RPC_CMD_INIT_TENSOR,
RPC_CMD_GET_ALLOC_SIZE,
RPC_CMD_HELLO,
+ RPC_CMD_DEVICE_COUNT,
RPC_CMD_COUNT,
};
+static_assert(RPC_CMD_HELLO == 14, "RPC_CMD_HELLO must be always 14");
+
// Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
uint8_t patch;
};
+struct rpc_msg_device_count_rsp {
+ uint32_t device_count;
+};
+
struct rpc_msg_get_alloc_size_req {
+ uint32_t device;
rpc_tensor tensor;
};
};
struct rpc_msg_alloc_buffer_req {
+ uint32_t device;
uint64_t size;
};
uint64_t remote_size;
};
+struct rpc_msg_get_alignment_req {
+ uint32_t device;
+};
+
struct rpc_msg_get_alignment_rsp {
uint64_t alignment;
};
+struct rpc_msg_get_max_size_req {
+ uint32_t device;
+};
+
struct rpc_msg_get_max_size_rsp {
uint64_t max_size;
};
uint8_t result;
};
+struct rpc_msg_get_device_memory_req {
+ uint32_t device;
+};
+
struct rpc_msg_get_device_memory_rsp {
uint64_t free_mem;
uint64_t total_mem;
struct ggml_backend_rpc_buffer_type_context {
std::string endpoint;
+ uint32_t device;
std::string name;
- size_t alignment;
- size_t max_size;
+ size_t alignment;
+ size_t max_size;
};
struct ggml_backend_rpc_context {
std::string endpoint;
+ uint32_t device;
std::string name;
};
static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
- rpc_msg_alloc_buffer_req request = {size};
+ rpc_msg_alloc_buffer_req request = {buft_ctx->device, size};
rpc_msg_alloc_buffer_rsp response;
auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
}
}
-static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
+static size_t get_alignment(const std::shared_ptr<socket_t> & sock, uint32_t device) {
+ rpc_msg_get_alignment_req request = {device};
rpc_msg_get_alignment_rsp response;
- bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
+ bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, &request, sizeof(request), &response, sizeof(response));
RPC_STATUS_ASSERT(status);
return response.alignment;
}
return buft_ctx->alignment;
}
-static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
+static size_t get_max_size(const std::shared_ptr<socket_t> & sock, uint32_t device) {
+ rpc_msg_get_max_size_req request = {device};
rpc_msg_get_max_size_rsp response;
- bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
+ bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, &request, sizeof(request), &response, sizeof(response));
RPC_STATUS_ASSERT(status);
return response.max_size;
}
auto sock = get_socket(buft_ctx->endpoint);
rpc_msg_get_alloc_size_req request;
-
+ request.device = buft_ctx->device;
request.tensor = serialize_tensor(tensor);
rpc_msg_get_alloc_size_rsp response;
tensors.push_back(serialize_tensor(tensor));
}
-static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
+static void serialize_graph(uint32_t device, const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
uint32_t n_nodes = cgraph->n_nodes;
std::vector<rpc_tensor> tensors;
std::unordered_set<ggml_tensor*> visited;
add_tensor(cgraph->nodes[i], tensors, visited);
}
// serialization format:
- // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
+ // | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
uint32_t n_tensors = tensors.size();
- int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
+ int output_size = 2*sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
output.resize(output_size, 0);
- memcpy(output.data(), &n_nodes, sizeof(n_nodes));
+ uint8_t * dest = output.data();
+ memcpy(dest, &device, sizeof(device));
+ dest += sizeof(device);
+ memcpy(dest, &n_nodes, sizeof(n_nodes));
+ dest += sizeof(n_nodes);
for (uint32_t i = 0; i < n_nodes; i++) {
- memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
+ memcpy(dest + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
}
- uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
- *out_ntensors = n_tensors;
- rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
+ dest += n_nodes * sizeof(uint64_t);
+ memcpy(dest, &n_tensors, sizeof(n_tensors));
+ dest += sizeof(n_tensors);
+ rpc_tensor * out_tensors = (rpc_tensor *)dest;
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
}
static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
std::vector<uint8_t> input;
- serialize_graph(cgraph, input);
+ serialize_graph(rpc_ctx->device, cgraph, input);
rpc_msg_graph_compute_rsp response;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
/* .graph_optimize = */ NULL,
};
-ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
+ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
+ std::string buft_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
// NOTE: buffer types are allocated and never freed; this is by design
static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
- auto it = buft_map.find(endpoint);
+ auto it = buft_map.find(buft_name);
if (it != buft_map.end()) {
return it->second;
}
GGML_LOG_ERROR("Failed to connect to %s\n", endpoint);
return nullptr;
}
- size_t alignment = get_alignment(sock);
- size_t max_size = get_max_size(sock);
+ size_t alignment = get_alignment(sock, device);
+ size_t max_size = get_max_size(sock, device);
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
/* .endpoint = */ endpoint,
- /* .name = */ "RPC[" + std::string(endpoint) + "]",
+ /* .device = */ device,
+ /* .name = */ buft_name,
/* .alignment = */ alignment,
/* .max_size = */ max_size
};
-
+ auto reg = ggml_backend_rpc_add_server(endpoint);
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
- /* .device = */ ggml_backend_rpc_add_device(endpoint),
+ /* .device = */ ggml_backend_reg_dev_get(reg, device),
/* .context = */ buft_ctx
};
- buft_map[endpoint] = buft;
+ buft_map[buft_name] = buft;
return buft;
}
-ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
+ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device) {
+ std::string dev_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
- /* .endpoint = */ endpoint,
- /* .name = */ "RPC[" + std::string(endpoint) + "]",
+ /* .endpoint = */ endpoint,
+ /* .device = */ device,
+ /* .name = */ dev_name
};
-
+ auto reg = ggml_backend_rpc_add_server(endpoint);
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .iface = */ ggml_backend_rpc_interface,
- /* .device = */ ggml_backend_rpc_add_device(endpoint),
+ /* .device = */ ggml_backend_reg_dev_get(reg, device),
/* .context = */ ctx
};
return backend;
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
}
-static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
+static void get_device_memory(const std::shared_ptr<socket_t> & sock, uint32_t device, size_t * free, size_t * total) {
+ rpc_msg_get_device_memory_req request;
+ request.device = device;
rpc_msg_get_device_memory_rsp response;
- bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
+ bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, &request, sizeof(request), &response, sizeof(response));
RPC_STATUS_ASSERT(status);
*free = response.free_mem;
*total = response.total_mem;
}
-void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
+void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total) {
auto sock = get_socket(endpoint);
if (sock == nullptr) {
*free = 0;
*total = 0;
return;
}
- get_device_memory(sock, free, total);
+ get_device_memory(sock, device, free, total);
}
// RPC server-side implementation
class rpc_server {
public:
- rpc_server(ggml_backend_t backend, const char * cache_dir)
- : backend(backend), cache_dir(cache_dir) {
+ rpc_server(std::vector<ggml_backend_t> backends, const char * cache_dir)
+ : backends(std::move(backends)), cache_dir(cache_dir) {
}
~rpc_server();
void hello(rpc_msg_hello_rsp & response);
- void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
- void get_alignment(rpc_msg_get_alignment_rsp & response);
- void get_max_size(rpc_msg_get_max_size_rsp & response);
+ bool alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
+ bool get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response);
+ bool get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response);
bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
bool free_buffer(const rpc_msg_free_buffer_req & request);
bool buffer_clear(const rpc_msg_buffer_clear_req & request);
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
- ggml_backend_t backend;
+ std::vector<ggml_backend_t> backends;
const char * cache_dir;
std::unordered_set<ggml_backend_buffer_t> buffers;
};
}
bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
+ uint32_t dev_id = request.device;
+ if (dev_id >= backends.size()) {
+ return false;
+ }
ggml_backend_buffer_type_t buft;
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
return false;
}
- LOG_DBG("[%s] buffer: %p, data: %p\n", __func__, (void*)tensor->buffer, tensor->data);
+ LOG_DBG("[%s] device: %d, buffer: %p, data: %p\n", __func__, dev_id, (void*)tensor->buffer, tensor->data);
if (tensor->buffer == nullptr) {
//No buffer allocated.
