endfunction()
set(GGML_OPENCL_KERNELS
- ggml-opencl
- ggml-opencl_mm
- ggml-opencl_cvt
- ggml-opencl_gemv_noshuffle
- ggml-opencl_gemv_noshuffle_general
- ggml-opencl_mul_mat_Ab_Bi_8x4
- ggml-opencl_transpose_16
- ggml-opencl_transpose_32
- ggml-opencl_transpose_32_16
- ggml-opencl_im2col
+ add
+ clamp
+ cpy
+ cvt
+ diag_mask_inf
+ gelu
+ gemv_noshuffle_general
+ gemv_noshuffle
+ get_rows
+ im2col_f32
+ im2col_f16
+ mul_mat_Ab_Bi_8x4
+ mul_mv_f16_f16
+ mul_mv_f16_f32_1row
+ mul_mv_f16_f32_l4
+ mul_mv_f16_f32
+ mul_mv_f32_f32
+ mul_mv_q4_0_f32
+ mul_mv_q4_0_f32_v
+ mul_mv_q4_0_f32_8x_flat
+ mul_mv_q4_0_f32_1d_8x_flat
+ mul_mv_q4_0_f32_1d_16x_flat
+ mul_mv_q6_k
+ mul
+ norm
+ relu
+ rms_norm
+ rope
+ scale
+ silu
+ softmax_4_f32
+ softmax_4_f16
+ softmax_f32
+ softmax_f16
+ transpose
)
foreach (K ${GGML_OPENCL_KERNELS})
X1E,
};
+enum ADRENO_CL_COMPILER_TYPE {
+ E031,
+ DX,
+};
+
struct ggml_cl_version {
cl_uint major = 0;
cl_uint minor = 0;
};
+struct ggml_cl_compiler_version {
+ ADRENO_CL_COMPILER_TYPE type;
+ int major = -1;
+ int minor = -1;
+ int patch = -1;
+
+ bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
+ return major == x && minor == y && patch == z && type == t;
+ }
+ bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
+ return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
+ }
+ bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
+ return same(t, x, y, z) || newer_than(t, x, y, z);
+ }
+};
+
// Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
static ggml_cl_version parse_cl_version(std::string_view str) {
size_t major_str_begin = 0;
return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
}
-static int get_adreno_cl_compiler_version(const char *driver_version) {
+static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
std::string driver_ver_str(driver_version);
+ ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
size_t compiler_ver_pos = driver_ver_str.find("E031");
size_t compiler_ver_len = 13;
- size_t compiler_ver_offset = 5;
+ size_t compiler_major_offset = 5;
+ size_t compiler_minor_offset = 8;
+ size_t compiler_patch_offset = 11;
if (compiler_ver_pos == std::string::npos) {
compiler_ver_pos = driver_ver_str.find("DX");
if (compiler_ver_pos == std::string::npos) {
- return -1;
+ return {};
}
+ type = ADRENO_CL_COMPILER_TYPE::DX;
compiler_ver_len = 11;
- compiler_ver_offset = 3;
+ compiler_major_offset = 3;
}
std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
- std::string major_ver_str = compiler_ver_str.substr(compiler_ver_offset, 2);
- return std::atoi(major_ver_str.c_str());
+ int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
+ int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
+ int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
+ return { type, major, minor, patch };
}
// backend device context
cl_int alignment;
size_t max_alloc_size;
bool fp16_support;
+ bool has_vector_subgroup_broadcast;
+ ggml_cl_compiler_version adreno_cl_compiler_version;
int adreno_wave_size;
cl_context context;
cl_command_queue queue;
- cl_program program;
- cl_program program_1;
- cl_program program_2;
- cl_program program_im2col;
+ cl_program program_add;
+ cl_program program_clamp;
+ cl_program program_cpy;
+ cl_program program_cvt;
+ cl_program program_diag_mask_inf;
+ cl_program program_gelu;
+ cl_program program_gemv_noshuffle_general;
+ cl_program program_gemv_noshuffle;
+ cl_program program_get_rows;
+ cl_program program_im2col_f16;
+ cl_program program_im2col_f32;
+ cl_program program_mul_mat_Ab_Bi_8x4;
+ cl_program program_mul_mv_q4_0_f32;
+ cl_program program_mul_mv_q4_0_f32_v;
+ cl_program program_mul_mv_q4_0_f32_8x_flat;
+ cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
+ cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
+ cl_program program_mul_mv_q6_K;
+ cl_program program_mul_mv_f16_f16;
+ cl_program program_mul_mv_f16_f32_1row;
+ cl_program program_mul_mv_f16_f32_l4;
+ cl_program program_mul_mv_f16_f32;
+ cl_program program_mul_mv_f32_f32;
+ cl_program program_mul;
+ cl_program program_norm;
+ cl_program program_relu;
+ cl_program program_rms_norm;
+ cl_program program_rope;
+ cl_program program_scale;
+ cl_program program_silu;
+ cl_program program_softmax_f32;
+ cl_program program_softmax_f16;
+ cl_program program_softmax_4_f32;
+ cl_program program_softmax_4_f16;
cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
cl_kernel kernel_mul_mat_f16_f32;
cl_kernel kernel_mul_mat_f16_f32_l4;
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
- cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0, kernel_mul_mat_q4_0_f32_flat;
+ cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
