type == GGML_TYPE_F16) {
+                    val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
+                }
+                fprintf(stderr, "% 7.2f ", val);
+            } else {
+                fprintf(stderr, "        ");
+            }
+        }
+        fprintf(stderr, "\n");
+    }
+}
+
+static void ggml_vk_test_h2d_nc(ggml_backend_vk_context * ctx, size_t ne0, size_t ne1, size_t ne2, size_t ne3) {
+    const size_t ne = ne0 * ne1 * ne2 * ne3;
+
+    ggml_init_params iparams = {
+        /*.mem_size   =*/ 1024*1024*1024,
+        /*.mem_buffer =*/ NULL,
+        /*.no_alloc   =*/ true,
+    };
+
+    ggml_context * ggml_ctx = ggml_init(iparams);
+
+    ggml_tensor * tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne2, ne1, ne3);  // NOLINT
+    ggml_tensor * result_tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne1, ne2, ne3);
+
+    float * data = (float *) ggml_vk_host_malloc(ctx, ggml_nbytes(tensor));
+    tensor->data = data;
+
+    float * result_data = (float *) malloc(ggml_nbytes(tensor));
+    result_tensor->data = result_data;
+
+    // Permute
+    {
+        size_t tmp = tensor->nb[2];
+        tensor->nb[2] = tensor->nb[1];
+        tensor->nb[1] = tmp;
+
+        tensor->ne[2] = ne2;
+        tensor->ne[1] = ne1;
+    }
+
+    for (size_t i = 0; i < ne; i++) {
+        data[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
+    }
+
+    vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue);
+    ggml_vk_ctx_begin(ctx, subctx);
+
+    vk_buffer buffer = ggml_vk_create_buffer_check(ctx, ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal);
+
+    ggml_vk_h2d_tensor_2d(ctx, subctx, buffer, 0, tensor, 0, 0, ggml_nrows(tensor));
+
+    ggml_vk_ctx_end(subctx);
+    ggml_vk_submit(subctx, ctx->fence);
+    VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_h2d_nc waitForFences");
+    ctx->device.lock()->device.resetFences({ ctx->fence });
+
+    ggml_vk_buffer_read(ctx, buffer, 0, result_data, ggml_nbytes(tensor));
+
+    double avg_err = 0.0;
+    int first_err_i0 = -1;
+    int first_err_i1 = -1;
+    int first_err_i2 = -1;
+    int first_err_i3 = -1;
+
+    for (size_t i3 = 0; i3 < ne3; i3++) {
+        for (size_t i2 = 0; i2 < ne2; i2++) {
+            for (size_t i1 = 0; i1 < ne1; i1++) {
+                for (size_t i0 = 0; i0 < ne0; i0++) {
+                    float correct = *(float *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
+                    float result = *(float *) ((char *) result_data + i3*ne2*ne1*ne0*sizeof(float) + i2*ne1*ne0*sizeof(float) + i1*ne0*sizeof(float) + i0*sizeof(float));
+                    double err = std::fabs(result - correct);
+
+                    avg_err += err;
+
+                    if (err > 0.05f && first_err_i0 == -1) {
+                        first_err_i0 = i0;
+                        first_err_i1 = i1;
+                        first_err_i2 = i2;
+                        first_err_i3 = i3;
+                    }
+                }
+            }
+        }
+    }
+
+    avg_err /= ne;
+
+    std::cerr << "TEST nc copy ne0=" << ne0 << " ne1=" << ne1 << " ne2=" << ne2 << " ne3=" << ne3 << " avg_err=" << avg_err << std::endl;
+
+    if (avg_err > 0.1) {
+        std::cerr << "i0 = " << first_err_i0 << " i1 = " << first_err_i1 << " i2 = " << first_err_i2 << " i3 = " << first_err_i3 << std::endl;
+        std::cerr << "Actual result: " << std::endl << std::endl;
+        ggml_vk_print_tensor_area(result_tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3);
+        std::cerr << "Expected result: " << std::endl << std::endl;
+        ggml_vk_print_tensor_area(tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3);
+    }
+
+    ggml_free(ggml_ctx);
+
+    ggml_vk_destroy_buffer(buffer);
+
+    ggml_vk_host_free(ctx, data);
+    free(result_data);
+}
+
+static void ggml_vk_test_transfer(ggml_backend_vk_context * ctx, size_t ne, bool pinned) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_test_transfer(" << ne << ")" << std::endl;
+#endif
+    // Check transfers are correct
+    vk_buffer buffer = ggml_vk_create_buffer_check(ctx, sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
+
+    float * x;
+    float * y;
+    if (pinned) {
+        x = (float *) ggml_vk_host_malloc(ctx, sizeof(float) * ne);
+        y = (float *) ggml_vk_host_malloc(ctx, sizeof(float) * ne);
+    } else {
+        x = (float *) malloc(sizeof(float) * ne);
+        y = (float *) malloc(sizeof(float) * ne);
+    }
+
+    for (size_t i = 0; i < ne; i++) {
+        x[i] = rand() / (float)RAND_MAX;
+    }
+
+    vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue);
+    ggml_vk_ctx_begin(ctx, subctx);
+
+    auto begin = std::chrono::high_resolution_clock::now();
+
+    ggml_vk_buffer_write_async(ctx, subctx, buffer, 0, x, sizeof(float) * ne);
+
+    for (auto& cpy : subctx->in_memcpys) {
+        memcpy(cpy.dst, cpy.src, cpy.n);
+    }
+    subctx->in_memcpys.clear();
+
+    ggml_vk_ctx_end(subctx);
+    ggml_vk_submit(subctx, ctx->fence);
+    VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_transfer waitForFences");
+    ctx->device.lock()->device.resetFences({ ctx->fence });
+
+    auto end = std::chrono::high_resolution_clock::now();
+
+    double ms_to_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
+
+    ggml_vk_ctx_begin(ctx, subctx);
+
+    begin = std::chrono::high_resolution_clock::now();
+
+    ggml_vk_buffer_read_async(ctx, subctx, buffer, 0, y, sizeof(float) * ne);
+
+    ggml_vk_ctx_end(subctx);
+    ggml_vk_submit(subctx, ctx->fence);
+    VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_transfer waitForFences");
+    ctx->device.lock()->device.resetFences({ ctx->fence });
+
+    for (auto& cpy : subctx->out_memcpys) {
+        memcpy(cpy.dst, cpy.src, cpy.n);
+    }
+    subctx->out_memcpys.clear();
+
+    end = std::chrono::high_resolution_clock::now();
+
+    double ms_from_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
+
+    double avg_err = 0.0;
+    for (size_t i = 0; i < ne; i++) {
+        avg_err += std::fabs(x[i] - y[i]);
+    }
+
+    double kb = ne * sizeof(float) / 1024.0;
+
+    std::cerr << "TEST TRANSFER " << kb << " KB to_gpu " << ms_to_gpu << "ms (" << kb / ms_to_gpu * 1000.0 / 1024.0 << " MB/s) from_gpu " << ms_from_gpu << "ms (" << kb / ms_from_gpu * 1000.0 / 1024.0 << " MB/s) avg_err=" << avg_err / ne << std::endl;
+
+    ggml_vk_destroy_buffer(buffer);
+
+    if (pinned) {
+        ggml_vk_host_free(ctx, x);
+        ggml_vk_host_free(ctx, y);
+    } else {
+        free(x);
+        free(y);
+    }
+}
+
+static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_test_dequant(" << ne << ")" << std::endl;
+#endif
+    const size_t x_sz = sizeof(float) * ne;
+    const size_t x_sz_f16 = sizeof(ggml_fp16_t) * ne;
+    const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
+    float * x = (float *) malloc(x_sz);
+    void * qx = malloc(qx_sz);
+    vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
+    vk_buffer x_buf = ggml_vk_create_buffer_check(ctx, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal);
+    ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16);
+
+    for (size_t i = 0; i < ne; i++) {
+        x[i] = rand() / (float)RAND_MAX;
+    }
+
+    std::vector<int64_t> hist_cur(1 << 4, 0);
+
+    vk_pipeline& p = ctx->pipeline_dequant[quant];
+
+    switch(quant) {
+    case GGML_TYPE_Q4_0:
+        ggml_quantize_q4_0(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q4_1:
+        ggml_quantize_q4_1(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q5_0:
+        ggml_quantize_q5_0(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q5_1:
+        ggml_quantize_q4_1(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q8_0:
+        ggml_quantize_q8_0(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q2_K:
+        ggml_quantize_q2_K(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q3_K:
+        ggml_quantize_q3_K(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q4_K:
+        ggml_quantize_q4_K(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q5_K:
+        ggml_quantize_q5_K(x, qx, ne, ne, hist_cur.data());
+        break;
+    case GGML_TYPE_Q6_K:
+        ggml_quantize_q6_K(x, qx, ne, ne, hist_cur.data());
+        break;
+    default:
+        GGML_ASSERT(false);
+    }
+
+    ggml_pipeline_allocate_descriptor_sets(ctx, p, 1);
+
+    ggml_vk_buffer_write(ctx, qx_buf, 0, qx, qx_sz);
+
+    vk_context * subctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue);
+    ggml_vk_ctx_begin(ctx, subctx);
+    const std::vector<int> pc = { 1, (int)ne, (int)ne, (int)ne };
+    ggml_vk_dispatch_pipeline(ctx, subctx, p, { { qx_buf, 0, qx_sz }, { x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1});
+    ggml_vk_ctx_end(subctx);
+
+    auto begin = std::chrono::high_resolution_clock::now();
+
+    ggml_vk_submit(subctx, ctx->fence);
+    VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences");
+    ctx->device.lock()->device.resetFences({ ctx->fence });
+
+    auto end = std::chrono::high_resolution_clock::now();
+
+    double ms_dequant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
+    ggml_vk_buffer_read(ctx, x_buf, 0, x_chk, x_sz_f16);
+
+    double avg_err = 0.0;
+    for (size_t i = 0; i < ne; i++) {
+        avg_err += std::fabs(x[i] - ggml_fp16_to_fp32(x_chk[i]));