- buft = ggml_backend_get_default_buffer_type(backend);
+ buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
} else {
buft = tensor->buffer->buft;
}
return true;
}
-void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
- ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
+bool rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
+ uint32_t dev_id = request.device;
+ if (dev_id >= backends.size()) {
+ return false;
+ }
+ ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
response.remote_ptr = 0;
response.remote_size = 0;
if (buffer != nullptr) {
response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
response.remote_size = buffer->size;
- LOG_DBG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
+ LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n",
+ __func__, dev_id, request.size, response.remote_ptr, response.remote_size);
buffers.insert(buffer);
} else {
- LOG_DBG("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
+ LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> failed\n", __func__, dev_id, request.size);
}
+ return true;
}
-void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
- ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
+bool rpc_server::get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response) {
+ uint32_t dev_id = request.device;
+ if (dev_id >= backends.size()) {
+ return false;
+ }
+ ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
size_t alignment = ggml_backend_buft_get_alignment(buft);
- LOG_DBG("[%s] alignment: %lu\n", __func__, alignment);
+ LOG_DBG("[%s] device: %d, alignment: %lu\n", __func__, dev_id, alignment);
response.alignment = alignment;
+ return true;
}
-void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
- ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
+bool rpc_server::get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response) {
+ uint32_t dev_id = request.device;
+ if (dev_id >= backends.size()) {
+ return false;
+ }
+ ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
size_t max_size = ggml_backend_buft_get_max_size(buft);
- LOG_DBG("[%s] max_size: %lu\n", __func__, max_size);
+ LOG_DBG("[%s] device: %d, max_size: %lu\n", __func__, dev_id, max_size);
response.max_size = max_size;
+ return true;
}
bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
// serialization format:
- // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
- if (input.size() < sizeof(uint32_t)) {
+ // | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
+ if (input.size() < 2*sizeof(uint32_t)) {
+ return false;
+ }
+ const uint8_t * src = input.data();
+ uint32_t device;
+ memcpy(&device, src, sizeof(device));
+ src += sizeof(device);
+ if (device >= backends.size()) {
return false;
}
uint32_t n_nodes;
- memcpy(&n_nodes, input.data(), sizeof(n_nodes));
- if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
+ memcpy(&n_nodes, src, sizeof(n_nodes));
+ src += sizeof(n_nodes);
+ if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
return false;
}
- const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
+ const uint64_t * nodes = (const uint64_t *)src;
+ src += n_nodes*sizeof(uint64_t);
uint32_t n_tensors;
- memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
- if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
+ memcpy(&n_tensors, src, sizeof(n_tensors));
+ src += sizeof(n_tensors);
+ if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
return false;
}
- const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
- LOG_DBG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
+ const rpc_tensor * tensors = (const rpc_tensor *)src;
+ LOG_DBG("[%s] device: %u, n_nodes: %u, n_tensors: %u\n", __func__, device, n_nodes, n_tensors);
size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
return false;
}
}
- ggml_status status = ggml_backend_graph_compute(backend, graph);
+ ggml_status status = ggml_backend_graph_compute(backends[device], graph);
response.result = status;
return true;
}
}
}
-static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
- sockfd_t sockfd, size_t free_mem, size_t total_mem) {