- cl_kernel kernel_convert_block_q4_0_noshuffle, kernel_mul_mat_q4_0_f32_flat_v0,
- kernel_mul_mat_q4_0_f32_flat_img_v0;
+ cl_kernel kernel_convert_block_q4_0_noshuffle;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
- cl_program program_transpose_32;
- cl_program program_transpose_32_16;
- cl_program program_transpose_16;
+ cl_program program_transpose;
+
cl_kernel kernel_transpose_32;
cl_kernel kernel_transpose_32_16;
cl_kernel kernel_transpose_16;
return p;
}
+static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
+ cl_int err;
+
+ // compiler options for general kernels
+ auto opencl_c_std =
+ std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
+ std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
+ " -cl-mad-enable -cl-unsafe-math-optimizations"
+ " -cl-finite-math-only -cl-fast-relaxed-math";
+
+ GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
+
+ // add
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "add.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("add.cl");
+#endif
+ backend_ctx->program_add =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
+ CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // clamp
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "clamp.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("clamp.cl");
+#endif
+ backend_ctx->program_clamp =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // cpy
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "cpy.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("cpy.cl");
+#endif
+ backend_ctx->program_cpy =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // cvt
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "cvt.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("cvt.cl");
+#endif
+ backend_ctx->program_cvt =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
+ CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
+ CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // diag_mask_inf
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "diag_mask_inf.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("diag_mask_inf.cl");
+#endif
+ backend_ctx->program_diag_mask_inf =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
+ CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // gelu
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "gelu.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("gelu.cl");
+#endif
+ backend_ctx->program_gelu =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
+ CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
+ CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
+ CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // get_rows
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "get_rows.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("get_rows.cl");
+#endif
+ backend_ctx->program_get_rows =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // im2col_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "im2col_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("im2col_f32.cl");
+#endif
+ backend_ctx->program_im2col_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // im2col_f16
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "im2col_f16.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("im2col_f16.cl");
+#endif
+ backend_ctx->program_im2col_f16 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_q4_0_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_q4_0_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
+#endif
+ backend_ctx->program_mul_mv_q4_0_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_q4_0_f32_v
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_q4_0_f32_v.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
+#endif
+ backend_ctx->program_mul_mv_q4_0_f32_v =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_q4_0_f32_8x_flat
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_q4_0_f32_8x_flat.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
+#endif
+ backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_q4_0_f32_1d_8x_flat
+ // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
+ // those compiler versions since it is anyway not used for Adreno.
+ if (backend_ctx->gpu_family != ADRENO ||
+ backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
+ backend_ctx->adreno_cl_compiler_version.type == DX) {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
+#endif
+ backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_q4_0_f32_1d_16x_flat
+ // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
+ // those compiler versions since it is anyway not used for Adreno.