+    }
+
+    std::cerr << "TEST DEQUANT " << ggml_type_name(quant) << " time=" << ms_dequant << "ms avg_err=" << avg_err / ne << std::endl;
+
+    ggml_vk_destroy_buffer(x_buf);
+    ggml_vk_destroy_buffer(qx_buf);
+
+    free(x);
+    free(qx);
+    free(x_chk);
+}
+#endif
+
+static ggml_tensor_extra_gpu * ggml_vk_tensor_create_extra(ggml_tensor * tensor) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_create_extra(" << tensor << " (" << tensor->name << ", " << ggml_op_name(tensor->op) << "))" << std::endl;
+#endif
+    ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
+    extra->reset();
+    tensor->extra = extra;
+    return extra;
+}
+
+static ggml_tensor * ggml_vk_find_last_use(const ggml_tensor * node, ggml_cgraph * graph) {
+    GGML_ASSERT(node != nullptr);
+
+    for (int i = graph->n_nodes - 1; i >= 0; i--) {
+        for (int j = 0; j < GGML_MAX_SRC; j++) {
+            if (graph->nodes[i]->src[j] == node) {
+                return graph->nodes[i];
+            }
+        }
+    }
+
+    return nullptr;
+}
+
+static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggml_tensor * node){
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
+#endif
+    const bool any_on_device = node->backend == GGML_BACKEND_GPU
+        || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
+        || (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU));
+
+    if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
+        return;
+    }
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
+    if (extra == nullptr) {
+        // Workaround for CPU backend BLAS matmul calls
+        extra = ggml_vk_tensor_create_extra(node);
+    }
+
+    ggml_tensor * src0 = node->src[0];
+    ggml_tensor * src1 = node->src[1];
+
+    const bool use_src0 = src0 != nullptr;
+    const int64_t ne00 = use_src0 ? src0->ne[0] : 0;
+    const int64_t ne01 = use_src0 ? src0->ne[1] : 0;
+    const int64_t ne02 = use_src0 ? src0->ne[2] : 0;
+    const int64_t ne03 = use_src0 ? src0->ne[3] : 0;
+    const bool use_src1 = src1 != nullptr && node->op != GGML_OP_CPY && node->op != GGML_OP_CONT && node->op != GGML_OP_DUP;
+    const int64_t ne10 = use_src1 ? src1->ne[0] : 0;
+    const int64_t ne11 = use_src1 ? src1->ne[1] : 0;
+    const int64_t ne12 = use_src1 ? src1->ne[2] : 0;
+    const int64_t ne13 = use_src1 ? src1->ne[3] : 0;
+    const int64_t ne20 = node->ne[0];
+    const int64_t ne21 = node->ne[1];
+    const int64_t ne22 = node->ne[2];
+    const int64_t ne23 = node->ne[3];
+
+    const bool f16_f32_kernel = use_src1 && src1->type == GGML_TYPE_F32;
+
+    int split_k;
+    if (node->op == GGML_OP_MUL_MAT) {
+        split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
+    } else {
+        split_k = 1;
+    }
+    const uint32_t x_ne = ne00 * ne01;
+    const uint32_t y_ne = ne10 * ne11;
+    const uint32_t d_ne = ne20 * ne21;
+
+    const uint64_t qx_sz = use_src0 ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0;
+    const uint64_t qy_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type), ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0;
+    const uint64_t x_sz = use_src0 ? ggml_vk_align_size(sizeof(ggml_fp16_t) * x_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0;
+    const uint64_t y_sz = use_src1 ? ggml_vk_align_size(f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0;
+    uint64_t d_sz = ggml_vk_align_size(ggml_type_size(node->type) * d_ne, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) * ne22 * ne23;
+    const uint64_t split_k_size = split_k > 1 ? d_sz * 4 : 0;
+
+    if (extra->buffer_gpu.expired()) {
+        // Workaround for CPU backend BLAS matmul calls
+        extra->buffer_gpu = ggml_vk_create_buffer_temp(ctx, d_sz);
+    }
+
+    switch (node->op) {
+    case GGML_OP_REPEAT:
+    case GGML_OP_GET_ROWS:
+    case GGML_OP_RESHAPE:
+    case GGML_OP_VIEW:
+    case GGML_OP_PERMUTE:
+    case GGML_OP_TRANSPOSE:
+    case GGML_OP_ADD:
+    case GGML_OP_SCALE:
+    case GGML_OP_SQR:
+    case GGML_OP_CLAMP:
+    case GGML_OP_CPY:
+    case GGML_OP_CONT:
+    case GGML_OP_DUP:
+    case GGML_OP_MUL:
+    case GGML_OP_NORM:
+    case GGML_OP_RMS_NORM:
+    case GGML_OP_DIAG_MASK_INF:
+    case GGML_OP_SOFT_MAX:
+    case GGML_OP_ROPE:
+        break;
+    case GGML_OP_UNARY:
+        switch (ggml_get_unary_op(node)) {
+        case GGML_UNARY_OP_SILU:
+        case GGML_UNARY_OP_GELU:
+        case GGML_UNARY_OP_RELU:
+            break;
+        default:
+            return;
+        }
+        break;
+    case GGML_OP_MUL_MAT:
+        if (ctx->prealloc_size_qx < qx_sz) {
+            ctx->prealloc_size_qx = qx_sz;
+        }
+        if (ctx->prealloc_size_qy < qy_sz) {
+            ctx->prealloc_size_qy = qy_sz;
+        }
+        if (ctx->prealloc_size_x < x_sz) {
+            ctx->prealloc_size_x = x_sz;
+        }
+        if (ctx->prealloc_size_y < y_sz) {
+            ctx->prealloc_size_y = y_sz;
+        }
+        if (ctx->prealloc_size_split_k < split_k_size) {
+            ctx->prealloc_size_split_k = split_k_size;
+        }
+        if (ctx->staging_size < x_sz + y_sz) {
+            ctx->staging_size = x_sz + y_sz;
+        }
+        break;
+    default:
+        return;
+    }
+}
+
+static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
+    if (ctx->disable) {
+        return;
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_preallocate_buffers(qx_size: " << ctx->prealloc_size_qx << " qy_size: " << ctx->prealloc_size_qy << " x_size: " << ctx->prealloc_size_x << " y_size: " << ctx->prealloc_size_y << " split_k_size: " << ctx->prealloc_size_split_k << ")" << std::endl;
+#endif
+#if defined(GGML_VULKAN_RUN_TESTS)
+    ctx->staging = ggml_vk_create_buffer_check(ctx, 100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
+    ggml_vk_test_transfer(ctx, 8192 * 1000, false);
+    ggml_vk_test_transfer(ctx, 8192 * 1000, true);
+
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q4_0);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q4_1);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q5_0);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q5_1);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q8_0);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q2_K);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q3_K);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q4_K);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q5_K);
+    ggml_vk_test_dequant(ctx, 2560 * 7680, GGML_TYPE_Q6_K);
+
+    const std::vector<size_t> vals {
+        8, 8, 8,
+        100, 46, 576,
+        623, 111, 128,
+        100, 46, 558,
+        512, 1, 256,
+        128, 110, 622,
+        511, 511, 127,
+        511, 511, 7,
+        511, 511, 17,
+        49, 49, 128,
+        128, 49, 49,
+        4096, 49, 4096,
+        11008, 49, 4096,
+        4096, 49, 11008,
+        32000, 49, 4096,
+        512, 512, 128,
+        128, 512, 512,
+        4096, 512, 4096,
+        11008, 512, 4096,
+        4096, 512, 11008,
+        32000, 512, 4096,
+    };
+    const size_t num_it = 1;
+    for (size_t i = 0; i < vals.size(); i += 3) {
+        ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0);
+        ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1);
+        ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2);
+        ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0);
+        ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1);
+        ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2);
+        std::cerr << std::endl;
+    }
+
+    GGML_ASSERT(false);
+#endif
+
+    if (ctx->prealloc_qx == nullptr || (ctx->prealloc_size_qx > 0 && ctx->prealloc_qx->size < ctx->prealloc_size_qx)) {
+        // Resize buffer
+        if (ctx->prealloc_qx != nullptr) {
+            ggml_vk_destroy_buffer(ctx->prealloc_qx);
+        }
+        ctx->prealloc_qx = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_qx);
+    }
+    if (ctx->prealloc_qy == nullptr || (ctx->prealloc_size_qy > 0 && ctx->prealloc_qy->size < ctx->prealloc_size_qy)) {
+        // Resize buffer
+        if (ctx->prealloc_qy != nullptr) {
+            ggml_vk_destroy_buffer(ctx->prealloc_qy);
+        }
+        ctx->prealloc_qy = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_qy);
+    }
+    if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) {
+        // Resize buffer
+        if (ctx->prealloc_x != nullptr) {
+            ggml_vk_destroy_buffer(ctx->prealloc_x);
+        }
+        ctx->prealloc_x = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_x);
+    }
+    if (ctx->prealloc_y == nullptr || (ctx->prealloc_size_y > 0 && ctx->prealloc_y->size < ctx->prealloc_size_y)) {
+        // Resize buffer
+        if (ctx->prealloc_y != nullptr) {
+            ggml_vk_destroy_buffer(ctx->prealloc_y);
+        }
+        ctx->prealloc_y = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_y);
+    }
+    if (ctx->prealloc_split_k == nullptr || (ctx->prealloc_size_split_k > 0 && ctx->prealloc_split_k->size < ctx->prealloc_size_split_k)) {
+        // Resize buffer
+        if (ctx->prealloc_split_k != nullptr) {
+            ggml_vk_destroy_buffer(ctx->prealloc_split_k);
+        }
+        ctx->prealloc_split_k = ggml_vk_create_buffer_device(ctx, ctx->prealloc_size_split_k);