- rpc_server server(backend, cache_dir);
+static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const char * cache_dir,
+ sockfd_t sockfd, const std::vector<size_t> & free_mem, const std::vector<size_t> & total_mem) {
+ rpc_server server(backends, cache_dir);
uint8_t cmd;
if (!recv_data(sockfd, &cmd, 1)) {
return;
// HELLO command is handled above
return;
}
+ case RPC_CMD_DEVICE_COUNT: {
+ if (!recv_msg(sockfd, nullptr, 0)) {
+ return;
+ }
+ rpc_msg_device_count_rsp response;
+ response.device_count = backends.size();
+ if (!send_msg(sockfd, &response, sizeof(response))) {
+ return;
+ }
+ break;
+ }
case RPC_CMD_ALLOC_BUFFER: {
rpc_msg_alloc_buffer_req request;
if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
rpc_msg_alloc_buffer_rsp response;
- server.alloc_buffer(request, response);
+ if (!server.alloc_buffer(request, response)) {
+ return;
+ }
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
break;
}
case RPC_CMD_GET_ALIGNMENT: {
- if (!recv_msg(sockfd, nullptr, 0)) {
+ rpc_msg_get_alignment_req request;
+ if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
rpc_msg_get_alignment_rsp response;
- server.get_alignment(response);
+ if (!server.get_alignment(request, response)) {
+ return;
+ }
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
break;
}
case RPC_CMD_GET_MAX_SIZE: {
- if (!recv_msg(sockfd, nullptr, 0)) {
+ rpc_msg_get_max_size_req request;
+ if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
rpc_msg_get_max_size_rsp response;
- server.get_max_size(response);
+ if (!server.get_max_size(request, response)) {
+ return;
+ }
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
break;
}
case RPC_CMD_GET_DEVICE_MEMORY: {
- if (!recv_msg(sockfd, nullptr, 0)) {
+ rpc_msg_get_device_memory_req request;
+ if (!recv_msg(sockfd, &request, sizeof(request))) {
+ return;
+ }
+ auto dev_id = request.device;
+ if (dev_id >= backends.size()) {
return;
}
rpc_msg_get_device_memory_rsp response;
- response.free_mem = free_mem;
- response.total_mem = total_mem;
+ response.free_mem = free_mem[dev_id];
+ response.total_mem = total_mem[dev_id];
+ LOG_DBG("[get_device_mem] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", dev_id,
+ response.free_mem, response.total_mem);
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
}
}
-void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
- const char * cache_dir,
- size_t free_mem, size_t total_mem) {
+void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
+ size_t n_threads, size_t n_devices,
+ ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem) {
+ if (n_devices == 0 || devices == nullptr || free_mem == nullptr || total_mem == nullptr) {
+ fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n");
+ return;
+ }
+ std::vector<ggml_backend_t> backends;
+ std::vector<size_t> free_mem_vec(free_mem, free_mem + n_devices);
+ std::vector<size_t> total_mem_vec(total_mem, total_mem + n_devices);
printf("Starting RPC server v%d.%d.%d\n",
RPC_PROTO_MAJOR_VERSION,
RPC_PROTO_MINOR_VERSION,
RPC_PROTO_PATCH_VERSION);
printf(" endpoint : %s\n", endpoint);
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
- printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
+ printf("Devices:\n");
+ for (size_t i = 0; i < n_devices; i++) {
+ auto dev = devices[i];
+ printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
+ total_mem[i] / 1024 / 1024, free_mem[i] / 1024 / 1024);
+ auto backend = ggml_backend_dev_init(dev, nullptr);
+ if (!backend) {
+ fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev));
+ return;
+ }
+ backends.push_back(backend);
+ ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
+ if (reg) {
+ auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
+ if (ggml_backend_set_n_threads_fn) {
+ ggml_backend_set_n_threads_fn(backend, n_threads);
+ }
+ }
+ }
std::string host;
int port;
fprintf(stderr, "Failed to accept client connection\n");
return;
}
- printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
+ printf("Accepted client connection\n");
fflush(stdout);