+ if (backend_ctx->gpu_family != ADRENO ||
+ backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
+ backend_ctx->adreno_cl_compiler_version.type == DX) {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
+#endif
+ backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_q6_k
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_q6_k.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_q6_k.cl");
+#endif
+ backend_ctx->program_mul_mv_q6_K =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_f16_f16
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_f16_f16.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
+#endif
+ backend_ctx->program_mul_mv_f16_f16 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_f16_f32_1row
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_f16_f32_1row.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
+#endif
+ backend_ctx->program_mul_mv_f16_f32_1row =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_f16_f32_l4
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_f16_f32_l4.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
+#endif
+ backend_ctx->program_mul_mv_f16_f32_l4 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_f16_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_f16_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
+#endif
+ backend_ctx->program_mul_mv_f16_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mv_f32_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_f32_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
+#endif
+ backend_ctx->program_mul_mv_f32_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul.cl");
+#endif
+ backend_ctx->program_mul =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
+ CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // norm
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "norm.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("norm.cl");
+#endif
+ backend_ctx->program_norm =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // relu
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "relu.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("relu.cl");
+#endif
+ backend_ctx->program_relu =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // rms_norm
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "rms_norm.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("rms_norm.cl");
+#endif
+ backend_ctx->program_rms_norm =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // rope
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "rope.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("rope.cl");
+#endif
+ backend_ctx->program_rope =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // scale
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "scale.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("scale.cl");
+#endif
+ backend_ctx->program_scale =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // silu
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "silu.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("silu.cl");
+#endif
+ backend_ctx->program_silu =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
+ CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // softmax_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "softmax_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("softmax_f32.cl");
+#endif
+ backend_ctx->program_softmax_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // softmax_f16
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "softmax_f16.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("softmax_f16.cl");
+#endif
+ backend_ctx->program_softmax_f16 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // softmax_4_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "softmax_4_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("softmax_4_f32.cl");
+#endif
+ backend_ctx->program_softmax_4_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // softmax_4_f16
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "softmax_4_f16.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("softmax_4_f16.cl");
+#endif
+ backend_ctx->program_softmax_4_f16 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // Adreno kernels
+#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
+ // transpose
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "transpose.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("transpose.cl");
+#endif
+ backend_ctx->program_transpose =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
+ CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
+ CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // gemv_noshuffle_general
+ {
+ std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
+ " -cl-mad-enable "
+ " -DSIMDGROUP_WIDTH=" +
+ std::to_string(backend_ctx->adreno_wave_size);
+ if (backend_ctx->has_vector_subgroup_broadcast) {
+ CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
+ }
+
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src_CL_gemv_general {
+ #include "gemv_noshuffle_general.cl.h"
+ };
+#else
+ const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
+#endif
+
+ backend_ctx->program_CL_gemv_general = build_program_from_source(
+ backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
+
+ CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // gemv_noshuffle
+ {
+ // Gemv 2048, 16384
+ std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
+ " -cl-mad-enable "
+ " -DLINE_STRIDE_A=2048 "
+ " -DBLOCK_STRIDE_A=16384 "
+ " -DSIMDGROUP_WIDTH=" +
+ std::to_string(backend_ctx->adreno_wave_size);
+ if (backend_ctx->has_vector_subgroup_broadcast) {
+ CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
+ }
+
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src_CL_gemv {
+ #include "gemv_noshuffle.cl.h"
+ };
+#else
+ const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
+#endif
+
+ backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
+ backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
+ CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
+ GGML_LOG_CONT(".");
+
+ // Gemv 2048, 16384
+ CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
+ " -cl-mad-enable "
+ " -DLINE_STRIDE_A=2048 "
+ " -DBLOCK_STRIDE_A=16384 "
+ " -DSIMDGROUP_WIDTH=" +
+ std::to_string(backend_ctx->adreno_wave_size);
+ if (backend_ctx->has_vector_subgroup_broadcast) {
+ CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
+ }
+
+ backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
+ backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
+ CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