+    }
+    if (ctx->staging == nullptr || (ctx->staging_size > 0 && ctx->staging->size < ctx->staging_size)) {
+        // Resize buffer
+        if (ctx->staging != nullptr) {
+            ggml_vk_destroy_buffer(ctx->staging);
+        }
+        ctx->staging = ggml_vk_create_buffer_check(ctx, ctx->staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
+    }
+}
+
+static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
+    const bool any_on_device = node->backend == GGML_BACKEND_GPU
+        || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
+        || (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU);
+
+    if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
+        return;
+    }
+
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")" << std::endl;
+#endif
+    ctx->semaphore_idx = 0;
+    ctx->staging_offset = 0;
+
+    const ggml_tensor * src0 = node->src[0];
+    const ggml_tensor * src1 = node->src[1];
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
+
+    switch (node->op) {
+    case GGML_OP_UNARY:
+        switch (ggml_get_unary_op(node)) {
+        case GGML_UNARY_OP_SILU:
+        case GGML_UNARY_OP_GELU:
+        case GGML_UNARY_OP_RELU:
+            break;
+        default:
+            return;
+        }
+        break;
+    case GGML_OP_REPEAT:
+    // case GGML_OP_GET_ROWS:
+    case GGML_OP_ADD:
+    case GGML_OP_MUL:
+    case GGML_OP_SCALE:
+    case GGML_OP_SQR:
+    case GGML_OP_CLAMP:
+    case GGML_OP_CPY:
+    case GGML_OP_CONT:
+    case GGML_OP_DUP:
+    case GGML_OP_RESHAPE:
+    case GGML_OP_VIEW:
+    case GGML_OP_PERMUTE:
+    case GGML_OP_TRANSPOSE:
+    case GGML_OP_NORM:
+    case GGML_OP_RMS_NORM:
+    case GGML_OP_DIAG_MASK_INF:
+    case GGML_OP_SOFT_MAX:
+    case GGML_OP_ROPE:
+    case GGML_OP_MUL_MAT:
+    case GGML_OP_NONE:
+        break;
+    default:
+        if (any_on_device) {
+            std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
+            GGML_ASSERT(false);
+        }
+        return;
+    }
+
+    if (ctx->compute_ctx == nullptr) {
+        ctx->compute_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->compute_queue);
+        ggml_vk_ctx_begin(ctx, ctx->compute_ctx);
+    }
+
+    switch (node->op) {
+    case GGML_OP_REPEAT:
+        ggml_vk_repeat(ctx, ctx->compute_ctx, src0, src1, node);
+
+        break;
+    case GGML_OP_GET_ROWS:
+        ggml_vk_get_rows(ctx, ctx->compute_ctx, src0, src1, node);
+
+        break;
+    case GGML_OP_ADD:
+        ggml_vk_add(ctx, ctx->compute_ctx, src0, src1, node);
+
+        break;
+    case GGML_OP_MUL:
+        ggml_vk_mul(ctx, ctx->compute_ctx, src0, src1, node);
+
+        break;
+    case GGML_OP_SCALE:
+        ggml_vk_scale(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_SQR:
+        ggml_vk_sqr(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_CLAMP:
+        ggml_vk_clamp(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_CPY:
+    case GGML_OP_CONT:
+    case GGML_OP_DUP:
+        ggml_vk_cpy(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_RESHAPE:
+    case GGML_OP_VIEW:
+    case GGML_OP_PERMUTE:
+    case GGML_OP_TRANSPOSE:
+    case GGML_OP_NONE:
+        ggml_vk_nop(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_NORM:
+        ggml_vk_norm(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_RMS_NORM:
+        ggml_vk_rms_norm(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_UNARY:
+        switch (ggml_get_unary_op(node)) {
+        case GGML_UNARY_OP_SILU:
+        case GGML_UNARY_OP_GELU:
+        case GGML_UNARY_OP_RELU:
+            ggml_vk_unary(ctx, ctx->compute_ctx, src0, node);
+            break;
+        default:
+            return;
+        }
+        break;
+    case GGML_OP_DIAG_MASK_INF:
+        ggml_vk_diag_mask_inf(ctx, ctx->compute_ctx, src0, node);
+
+        break;
+    case GGML_OP_SOFT_MAX:
+        ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node);
+
+        break;
+    case GGML_OP_ROPE:
+        ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, node);
+
+        break;
+    case GGML_OP_MUL_MAT:
+        ggml_vk_mul_mat(ctx, ctx->compute_ctx, src0, src1, node);
+
+        break;
+    default:
+        return;
+    }
+
+    extra->ready = true;
+    extra->ctx_idx = ctx->compute_ctx->idx;
+
+#ifdef GGML_VULKAN_CHECK_RESULTS
+    // Force context reset on each node so that each tensor ends up in its own context
+    // and can be run and compared to its CPU equivalent separately
+    last_node = true;
+#endif
+
+    if (node->backend == GGML_BACKEND_CPU || last_node) {
+        ggml_vk_ctx_end(ctx->compute_ctx);
+        ctx->compute_ctx->exit_tensor = node;
+        ctx->compute_ctx = nullptr;
+    }
+}
+
+static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
+    const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
+        || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
+        || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
+
+    if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
+        return false;
+    }
+
+    ggml_tensor_extra_gpu * extra = nullptr;
+
+    switch (tensor->op) {
+    case GGML_OP_ADD:
+    case GGML_OP_GET_ROWS:
+    case GGML_OP_MUL:
+    case GGML_OP_SCALE:
+    case GGML_OP_SQR:
+    case GGML_OP_CLAMP:
+    case GGML_OP_CPY:
+    case GGML_OP_CONT:
+    case GGML_OP_DUP:
+    case GGML_OP_NORM:
+    case GGML_OP_RMS_NORM:
+    case GGML_OP_DIAG_MASK_INF:
+    case GGML_OP_SOFT_MAX:
+    case GGML_OP_ROPE:
+    case GGML_OP_RESHAPE:
+    case GGML_OP_VIEW:
+    case GGML_OP_PERMUTE:
+    case GGML_OP_TRANSPOSE:
+    case GGML_OP_NONE:
+        extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+        break;
+    case GGML_OP_UNARY:
+        switch (ggml_get_unary_op(tensor)) {
+        case GGML_UNARY_OP_SILU:
+        case GGML_UNARY_OP_GELU:
+        case GGML_UNARY_OP_RELU:
+            extra = (ggml_tensor_extra_gpu *) tensor->extra;
+            break;
+        default:
+            return false;
+        }
+        break;
+    case GGML_OP_MUL_MAT:
+        if (!any_on_device && !ggml_vk_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
+            return false;
+        }
+
+        extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+        break;
+    default:
+        return false;
+    }
+
+    if (extra == nullptr) {
+        return false;
+    }
+
+    if (params->ith != 0) {
+        return true;
+    }
+    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+        return true;
+    }
+
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")" << std::endl;
+#endif
+
+#ifdef GGML_VULKAN_CHECK_RESULTS
+    ggml_vk_check_results_0(ctx, params, tensor);
+#endif
+
+    GGML_ASSERT(extra->ready);
+
+    vk_context& subctx = ctx->gc.contexts[extra->ctx_idx];
+
+    // Only run if ctx hasn't been submitted yet
+    if (!subctx.seqs.empty()) {
+        // Do staging buffer copies
+        for (auto& cpy : subctx.in_memcpys) {
+            memcpy(cpy.dst, cpy.src, cpy.n);
+        }
+
+        ggml_vk_submit(&subctx, ctx->fence);
+    }
+
+    if (tensor == subctx.exit_tensor) {
+        VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
+        ctx->device.lock()->device.resetFences({ ctx->fence });
+
+        // Do staging buffer copies
+        for (auto& cpy : subctx.out_memcpys) {
+            memcpy(cpy.dst, cpy.src, cpy.n);
+        }
+        subctx.in_memcpys.clear();
+        subctx.out_memcpys.clear();
+    }
+
+    extra->ready = false;
+
+    return true;
+}
+
+// Clean up after graph processing is done
+static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
+    if (ctx->disable) {
+        return;
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_graph_cleanup()" << std::endl;
+#endif
+    for (auto& buffer : ctx->gc.temp_buffers) {
+        ggml_vk_pool_free(ctx, buffer);
+    }
+    ctx->gc.temp_buffers.clear();
+
+    for (auto * pipeline : ctx->gc.pipelines) {
+        ggml_pipeline_cleanup(*pipeline);
+    }
+
+    ggml_vk_queue_cleanup(ctx, ctx->device.lock()->compute_queue);
+    ggml_vk_queue_cleanup(ctx, ctx->device.lock()->transfer_queue);
+
+    for (size_t i = 0; i < ctx->gc.semaphores.size(); i++) {
+        ctx->device.lock()->device.destroySemaphore({ ctx->gc.semaphores[i].s });
+    }
+    ctx->gc.semaphores.clear();
+
+    for (size_t i = 0; i < ctx->gc.tl_semaphores.size(); i++) {
+        ctx->device.lock()->device.destroySemaphore({ ctx->gc.tl_semaphores[i].s });
+    }
+    ctx->gc.tl_semaphores.clear();
+    ctx->semaphore_idx = 0;
+
+    ctx->event_idx = 0;
+
+    for (auto& event : ctx->gc.events) {
+        ctx->device.lock()->device.resetEvent(event);
+    }
+
+    ctx->staging_offset = 0;
+
+    ctx->compute_ctx = nullptr;
+    ctx->transfer_ctx = nullptr;
+    ctx->gc.contexts.clear();
+}
+
+// Clean up on backend free
+static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_vk_cleanup(" << ctx->idx << ")" << std::endl;
+#endif
+    ggml_vk_graph_cleanup(ctx);
+
+    ggml_vk_destroy_buffer(ctx->prealloc_qx);
+    ggml_vk_destroy_buffer(ctx->prealloc_qy);
+    ggml_vk_destroy_buffer(ctx->prealloc_x);
+    ggml_vk_destroy_buffer(ctx->prealloc_y);
+    ggml_vk_destroy_buffer(ctx->prealloc_split_k);
+    ggml_vk_destroy_buffer(ctx->staging);
+    ggml_vk_destroy_buffer(ctx->sync_staging);
