case GGML_TYPE_F16: {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
- ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
+ ctx.pool(), ggml_nelements(src0) * sizeof(float));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
- src_trans_nb[0] = sizeof(float_t);
+ src_trans_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
// [3,4,5,64] -> [3,4,5,2,32]
dequant_ne = weight_ne;
- dequant_nb[0] = sizeof(float_t);
+ dequant_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS + 1; i++) {
dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1];
}
scale_offset = ggml_nelements(src0) * sizeof(int8_t);
ggml_cann_pool_alloc dequant_buffer_allocator(
- ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
+ ctx.pool(), ggml_nelements(src0) * sizeof(float));
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb,
src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb,
GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset);
aclTensor* dequant_tensor = ggml_cann_create_tensor(
- dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t),
+ dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float),
dequant_ne, dequant_nb, GGML_MAX_DIMS + 1);
aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
- dequant_nb[0] = sizeof(float_t);
+ dequant_nb[0] = sizeof(float);
dequant_ne = src0->ne;
for (int i = 1; i < GGML_MAX_DIMS; i++) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
int64_t theta_scale_length = src0->ne[0] / 2;
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
- size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
- theta_scale_length * sizeof(float_t)};
+ size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float),
+ theta_scale_length * sizeof(float)};
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t position_length = src1->ne[0];
int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1};
size_t theta_nb[GGML_MAX_DIMS];
- theta_nb[0] = sizeof(float_t);
+ theta_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
}
if (ctx.rope_cache.theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache));
}
- ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
+ ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST));
acl_theta_scale_tensor =
- ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float start = 0;
} else {
// use cache
acl_theta_scale_tensor =
- ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
}
ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool());
// freq_factors
if (src2) {
- freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float_t));
+ freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float));
void* freq_fac_res_ptr = freq_fac_res_allocator.get();
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor(
- freq_fac_res_ptr, ACL_FLOAT, sizeof(float_t),
+ freq_fac_res_ptr, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor);
// power * position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
- theta_length * sizeof(float_t));
+ theta_length * sizeof(float));
void* theta_buffer = theta_allocator.get();
aclTensor* acl_theta_tensor =
- ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// sin/cos
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
- theta_length * sizeof(float_t));
+ theta_length * sizeof(float));
void* sin_buffer = sin_allocator.get();
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
- sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
+ sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
- theta_length * sizeof(float_t));
+ theta_length * sizeof(float));
void* cos_buffer = cos_allocator.get();
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
- cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
+ cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
- sin_reshape_nb[0] = sizeof(float_t);
+ sin_reshape_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_repeat_tensor =
- ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_repeat_tensor =
- ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
// repeat
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
- sin_reshape_nb[0] = sizeof(float_t);
+ sin_reshape_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_reshape_tensor =
- ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_reshape_tensor =
- ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_src = ggml_cann_create_tensor(src0);
void* minus_one_scale_buffer = nullptr;
ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0));
ggml_cann_pool_alloc minus_one_scale_allocator(
- ctx.pool(), sizeof(float_t) * src0->ne[0]);
+ ctx.pool(), sizeof(float) * src0->ne[0]);
if (!is_neox) {
// roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...]
input_roll_buffer = roll_allocator.get();
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
- minus_one_nb[0] = sizeof(float_t);
+ minus_one_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_values(
- ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
- minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
+ ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0],
+ minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1);
int64_t dim = 3;
int64_t* index = new int64_t[src0->ne[0]];
for (int i = 0; i < src0->ne[0]; i++) {
minus_one_scale_buffer = minus_one_scale_allocator.get();
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
- minus_one_nb[0] = sizeof(float_t);
+ minus_one_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_values(
- ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
- minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
+ ctx, minus_one_scale_buffer, sizeof(float) * src0->ne[0],
+ minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float), 1);
// -1 * first half
int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1};
size_t first_half_nb[GGML_MAX_DIMS];
- first_half_nb[0] = sizeof(float_t);
+ first_half_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1];
}
aclTensor* acl_first_half_tensor = ggml_cann_create_tensor(
- minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne,
+ minus_one_scale_buffer, ACL_FLOAT, sizeof(float), first_half_ne,
first_half_nb, GGML_MAX_DIMS);
bool inplace = true;
float scale = -1;
// TODO: ne0 != n_dims in mode2
} else if (src0->type == GGML_TYPE_F16) {
size_t input_fp32_nb[GGML_MAX_DIMS];
- input_fp32_nb[0] = sizeof(float_t);
+ input_fp32_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1];
}
ggml_cann_pool_alloc fp32_allocator1(
- ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
+ ctx.pool(), ggml_nelements(dst) * sizeof(float));
void* input_fp32_buffer1 = fp32_allocator1.get();
aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor(
- input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne,
+ input_fp32_buffer1, ACL_FLOAT, sizeof(float), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator2(
- ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
+ ctx.pool(), ggml_nelements(dst) * sizeof(float));
void* input_fp32_buffer2 = fp32_allocator2.get();
aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor(
- input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne,
+ input_fp32_buffer2, ACL_FLOAT, sizeof(float), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator(
- ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
+ ctx.pool(), ggml_nelements(dst) * sizeof(float));
output_fp32_buffer = fp32_allocator.get();
aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
- output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
+ output_fp32_buffer, ACL_FLOAT, sizeof(float), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1);
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,