- rpc_serve_client(backend, cache_dir, client_socket->fd, free_mem, total_mem);
+ rpc_serve_client(backends, cache_dir, client_socket->fd, free_mem_vec, total_mem_vec);
printf("Client connection closed\n");
fflush(stdout);
}
#ifdef _WIN32
WSACleanup();
#endif
+ for (auto backend : backends) {
+ ggml_backend_free(backend);
+ }
}
// device interface
struct ggml_backend_rpc_device_context {
std::string endpoint;
+ uint32_t device;
std::string name;
+ std::string description;
};
static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
- return ctx->name.c_str();
+ return ctx->description.c_str();
}
static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
- ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
-
- GGML_UNUSED(dev);
+ ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), ctx->device, free, total);
}
static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
- return ggml_backend_rpc_init(ctx->endpoint.c_str());
+ return ggml_backend_rpc_init(ctx->endpoint.c_str(), ctx->device);
GGML_UNUSED(params);
}
static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
- return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
+ return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str(), ctx->device);
GGML_UNUSED(dev);
}
}
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
- return buft_ctx->endpoint == dev_ctx->endpoint;
+ return buft_ctx->endpoint == dev_ctx->endpoint && buft_ctx->device == dev_ctx->device;
}
static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
// backend reg interface
-static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
- return "RPC";
+struct ggml_backend_rpc_reg_context {
+ std::string name;
+ std::vector<ggml_backend_dev_t> devices;
+};
- GGML_UNUSED(reg);
+static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
+ ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
+ return ctx ? ctx->name.c_str() : "RPC";
}
static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
- return 0;
-
- GGML_UNUSED(reg);
+ ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
+ return ctx ? ctx->devices.size() : 0;
}
static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
- GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
-
- GGML_UNUSED(reg);
- GGML_UNUSED(index);
+ ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
+ if (ctx == nullptr) {
+ GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_rpc_add_server instead");
+ } else {
+ GGML_ASSERT(index < ctx->devices.size());
+ return ctx->devices[index];
+ }
}
static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
- if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
- return (void *)ggml_backend_rpc_add_device;
+ if (std::strcmp(name, "ggml_backend_rpc_add_server") == 0) {
+ return (void *)ggml_backend_rpc_add_server;
}
if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
return (void *)ggml_backend_rpc_start_server;
return &ggml_backend_rpc_reg;
}
-ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
- static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
+static uint32_t ggml_backend_rpc_get_device_count(const char * endpoint) {
+ auto sock = get_socket(endpoint);
+ rpc_msg_device_count_rsp response;
+ bool status = send_rpc_cmd(sock, RPC_CMD_DEVICE_COUNT, nullptr, 0, &response, sizeof(response));
+ RPC_STATUS_ASSERT(status);
+ return response.device_count;
+}
+static const ggml_backend_reg_i ggml_backend_rpc_reg_interface = {
+ /* .get_name = */ ggml_backend_rpc_reg_get_name,
+ /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
+ /* .get_device = */ ggml_backend_rpc_reg_get_device,
+ /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
+};
+
+ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint) {
+ static std::unordered_map<std::string, ggml_backend_reg_t> reg_map;
static std::mutex mutex;
+ static uint32_t dev_id = 0;
std::lock_guard<std::mutex> lock(mutex);
-
- if (dev_map.find(endpoint) != dev_map.end()) {
- return dev_map[endpoint];
+ if (reg_map.find(endpoint) != reg_map.end()) {
+ return reg_map[endpoint];
}
-
- ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