+
+    for (auto& buffer : ctx->buffer_pool) {
+        ggml_vk_destroy_buffer(buffer);
+    }
+
+    ctx->prealloc_size_qx = 0;
+    ctx->prealloc_size_qy = 0;
+    ctx->prealloc_size_x = 0;
+    ctx->prealloc_size_y = 0;
+    ctx->prealloc_size_split_k = 0;
+    ctx->staging_size = 0;
+
+    for (auto& event : ctx->gc.events) {
+        ctx->device.lock()->device.destroyEvent(event);
+    }
+    ctx->gc.events.clear();
+
+    for (auto* pipeline : ctx->gc.pipelines) {
+        ggml_vk_destroy_pipeline(ctx, pipeline);
+    }
+    ctx->gc.pipelines.clear();
+
+    ctx->device.lock()->device.destroyFence(ctx->fence);
+
+    ctx->device.lock()->device.destroyCommandPool(ctx->device.lock()->compute_queue.pool);
+    if (!ctx->device.lock()->single_queue) {
+        ctx->device.lock()->device.destroyCommandPool(ctx->device.lock()->transfer_queue.pool);
+    }
+}
+
+GGML_CALL int ggml_vk_get_device_count() {
+    ggml_vk_instance_init();
+
+    return vk_instance.device_indices.size();
+}
+
+GGML_CALL void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
+    ggml_vk_instance_init();
+
+    std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
+
+    vk::PhysicalDeviceProperties props;
+    devices[device].getProperties(&props);
+
+    snprintf(description, description_size, "%s", props.deviceName.data());
+}
+
+// CPU assist interface
+
+void ggml_vk_init_cpu_assist() {
+    ggml_vk_instance_init();
+
+    std::cerr << "ggml_vulkan: Found " << ggml_vk_get_device_count() << " Vulkan devices:" << std::endl;
+
+    for (size_t i = 0; i < ggml_vk_get_device_count(); i++) {
+        ggml_vk_print_gpu_info(i);
+    }
+    // Initialize the first backend to make sure CPU matrix multiplications can be offloaded.
+    ggml_backend_vk_init(0);
+}
+
+void ggml_vk_preallocate_buffers_graph_cpu_assist(ggml_tensor * node) {
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[0];
+
+    if (!ctx->initialized) {
+        return;
+    }
+
+    ggml_vk_preallocate_buffers_graph(ctx, node);
+}
+
+void ggml_vk_preallocate_buffers_cpu_assist() {
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[0];
+
+    if (!ctx->initialized) {
+        return;
+    }
+
+    ggml_vk_preallocate_buffers(ctx);
+}
+
+void ggml_vk_build_graph_cpu_assist(ggml_tensor * node, bool last_node) {
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[0];
+
+    if (!ctx->initialized) {
+        return;
+    }
+
+    ggml_vk_build_graph(ctx, node, last_node);
+}
+
+bool ggml_vk_compute_forward_cpu_assist(ggml_compute_params * params, ggml_tensor * tensor){
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[0];
+
+    if (!ctx->initialized) {
+        return false;
+    }
+
+    return ggml_vk_compute_forward(ctx, params, tensor);
+}
+
+void ggml_vk_graph_cleanup_cpu_assist() {
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[0];
+
+    if (!ctx->initialized) {
+        return;
+    }
+
+    ggml_vk_graph_cleanup(ctx);
+}
+
+void ggml_vk_free_cpu_assist() {
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[0];
+
+    if (!ctx->initialized || vk_instance.backends[0] == nullptr) {
+        return;
+    }
+
+    ggml_backend_vk_free(vk_instance.backends[0]);
+}
+
+// backend interface
+
+#define UNUSED GGML_UNUSED
+
+// device backend
+
+static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000;  // NOLINT
+
+struct ggml_backend_vk_buffer_context {
+    ggml_backend_vk_context * ctx;
+    vk_buffer dev_buffer;
+    ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
+    size_t temp_tensor_extra_index = 0;
+    std::string name;
+
+    ggml_backend_vk_buffer_context(ggml_backend_vk_context * ctx, vk_buffer&& dev_buffer, std::string& name) :
+        ctx(ctx),
+        dev_buffer(dev_buffer),
+        name(name) {
+    }
+
+    ~ggml_backend_vk_buffer_context() {
+        ggml_vk_destroy_buffer(dev_buffer);
+        delete[] temp_tensor_extras;
+    }
+
+    ggml_tensor_extra_gpu * ggml_vk_alloc_temp_tensor_extra() {
+        if (temp_tensor_extras == nullptr) {
+            temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_VK_MAX_NODES];
+        }
+
+        size_t alloc_index = temp_tensor_extra_index;
+        temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_VK_MAX_NODES;
+        ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
+        extra->reset();
+
+        return extra;
+    }
+};
+
+GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
+    ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+    return ctx->name.c_str();
+}
+
+GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
+    return buffer->iface.get_name == ggml_backend_vk_buffer_get_name;
+}
+
+GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_buffer_free_buffer()" << std::endl;
+#endif
+    ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+    ggml_vk_destroy_buffer(ctx->dev_buffer);
+    delete ctx;
+}
+
+GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
+    return vk_ptr_base;
+
+    UNUSED(buffer);
+}
+
+GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")" << std::endl;
+#endif
+    ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+
+    ggml_tensor_extra_gpu * extra = ctx->ggml_vk_alloc_temp_tensor_extra();
+    if (tensor->view_src != nullptr && tensor->view_src->extra != nullptr) {
+        GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
+        ggml_tensor_extra_gpu * extra_view = (ggml_tensor_extra_gpu *) tensor->view_src->extra;
+        extra->buffer_gpu = extra_view->buffer_gpu;
+        extra->offset = extra_view->offset + tensor->view_offs;
+    } else {
+        extra->buffer_gpu = ctx->dev_buffer;
+        extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
+    }
+
+    tensor->backend = GGML_BACKEND_GPU;
+    tensor->extra = extra;
+}
+
+GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
+#endif
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+    ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+    vk_buffer buf = extra->buffer_gpu.lock();
+
+    ggml_vk_buffer_write(ctx->ctx, buf, extra->offset + offset, data, size);
+}
+
+GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
+#endif
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+    ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+    vk_buffer buf = extra->buffer_gpu.lock();
+
+    ggml_vk_buffer_read(ctx->ctx, buf, extra->offset + offset, data, size);
+}
+
+GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+    if (ggml_backend_buffer_is_vk(src->buffer)) {
+        ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+        ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
+        ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+
+        vk_buffer src_buf = src_extra->buffer_gpu.lock();
+        vk_buffer dst_buf = dst_extra->buffer_gpu.lock();
+
+        ggml_vk_buffer_copy(dst_buf, dst_extra->offset, src_buf, src_extra->offset, ggml_nbytes(src));
+
+        return true;
+    }
+    return false;
+}
+
+GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+    ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
+
+    ggml_vk_buffer_memset(ctx->ctx, ctx->dev_buffer, 0, value, buffer->size);
+}
+
+static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
+    /* .get_name        = */ ggml_backend_vk_buffer_get_name,
+    /* .free_buffer     = */ ggml_backend_vk_buffer_free_buffer,
+    /* .get_base        = */ ggml_backend_vk_buffer_get_base,
+    /* .init_tensor     = */ ggml_backend_vk_buffer_init_tensor,
+    /* .set_tensor      = */ ggml_backend_vk_buffer_set_tensor,
+    /* .get_tensor      = */ ggml_backend_vk_buffer_get_tensor,
+    /* .cpy_tensor      = */ ggml_backend_vk_buffer_cpy_tensor,
+    /* .clear           = */ ggml_backend_vk_buffer_clear,
+    /* .reset           = */ NULL,
+};
+
+// vk buffer type
+struct ggml_backend_vk_buffer_type_context {
+    std::string name;
+    ggml_backend_vk_context * ctx;
+};
+
+GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
+
+    return ctx->name.c_str();
+}
+
+GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")" << std::endl;
+#endif
+    ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
+    vk_buffer dev_buffer = ggml_vk_create_buffer_device(ctx->ctx, size);
+
+    ggml_backend_vk_buffer_context * bufctx = new ggml_backend_vk_buffer_context(ctx->ctx, std::move(dev_buffer), ctx->name);
+
+    return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size);
+}
+
+GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
+    return ctx->ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment;
+}
+
+GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+    ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
+    return ctx->ctx->device.lock()->max_memory_allocation_size;
+}
+
+GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+    return ggml_nbytes(tensor);
+
+    UNUSED(buft);
+}
+
+GGML_CALL static bool ggml_backend_vk_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+    if (!ggml_backend_is_vk(backend)) {
+        return false;
+    }
+
+    ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+
+    return buft_ctx->ctx->idx == ctx->idx;
+}
+
+static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
+    /* .get_name         = */ ggml_backend_vk_buffer_type_name,
+    /* .alloc_buffer     = */ ggml_backend_vk_buffer_type_alloc_buffer,
+    /* .get_alignment    = */ ggml_backend_vk_buffer_type_get_alignment,
+    /* .get_max_size     = */ ggml_backend_vk_buffer_type_get_max_size,
+    /* .get_alloc_size   = */ ggml_backend_vk_buffer_type_get_alloc_size,
+    /* .supports_backend = */ ggml_backend_vk_buffer_type_supports_backend,
+    /* .is_host          = */ NULL,
+};
+
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t idx) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_buffer_type(" << idx << ")" << std::endl;
+#endif
+
+    GGML_ASSERT(idx < vk_instance.device_indices.size());
+
+    ggml_backend_vk_init(idx);
+
+    return &vk_instance.buffer_types[idx];
+}
+
+// host buffer type
+
+GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+    return GGML_VK_NAME "_Host";
+
+    UNUSED(buft);
+}
+
+GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
+    return GGML_VK_NAME "_Host";
+
+    UNUSED(buffer);
+}
+
+GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_host_buffer_free_buffer()" << std::endl;
+#endif
+    ggml_vk_host_free(&vk_instance.contexts[0], buffer->context);
+}
+
+GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")" << std::endl;
+#endif
+    void * ptr = nullptr;
+    try {
+        ptr = ggml_vk_host_malloc(&vk_instance.contexts[0], size);
+    } catch (vk::SystemError& e) {
+        std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl;
+        std::cerr << "ggml_vulkan: " << e.what() << std::endl;
+        // fallback to cpu buffer
+        return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
+    }
+
+    ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+    buffer->buft = buft;
+    buffer->iface.get_name = ggml_backend_vk_host_buffer_name;
+    buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer;
+
+    return buffer;
+}
+
+GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+    return vk_instance.contexts[0].device.lock()->properties.limits.minMemoryMapAlignment;
+
+    UNUSED(buft);
+}
+
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
+    static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
+        /* .iface    = */ {
+            /* .get_name         = */ ggml_backend_vk_host_buffer_type_name,
+            /* .alloc_buffer     = */ ggml_backend_vk_host_buffer_type_alloc_buffer,
+            /* .get_alignment    = */ ggml_backend_vk_host_buffer_type_get_alignment,
+            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
+            /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
+            /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
+            /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
+        },
+        /* .context  = */ nullptr,
+    };
+
+    if (!vk_instance.contexts[0].initialized) {
+        // Fall back to CPU
+        return ggml_backend_cpu_buffer_type();
+    }
+
+    return &ggml_backend_vk_buffer_type_host;
+}
+
+// backend
+
+GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) {
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+
+    return ctx->name.c_str();
+}
+
+GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_free(" << ctx->name << ")" << std::endl;
+#endif
+
+    size_t idx = ctx->idx;
+
+    ggml_vk_cleanup(ctx);
+
+    // Release device
+    vk_instance.devices[ctx->idx].reset();
+    ctx->initialized = false;
+
+    vk_instance.initialized[idx] = false;
+    vk_instance.backends[idx] = nullptr;
+    memset(&vk_instance.buffer_types[idx], 0, sizeof(ggml_backend_buffer_type));
+    delete backend;
+}
+
+GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+
+    GGML_ASSERT(ctx->initialized);
+
+    return ggml_backend_vk_buffer_type(ctx->idx);
+}
+
+GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_set_tensor_async(" << size << ")" << std::endl;
+#endif
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+    GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+    if (ctx->transfer_ctx == nullptr) {
+        // Initialize new transfer context
+        ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue);
+        ggml_vk_ctx_begin(ctx, ctx->transfer_ctx);
+    }
+
+    vk_buffer buf = extra->buffer_gpu.lock();
+
+    ggml_vk_buffer_write_async(ctx, ctx->transfer_ctx, buf, extra->offset + offset, data, size);
+}
+
+GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_get_tensor_async(" << size << ")" << std::endl;
+#endif
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+    GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
+
+    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+    if (ctx->transfer_ctx == nullptr) {
+        // Initialize new transfer context
+        ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue);
+        ggml_vk_ctx_begin(ctx, ctx->transfer_ctx);
+    }
+
+    vk_buffer buf = extra->buffer_gpu.lock();
+
+    ggml_vk_buffer_read_async(ctx, ctx->transfer_ctx, buf, extra->offset + offset, data, size);
+}
+
+GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_cpy_tensor_async()" << std::endl;
+#endif
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+    if ((dst->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
+        ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
+        ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+
+        if (ctx->transfer_ctx == nullptr) {
+            // Initialize new transfer context
+            ctx->transfer_ctx = ggml_vk_create_context(ctx, ctx->device.lock()->transfer_queue);
+            ggml_vk_ctx_begin(ctx, ctx->transfer_ctx);
+        }
+
+        vk_buffer src_buf = src_extra->buffer_gpu.lock();
+        vk_buffer dst_buf = dst_extra->buffer_gpu.lock();
+
+        ggml_vk_buffer_copy_async(ctx->transfer_ctx, src_buf, src_extra->offset, dst_buf, dst_extra->offset, ggml_nbytes(src));
+        return true;
+    }
+
+    return false;
+}
+
+GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_synchronize()" << std::endl;
+#endif
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+    if(ctx->transfer_ctx == nullptr) {
+        return;
+    }
+
+    ggml_vk_ctx_end(ctx->transfer_ctx);
+
+    for (auto& cpy : ctx->transfer_ctx->in_memcpys) {
+        memcpy(cpy.dst, cpy.src, cpy.n);
+    }
+
+    ggml_vk_submit(ctx->transfer_ctx, ctx->fence);
+    VK_CHECK(ctx->device.lock()->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences");
+    ctx->device.lock()->device.resetFences({ ctx->fence });
+
+    for (auto& cpy : ctx->transfer_ctx->out_memcpys) {
+        memcpy(cpy.dst, cpy.src, cpy.n);
+    }
+
+    ctx->transfer_ctx = nullptr;
+}
+
+GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+    ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
+
+    for (int i = 0; i < cgraph->n_nodes; i++) {
+        ggml_vk_preallocate_buffers_graph(ctx, cgraph->nodes[i]);
+    }
+    ggml_vk_preallocate_buffers(ctx);
+
+    int last_node = cgraph->n_nodes - 1;
+
+    // If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
+    while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) {
+        last_node -= 1;
+    }
+
+    for (int i = 0; i < cgraph->n_nodes; i++) {
+        ggml_vk_build_graph(ctx,cgraph->nodes[i], i == last_node);
+    }
+
+    ggml_compute_params params = {};
+    params.type = GGML_TASK_COMPUTE;
+    params.ith = 0;
+    for (int i = 0; i < cgraph->n_nodes; i++) {
+        ggml_tensor * node = cgraph->nodes[i];
+
+        if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
+            continue;
+        }
+
+        bool ok = ggml_vk_compute_forward(ctx, &params, node);
+        if (!ok) {
+            fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
+        }
+#ifdef GGML_VULKAN_CHECK_RESULTS
+        else {
+            ggml_vk_check_results_1(ctx, &params, node);
+        }
+#endif
+        GGML_ASSERT(ok);
+    }
+
+    ggml_vk_graph_cleanup(ctx);
+
+    return true;
+
+    UNUSED(backend);
+}
+
+GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+    switch (op->op) {
+        case GGML_OP_UNARY:
+            switch (ggml_get_unary_op(op)) {
+                case GGML_UNARY_OP_GELU:
+                case GGML_UNARY_OP_SILU:
+                case GGML_UNARY_OP_RELU:
+                    return true;
+                default:
+                    return false;
+            }
+            break;
+        case GGML_OP_MUL_MAT:
+            {
+                struct ggml_tensor * a;
+                struct ggml_tensor * b;
+                if (op->op == GGML_OP_MUL_MAT) {
+                    a = op->src[0];
+                    b = op->src[1];
+                } else {
+                    a = op->src[2];
+                    b = op->src[1];
+                }
+                if (a->ne[3] != b->ne[3]) {
+                    return false;
+                }
+                return true;
+            } break;
+        // case GGML_OP_GET_ROWS:
+        //     {
+        //         switch (op->src[0]->type) {
+        //             case GGML_TYPE_F16:
+        //             case GGML_TYPE_F32:
+        //             case GGML_TYPE_Q4_0:
+        //             case GGML_TYPE_Q4_1:
+        //             case GGML_TYPE_Q5_0:
+        //             case GGML_TYPE_Q5_1:
+        //             case GGML_TYPE_Q8_0:
+        //                 return true;
+        //             default:
+        //                 return false;
+        //         }
+        //     } break;