- /* .endpoint = */ endpoint,
- /* .name = */ "RPC[" + std::string(endpoint) + "]",
- };
-
- ggml_backend_dev_t dev = new ggml_backend_device {
- /* .iface = */ ggml_backend_rpc_device_i,
- /* .reg = */ ggml_backend_rpc_reg(),
- /* .context = */ ctx,
+ uint32_t dev_count = ggml_backend_rpc_get_device_count(endpoint);
+ if (dev_count == 0) {
+ return nullptr;
+ }
+ ggml_backend_rpc_reg_context * ctx = new ggml_backend_rpc_reg_context;
+ ctx->name = "RPC[" + std::string(endpoint) + "]";
+ for (uint32_t ind = 0; ind < dev_count; ind++) {
+ std::string dev_name = "RPC" + std::to_string(dev_id);
+ std::string dev_desc = std::string(endpoint);
+ ggml_backend_rpc_device_context * dev_ctx = new ggml_backend_rpc_device_context {
+ /* .endpoint = */ endpoint,
+ /* .device = */ ind,
+ /* .name = */ dev_name,
+ /* .description = */ dev_desc
+ };
+
+ ggml_backend_dev_t dev = new ggml_backend_device {
+ /* .iface = */ ggml_backend_rpc_device_i,
+ /* .reg = */ ggml_backend_rpc_reg(),
+ /* .context = */ dev_ctx,
+ };
+ ctx->devices.push_back(dev);
+ dev_id++;
+ }
+ ggml_backend_reg_t reg = new ggml_backend_reg {
+ /* .api_version = */ GGML_BACKEND_API_VERSION,
+ /* .iface = */ ggml_backend_rpc_reg_interface,
+ /* .context = */ ctx
};
-
- dev_map[endpoint] = dev;
-
- return dev;
+ reg_map[endpoint] = reg;
+ return reg;
}
+
GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)
#include <filesystem>
#include <algorithm>
#include <thread>
+#include <regex>
namespace fs = std::filesystem;
}
struct rpc_server_params {
- std::string host = "127.0.0.1";
- int port = 50052;
- size_t backend_mem = 0;
- bool use_cache = false;
- int n_threads = std::max(1U, std::thread::hardware_concurrency()/2);
- std::string device;
+ std::string host = "127.0.0.1";
+ int port = 50052;
+ bool use_cache = false;
+ int n_threads = std::max(1U, std::thread::hardware_concurrency()/2);
+ std::vector<std::string> devices;
+ std::vector<size_t> dev_mem;
};
static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) {
fprintf(stderr, "Usage: %s [options]\n\n", argv[0]);
fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -t, --threads number of threads for the CPU backend (default: %d)\n", params.n_threads);
- fprintf(stderr, " -d DEV, --device device to use\n");
- fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
- fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
- fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
- fprintf(stderr, " -c, --cache enable local file cache\n");
+ fprintf(stderr, " -h, --help show this help message and exit\n");
+ fprintf(stderr, " -t, --threads N number of threads for the CPU device (default: %d)\n", params.n_threads);
+ fprintf(stderr, " -d, --device <dev1,dev2,...> comma-separated list of devices\n");
+ fprintf(stderr, " -H, --host HOST host to bind to (default: %s)\n", params.host.c_str());
+ fprintf(stderr, " -p, --port PORT port to bind to (default: %d)\n", params.port);
+ fprintf(stderr, " -m, --mem <M1,M2,...> memory size for each device (in MB)\n");
+ fprintf(stderr, " -c, --cache enable local file cache\n");
fprintf(stderr, "\n");
}
if (++i >= argc) {
return false;
}
- params.device = argv[i];
- if (ggml_backend_dev_by_name(params.device.c_str()) == nullptr) {
- fprintf(stderr, "error: unknown device: %s\n", params.device.c_str());
- fprintf(stderr, "available devices:\n");
- for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
- auto * dev = ggml_backend_dev_get(i);
- size_t free, total;
- ggml_backend_dev_memory(dev, &free, &total);
- printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
+ const std::regex regex{ R"([,/]+)" };
+ std::string dev_str = argv[i];
+ std::sregex_token_iterator iter(dev_str.begin(), dev_str.end(), regex, -1);
+ std::sregex_token_iterator end;
+ for ( ; iter != end; ++iter) {
+ try {
+ params.devices.push_back(*iter);
+ } catch (const std::exception & ) {
+ fprintf(stderr, "error: invalid device: %s\n", iter->str().c_str());
+ return false;
}
- return false;
}
} else if (arg == "-p" || arg == "--port") {
if (++i >= argc) {
if (++i >= argc) {
return false;