+        case GGML_OP_CPY:
+            {
+                ggml_type src0_type = op->src[0]->type;
+                ggml_type src1_type = op->src[1]->type;
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
+                    return true;
+                }
+                if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
+                    return true;
+                }
+                return false;
+            } break;
+        case GGML_OP_DUP:
+        // case GGML_OP_REPEAT:
+        //     {
+        //         ggml_type src0_type = op->src[0]->type;
+        //         return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
+        //     } break;
+        case GGML_OP_ROPE:
+            {
+                const int mode = ((const int32_t *) op->op_params)[2];
+                const bool is_glm  = mode & 4;
+
+                return !is_glm;
+            } break;
+        case GGML_OP_NONE:
+        case GGML_OP_RESHAPE:
+        case GGML_OP_VIEW:
+        case GGML_OP_PERMUTE:
+        case GGML_OP_TRANSPOSE:
+        case GGML_OP_NORM:
+        case GGML_OP_ADD:
+        case GGML_OP_MUL:
+        case GGML_OP_RMS_NORM:
+        case GGML_OP_SCALE:
+        case GGML_OP_SQR:
+        case GGML_OP_CLAMP:
+        case GGML_OP_CONT:
+        case GGML_OP_DIAG_MASK_INF:
+        case GGML_OP_SOFT_MAX:
+            return true;
+        default:
+            return false;
+    }
+
+    UNUSED(backend);
+}
+
+// TODO: enable async and synchronize
+static ggml_backend_i ggml_backend_vk_interface = {
+    /* .get_name                = */ ggml_backend_vk_name,
+    /* .free                    = */ ggml_backend_vk_free,
+    /* .get_default_buffer_type = */ ggml_backend_vk_get_default_buffer_type,
+    /* .set_tensor_async        = */ NULL,  // ggml_backend_vk_set_tensor_async,
+    /* .get_tensor_async        = */ NULL,  // ggml_backend_vk_get_tensor_async,
+    /* .cpy_tensor_async        = */ NULL,  // ggml_backend_vk_cpy_tensor_async,
+    /* .synchronize             = */ NULL,  // ggml_backend_vk_synchronize,
+    /* .graph_plan_create       = */ NULL,
+    /* .graph_plan_free         = */ NULL,
+    /* .graph_plan_compute      = */ NULL,
+    /* .graph_compute           = */ ggml_backend_vk_graph_compute,
+    /* .supports_op             = */ ggml_backend_vk_supports_op,
+};
+
+GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t idx) {
+    if (vk_instance.initialized[idx]) {
+        return vk_instance.backends[idx];
+    }
+#ifdef GGML_VULKAN_DEBUG
+    std::cerr << "ggml_backend_vk_init(" << idx << ")" << std::endl;
+#endif
+
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[idx];
+    ggml_vk_init(ctx, idx);
+    ctx->name = GGML_VK_NAME + std::to_string(idx);
+    vk_instance.buffer_types[idx] = {
+        /* .iface    = */ ggml_backend_vk_buffer_type_interface,
+        /* .context  = */ new ggml_backend_vk_buffer_type_context{ ctx->name, ctx },
+    };
+    vk_instance.initialized[idx] = true;
+
+    ggml_backend_t vk_backend = new ggml_backend {
+        /* .interface = */ ggml_backend_vk_interface,
+        /* .context   = */ &vk_instance.contexts[ctx->idx],
+    };
+
+    vk_instance.backends[idx] = vk_backend;
+
+    return vk_backend;
+}
+
+GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
+    return backend && backend->iface.get_name == ggml_backend_vk_name;
+}
+
+GGML_CALL int ggml_backend_vk_get_device_count() {
+    return ggml_vk_get_device_count();
+}
+
+GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
+    ggml_vk_get_device_description(device, description, description_size);
+}
+
+GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
+    GGML_ASSERT(device < vk_instance.device_indices.size());
+
+    vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]];
+
+    vk::PhysicalDeviceMemoryProperties memprops = vkdev.getMemoryProperties();
+
+    for (const vk::MemoryHeap& heap : memprops.memoryHeaps) {
+        if (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal) {
+            *total = heap.size;
+            *free = heap.size;
+            break;
+        }
+    }
+}
+
+// backend registry
+GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) {
+    ggml_backend_t vk_backend = ggml_backend_vk_init((int) (intptr_t) user_data);
+    return vk_backend;
+
+    UNUSED(params);
+}
+
+extern "C" GGML_CALL int ggml_backend_vk_reg_devices();
+
+GGML_CALL int ggml_backend_vk_reg_devices() {
+    for (auto idx : vk_instance.device_indices) {
+        char name[128];
+        snprintf(name, sizeof(name), "%s%ld", GGML_VK_NAME, idx);
+        ggml_backend_register(name, ggml_backend_reg_vk_init, ggml_backend_vk_buffer_type(idx), (void *) (intptr_t) idx);
+    }
+    return vk_instance.device_indices.size();
+}
+
+// checks
+
+#ifdef GGML_VULKAN_CHECK_RESULTS
+static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
+    if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
+        return;
+    }
+    for (int j = 0; j < level; j++) {
+        std::cerr << " ";
+    }
+    std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl;
+
+    done.push_back(tensor);
+
+    for (int i = 0; i < GGML_MAX_SRC; i++) {
+        if (tensor->src[i] != nullptr) {
+            ggml_vk_print_graph_origin(tensor->src[i], done, level + 1);
+        }
+    }
+}
+
+static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
+    if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
+        return;
+    }
+    i0 = std::max(i0, 5);
+    i1 = std::max(i1, 5);
+    i2 = std::max(i2, 0);
+    i3 = std::max(i3, 0);
+    fprintf(stderr, "         ");
+    for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
+        fprintf(stderr, "%7d ", idx1);
+    }
+    fprintf(stderr, "\n");
+    for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
+        fprintf(stderr, "%7d: ", idx0);
+        for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
+            if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
+                float val;
+                if (tensor->type == GGML_TYPE_F32) {
+                    val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
+                } else if (tensor->type == GGML_TYPE_F16) {
+                    val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
+                }
+                fprintf(stderr, "% 7.2f ", val);
+            } else {
+                fprintf(stderr, "        ");
+            }
+        }
+        fprintf(stderr, "\n");
+    }
+}
+
+static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
+    void * tensor_data = tensor->data;
+
+    if (tensor->backend == GGML_BACKEND_GPU) {
+        const size_t tensor_size = ggml_nbytes(tensor);
+        tensor_data = malloc(tensor_size);
+
+        ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+        ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
+    }
+
+    std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
+    std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
+    if (tensor->src[0] != nullptr) {
+        std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
+    }
+    if (tensor->src[1] != nullptr) {
+        std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
+    }
+    std::cerr << std::endl << "Result:" << std::endl;
+    ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
+    std::cerr << std::endl;
+    std::cerr << std::endl << "Result:" << std::endl;
+    ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0);
+    std::cerr << std::endl;
+    std::vector<const ggml_tensor *> done;
+    ggml_vk_print_graph_origin(tensor, done);
+
+    if (tensor->backend == GGML_BACKEND_GPU) {
+        free(tensor_data);
+    }
+}
+
+static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
+    return;
+    GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
+    if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
+        return;
+    }
+    for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
+        for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
+            for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
+                for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
+                    float val = 0.0f;
+                    if (tensor->type == GGML_TYPE_F32) {
+                        val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
+                    } else if (tensor->type == GGML_TYPE_F16) {
+                        val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
+                    }
+                    if (std::isnan(val)) {
+                        std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl;
+                        std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
+                        std::cerr << std::endl;
+                        ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3);
+                        std::cerr << std::endl;
+                        std::vector<const ggml_tensor *> done;
+                        ggml_vk_print_graph_origin(tensor, done);
+                        GGML_ASSERT(false);
+                    }
+                }
+            }
+        }
+    }
+}
+
+void * comp_result;
+size_t comp_size;
+size_t comp_nb[GGML_MAX_DIMS];
+size_t check_counter = 0;
+static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor) {
+    if (params->ith != 0) {
+        return;
+    }
+    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
+        return;
+    }
+
+    check_counter++;
+    if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
+        return;
+    }
+
+    ggml_tensor * src0 = tensor->src[0];
+    ggml_tensor * src1 = tensor->src[1];
+
+    struct ggml_init_params iparams = {
+        /*.mem_size   =*/ 1024*1024*1024,
+        /*.mem_buffer =*/ NULL,
+        /*.no_alloc   =*/ false,
+    };
+
+    struct ggml_context * ggml_ctx = ggml_init(iparams);
+
+    struct ggml_tensor * src0_clone = nullptr;
+    struct ggml_tensor * src1_clone = nullptr;
+    struct ggml_tensor * tensor_clone = nullptr;
+
+    size_t src0_size;
+    size_t src1_size;
+
+    void * src0_buffer;
+    void * src1_buffer;
+
+    if (src0 != nullptr) {
+        src0_clone = ggml_dup_tensor(ggml_ctx, src0);
+
+        src0_size = ggml_nbytes(src0);
+
+        src0_buffer = malloc(src0_size);
+        src0_clone->data = src0_buffer;
+        if (src0->backend == GGML_BACKEND_CPU) {
+            memcpy(src0_clone->data, src0->data, src0_size);
+            memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
+        } else if (src0->backend == GGML_BACKEND_GPU) {
+            ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
+            uint64_t offset = extra->offset;
+            if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
+                for (int i3 = 0; i3 < src0->ne[3]; i3++) {
+                    for (int i2 = 0; i2 < src0->ne[2]; i2++) {
+                        const int idx = i3*src0->ne[2] + i2;
+                        ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
+                    }
+                }
+
+                src0_clone->nb[0] = src0->nb[0];
+                src0_clone->nb[1] = src0->nb[1];
+                for (int i = 2; i < GGML_MAX_DIMS; i++) {
+                    src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1];
+                }
+            } else {
+                if (offset + src0_size >= extra->buffer_gpu->size) {
+                    src0_size = extra->buffer_gpu->size - offset;
+                }
+                ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src0_clone->data, src0_size);
+                memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
+            }
+        } else {
+            GGML_ASSERT(false);
+        }
+
+        if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
+            ggml_vk_print_tensor(ctx, src0, "src0");
+        }
+
+        ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone);
+    }
+    if (src1 != nullptr) {
+        src1_clone = ggml_dup_tensor(ggml_ctx, src1);
+
+        src1_size = ggml_nbytes(src1);
+
+        src1_buffer = malloc(src1_size);
+        src1_clone->data = src1_buffer;
+        if (src1->backend == GGML_BACKEND_CPU) {
+            memcpy(src1_clone->data, src1->data, src1_size);
+            memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
+        } else if (src1->backend == GGML_BACKEND_GPU) {
+            ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
+            uint64_t offset = extra->offset;
+            if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
+                for (int i3 = 0; i3 < src1->ne[3]; i3++) {
+                    for (int i2 = 0; i2 < src1->ne[2]; i2++) {
+                        const int idx = i3*src1->ne[2] + i2;
+                        ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
+                    }
+                }
+
+                src1_clone->nb[0] = src1->nb[0];
+                src1_clone->nb[1] = src1->nb[1];
+                for (int i = 2; i < GGML_MAX_DIMS; i++) {
+                    src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1];
+                }
+            } else {
+                if (offset + src1_size >= extra->buffer_gpu->size) {
+                    src1_size = extra->buffer_gpu->size - offset;
+                }
+                ggml_vk_buffer_read(ctx, extra->buffer_gpu, offset, src1_clone->data, src1_size);
+                memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
+            }
+        } else {
+            GGML_ASSERT(false);
+        }
+
+        if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
+            ggml_vk_print_tensor(ctx, src1, "src1");
+            std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl;
+            std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
+            if (src1->src[0] != nullptr) {
+                std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
+            }
+            if (src1->src[1] != nullptr) {
+                std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
+            }
+            std::cerr << std::endl << "Result:" << std::endl;
+            ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0);
+            std::cerr << std::endl;
+            std::cerr << std::endl << "Result:" << std::endl;
+            ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 1, 0);
+            std::cerr << std::endl;
+            std::vector<const ggml_tensor *> done;
+            ggml_vk_print_graph_origin(src1_clone, done);
+        }
+
+        ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
+    }
+
+    if (tensor->op == GGML_OP_MUL_MAT) {
+        tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone);
+    } else if (tensor->op == GGML_OP_MUL) {
+        tensor_clone = ggml_mul(ggml_ctx, src0_clone, src1_clone);
+    } else if (tensor->op == GGML_OP_SCALE) {
+        tensor_clone = ggml_scale(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0]);
+    } else if (tensor->op == GGML_OP_SQR) {
+        tensor_clone = ggml_sqr(ggml_ctx, src0_clone);
+    } else if (tensor->op == GGML_OP_CLAMP) {
+        tensor_clone = ggml_clamp(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
+    } else if (tensor->op == GGML_OP_ADD) {
+        tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone);
+    } else if (tensor->op == GGML_OP_NORM) {
+        tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
+    } else if (tensor->op == GGML_OP_RMS_NORM) {
+        tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
+    } else if (tensor->op == GGML_OP_SOFT_MAX) {
+        if (src1 != nullptr) {
+            tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, *(float *)tensor->op_params);
+        } else {
+            tensor_clone = ggml_soft_max(ggml_ctx, src0_clone);
+        }
+    } else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
+        tensor_clone = ggml_diag_mask_inf(ggml_ctx, src0_clone, *(float *)tensor->op_params);
+    } else if (tensor->op == GGML_OP_ROPE) {
+        const int n_dims      = ((int32_t *) tensor->op_params)[1];
+        const int mode        = ((int32_t *) tensor->op_params)[2];
+        const int n_ggml_ctx       = ((int32_t *) tensor->op_params)[3];
+        const int n_orig_ggml_ctx  = ((int32_t *) tensor->op_params)[4];
+        float freq_base       = ((float *)   tensor->op_params)[5];
+        float freq_scale      = ((float *)   tensor->op_params)[6];
+        float ext_factor      = ((float *)   tensor->op_params)[7];
+        float attn_factor     = ((float *)   tensor->op_params)[8];
+        float beta_fast       = ((float *)   tensor->op_params)[9];
+        float beta_slow       = ((float *)   tensor->op_params)[10];
+        tensor_clone = ggml_rope_custom(ggml_ctx, src0_clone, src1_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
+    } else if (tensor->op == GGML_OP_UNARY) {
+        switch (ggml_get_unary_op(tensor)) {
+        case GGML_UNARY_OP_SILU:
+            tensor_clone = ggml_silu(ggml_ctx, src0_clone);
+            break;
+        case GGML_UNARY_OP_GELU:
+            tensor_clone = ggml_gelu(ggml_ctx, src0_clone);
+            break;
+        case GGML_UNARY_OP_RELU:
+            tensor_clone = ggml_relu(ggml_ctx, src0_clone);
+            break;
+        default:
+            std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
+            GGML_ASSERT(false);
+        }
+    } else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
+        if (src1 == nullptr) {
+            tensor_clone = ggml_dup(ggml_ctx, src0_clone);
+            tensor_clone->type = tensor->type;
+        } else {
+            tensor_clone = ggml_cpy(ggml_ctx, src0_clone, src1_clone);
+        }
+    } else if (tensor->op == GGML_OP_CONT) {
+        tensor_clone = ggml_cont_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
+    } else if (tensor->op == GGML_OP_RESHAPE) {
+        tensor_clone = ggml_reshape_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
+    } else if (tensor->op == GGML_OP_VIEW) {
+        tensor_clone = ggml_view_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]);
+    } else if (tensor->op == GGML_OP_PERMUTE) {
+        int32_t * params = (int32_t *)tensor->op_params;
+        tensor_clone = ggml_permute(ggml_ctx, src0_clone, params[0], params[1], params[2], params[3]);
+    } else if (tensor->op == GGML_OP_TRANSPOSE) {
+        tensor_clone = ggml_transpose(ggml_ctx, src0_clone);
+    } else {
+        std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
+        GGML_ASSERT(false);
+    }
+
+    // Disable vulkan here to avoid the hooks in ggml.c