}
- params.backend_mem = std::stoul(argv[i]) * 1024 * 1024;
+ const std::regex regex{ R"([,/]+)" };
+ std::string mem_str = argv[i];
+ std::sregex_token_iterator iter(mem_str.begin(), mem_str.end(), regex, -1);
+ std::sregex_token_iterator end;
+ for ( ; iter != end; ++iter) {
+ try {
+ size_t mem = std::stoul(*iter) * 1024 * 1024;
+ params.dev_mem.push_back(mem);
+ } catch (const std::exception & ) {
+ fprintf(stderr, "error: invalid memory size: %s\n", iter->str().c_str());
+ return false;
+ }
+ }
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv, params);
exit(0);
return true;
}
-static ggml_backend_t create_backend(const rpc_server_params & params) {
- ggml_backend_t backend = nullptr;
-
- if (!params.device.empty()) {
- ggml_backend_dev_t dev = ggml_backend_dev_by_name(params.device.c_str());
- if (dev) {
- backend = ggml_backend_dev_init(dev, nullptr);
- if (!backend) {
- fprintf(stderr, "Failed to create backend for device %s\n", params.device.c_str());
- return nullptr;
+static std::vector<ggml_backend_dev_t> get_devices(const rpc_server_params & params) {
+ std::vector<ggml_backend_dev_t> devices;
+ if (!params.devices.empty()) {
+ for (auto device : params.devices) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_name(device.c_str());
+ if (dev) {
+ devices.push_back(dev);
+ } else {
+ fprintf(stderr, "error: unknown device: %s\n", device.c_str());
+ fprintf(stderr, "available devices:\n");
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ auto * dev = ggml_backend_dev_get(i);
+ size_t free, total;
+ ggml_backend_dev_memory(dev, &free, &total);
+ printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
+ }
+ return {};
}
}
}
- if (!backend) {
- backend = ggml_backend_init_best();
- }
-
- if (backend) {
- fprintf(stderr, "%s: using %s backend\n", __func__, ggml_backend_name(backend));
-
- // set the number of threads
- ggml_backend_dev_t dev = ggml_backend_get_device(backend);
- ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
- if (reg) {
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
- if (ggml_backend_set_n_threads_fn) {
- ggml_backend_set_n_threads_fn(backend, params.n_threads);
+ // Try non-CPU devices first
+ if (devices.empty()) {
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+ if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
+ devices.push_back(dev);
}
}
}
- return backend;
-}
+ // If there are no accelerators, fallback to CPU device
+ if (devices.empty()) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
+ if (dev) {
+ devices.push_back(dev);
+ }
+ }
-static void get_backend_memory(ggml_backend_t backend, size_t * free_mem, size_t * total_mem) {
- ggml_backend_dev_t dev = ggml_backend_get_device(backend);
- GGML_ASSERT(dev != nullptr);
- ggml_backend_dev_memory(dev, free_mem, total_mem);
+ return devices;
}
int main(int argc, char * argv[]) {
fprintf(stderr, "\n");
}
- ggml_backend_t backend = create_backend(params);
- if (!backend) {
- fprintf(stderr, "Failed to create backend\n");
+ auto devices = get_devices(params);
+ if (devices.empty()) {
+ fprintf(stderr, "No devices found\n");
return 1;
}
std::string endpoint = params.host + ":" + std::to_string(params.port);
- size_t free_mem, total_mem;
- if (params.backend_mem > 0) {
- free_mem = params.backend_mem;
- total_mem = params.backend_mem;
- } else {
- get_backend_memory(backend, &free_mem, &total_mem);
+ std::vector<size_t> free_mem, total_mem;
+ for (size_t i = 0; i < devices.size(); i++) {
+ if (i < params.dev_mem.size()) {
+ free_mem.push_back(params.dev_mem[i]);
+ total_mem.push_back(params.dev_mem[i]);
+ } else {
+ size_t free, total;
+ ggml_backend_dev_memory(devices[i], &free, &total);
+ free_mem.push_back(free);
+ total_mem.push_back(total);
+ }
}
const char * cache_dir = nullptr;
std::string cache_dir_str;
return 1;
}
- start_server_fn(backend, endpoint.c_str(), cache_dir, free_mem, total_mem);
-
- ggml_backend_free(backend);
+ start_server_fn(endpoint.c_str(), cache_dir, params.n_threads, devices.size(),
+ devices.data(), free_mem.data(), total_mem.data());
return 0;
}