+    ctx->disable = true;
+
+    ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
+    ggml_build_forward_expand(cgraph, tensor_clone);
+
+    ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
+
+    ctx->disable = false;
+
+    ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
+    if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
+        ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone");
+    }
+
+    comp_size = ggml_nbytes(tensor_clone);
+
+    comp_result = malloc(comp_size);
+    memcpy(comp_result, tensor_clone->data, comp_size);
+    memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS);
+
+    if (src0 != nullptr) {
+        free(src0_buffer);
+    }
+    if (src1 != nullptr) {
+        free(src1_buffer);
+    }
+
+    ggml_free(ggml_ctx);
+}
+
+static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor) {
+    if (params->ith != 0) {
+        return;
+    }
+    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
+        return;
+    }
+    if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
+        return;
+    }
+
+    ggml_tensor * src0 = tensor->src[0];
+    ggml_tensor * src1 = tensor->src[1];
+
+    void * tensor_data = tensor->data;
+
+    if (tensor->backend == GGML_BACKEND_GPU) {
+        size_t tensor_size = ggml_nbytes(tensor);
+        tensor_data = malloc(tensor_size);
+
+        ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
+
+        if (extra->offset + tensor_size >= extra->buffer_gpu->size) {
+            tensor_size = extra->buffer_gpu->size - (extra->offset);
+        }
+
+        ggml_vk_buffer_read(ctx, extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
+    }
+
+    float first_error_result = -1.0f;
+    float first_error_correct = -1.0f;
+    std::array<int, 4> first_error = { -1, -1, -1, -1 };
+    double avg_err = 0.0;
+    size_t counter = 0;
+
+    for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
+        for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
+            for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
+                for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
+                    const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size;
+                    float correct = 0.0f;
+                    float result = 0.0f;
+
+                    if (buffer_size_fit) {
+                        if (tensor->type == GGML_TYPE_F32) {
+                            correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
+                            result  = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
+                        } else if (tensor->type == GGML_TYPE_F16) {
+                            correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
+                            result  = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
+                        } else {
+                            std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl;
+                        }
+                    } else {
+                        std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
+                        GGML_ASSERT(false);
+                    }
+
+                    if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
+                        std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
+                        std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
+                        if (src0 != nullptr) {
+                            std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
+                        }
+                        if (src1 != nullptr) {
+                            std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
+                        }
+                        std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct  << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
+                        std::cerr << std::endl << "Result:" << std::endl;
+                        ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3);
+                        std::cerr << std::endl << "Correct:" << std::endl;
+                        ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3);
+                        std::cerr << std::endl;
+                        std::vector<const ggml_tensor *> done;
+                        ggml_vk_print_graph_origin(tensor, done);
+                        GGML_ASSERT(false);
+                    }
+                    if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) {
+                        first_error[0] = i0;
+                        first_error[1] = i1;
+                        first_error[2] = i2;
+                        first_error[3] = i3;
+                        first_error_result = result;
+                        first_error_correct = correct;
+                    }
+
+                    // Special case, value is infinite, avoid NaN result in avg_err
+                    // NaN also appears in results, if both are nan error is 0
+                    if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) {
+                        avg_err += std::fabs(correct - result);
+                    }
+                    counter++;
+                }
+            }
+        }
+    }
+
+    avg_err /= counter;
+
+    if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
+        std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
+        std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
+        if (src0 != nullptr) {
+            std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
+        }
+        if (src1 != nullptr) {
+            std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
+        }
+        std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct  << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
+        std::cerr << std::endl << "Result:" << std::endl;
+        ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
+        std::cerr << std::endl << "Correct:" << std::endl;
+        ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0);
+        std::cerr << std::endl;
+        std::cerr << std::endl << "Result:" << std::endl;
+        ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0);
+        std::cerr << std::endl << "Correct:" << std::endl;
+        ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 1, 0);
+        std::cerr << std::endl;
+        std::vector<const ggml_tensor *> done;
+        ggml_vk_print_graph_origin(tensor, done);
+    }
+
+    if (avg_err > 0.05 || std::isnan(avg_err)) {
+        std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
+        std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
+        if (src0 != nullptr) {
+            std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
+        }
+        if (src1 != nullptr) {
+            std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
+        }
+        std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct  << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
+        std::cerr << std::endl << "Result:" << std::endl;
+        ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]);
+        std::cerr << std::endl << "Correct:" << std::endl;
+        ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]);
+        std::cerr << std::endl;
+        std::vector<const ggml_tensor *> done;
+        ggml_vk_print_graph_origin(tensor, done);
+        GGML_ASSERT(false);
+    } else {
+        std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl;
+    }
+
+    free(comp_result);
+    comp_result = nullptr;
+    comp_size = 0;
+
+    if (tensor->backend == GGML_BACKEND_GPU) {
+        free(tensor_data);
+    }
+}
+
+void ggml_vk_check_results_1_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
+    ggml_backend_vk_context * ctx = &vk_instance.contexts[0];
+
+    ggml_vk_check_results_0(ctx, params, tensor);
+}
+#endif
diff --git a/ggml-vulkan.h b/ggml-vulkan.h
new file mode 100644 (file)
index 0000000..9645126
--- /dev/null
@@ -0,0 +1,39 @@
+#pragma once
+
+#include "ggml.h"
+#include "ggml-backend.h"
+
+#ifdef  __cplusplus
+extern "C" {
+#endif
+
+#define GGML_VK_NAME "Vulkan"
+#define GGML_VK_MAX_DEVICES 16
+
+GGML_API void ggml_vk_init_cpu_assist(void);
+
+GGML_API void ggml_vk_preallocate_buffers_graph_cpu_assist(struct ggml_tensor * node);
+GGML_API void ggml_vk_preallocate_buffers_cpu_assist(void);
+GGML_API void ggml_vk_build_graph_cpu_assist(struct ggml_tensor * node, bool last_node);
+GGML_API bool ggml_vk_compute_forward_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
+#ifdef GGML_VULKAN_CHECK_RESULTS
+void ggml_vk_check_results_1_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
+#endif
+GGML_API void ggml_vk_graph_cleanup_cpu_assist(void);
+GGML_API void ggml_vk_free_cpu_assist(void);
+
+// backend API
+GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
+
+GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
+GGML_API GGML_CALL int  ggml_backend_vk_get_device_count(void);
+GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
+GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
+
+GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
+// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
+GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
+
+#ifdef  __cplusplus
+}
+#endif