+ GGML_LOG_CONT(".");
+
+ // Gemv 5504, 44032
+ CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
+ " -cl-mad-enable "
+ " -DLINE_STRIDE_A=5504 "
+ " -DBLOCK_STRIDE_A=44032 "
+ " -DSIMDGROUP_WIDTH=" +
+ std::to_string(backend_ctx->adreno_wave_size);
+ if (backend_ctx->has_vector_subgroup_broadcast) {
+ CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
+ }
+
+ backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
+ backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
+ CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
+ GGML_LOG_CONT(".");
+
+ // Gemv 16000, 128000
+ CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
+ " -cl-mad-enable "
+ " -DLINE_STRIDE_A=16000 "
+ " -DBLOCK_STRIDE_A=128000 "
+ " -DSIMDGROUP_WIDTH=" +
+ std::to_string(backend_ctx->adreno_wave_size);
+
+ if (backend_ctx->has_vector_subgroup_broadcast) {
+ CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
+ }
+
+ backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
+ backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
+ CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
+ // mul_mat_Ab_Bi_8x4
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src_CL_gemm {
+ #include "mul_mat_Ab_Bi_8x4.cl.h"
+ };
+#else
+ const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
+#endif
+ backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
+ CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
+ GGML_LOG_CONT(".");
+ }
+#endif // GGML_OPENCL_USE_ADRENO_KERNELS
+ GGML_LOG_CONT("\n");
+}
+
static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
static bool initialized = false;
static ggml_backend_opencl_context *backend_ctx = nullptr;
GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
backend_ctx->driver_version = driver_version;
- int adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
- bool has_vector_subgroup_broadcast =
- adreno_cl_compiler_version >= 47 || adreno_cl_compiler_version == 17;
+ backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
+ backend_ctx->has_vector_subgroup_broadcast =
+ backend_ctx->adreno_cl_compiler_version.major >= 47 ||
+ backend_ctx->adreno_cl_compiler_version.major == 17;
GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
- has_vector_subgroup_broadcast ? "true" : "false");
+ backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
size_t ext_str_size;
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
#endif
CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "ggml-opencl.cl.h"
- };
-#else
- const std::string kernel_src = read_file("ggml-opencl.cl");
-#endif
-
- auto opencl_c_std =
- std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
-
- std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable -cl-unsafe-math-optimizations"
- " -cl-finite-math-only -cl-fast-relaxed-math";
- backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts);
-
- // Non matmul kernels.
- CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program, "kernel_get_rows_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program, "kernel_add", &err), err));
- CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program, "kernel_add_row", &err), err));
- CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program, "kernel_mul", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program, "kernel_mul_row", &err), err));
- CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program, "kernel_scale", &err), err));
- CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program, "kernel_silu", &err), err));
- CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program, "kernel_gelu_quick", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_quick_4", &err), err));
- CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
- CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
- CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program, "kernel_rms_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf", &err), err));
- CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf_8", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program, "kernel_soft_max", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_multi_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_multi_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_vision_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_vision_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f32", &err), err));
-
- // Matmul kernels.
- CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f32_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_1row", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_l4", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_v", &err), err));
-
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_flat", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_convert_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_restore_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
-
- // Load additional mulmat kernels.
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_1 {
- #include "ggml-opencl_mm.cl.h"
- };
-#else
- const std::string kernel_src_1 = read_file("ggml-opencl_mm.cl");
-#endif
- backend_ctx->program_1 = build_program_from_source(context, device, kernel_src_1.c_str(), compile_opts);
-
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mv_q6_K_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_v0", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_img_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_img_v0", &err), err));
-
- // Load additional data conversion kernels.
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_2 {
- #include "ggml-opencl_cvt.cl.h"
- };
-#else
- const std::string kernel_src_2 = read_file("ggml-opencl_cvt.cl");
-#endif
- backend_ctx->program_2 = build_program_from_source(context, device, kernel_src_2.c_str(), compile_opts);
-
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));
+ // Load kernels
+ load_cl_kernels(backend_ctx, opencl_c_version);
- // im2col kernels
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_im2col {
- #include "ggml-opencl_im2col.cl.h"
- };
-#else
- const std::string kernel_src_im2col = read_file("ggml-opencl_im2col.cl");
-#endif
- backend_ctx->program_im2col = build_program_from_source(context, device, kernel_src_im2col.c_str(), compile_opts);
-
- CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col, "kernel_im2col_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col, "kernel_im2col_f16", &err), err));
-
- // Kernels for Adreno
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string transpose_32_src {
- #include "ggml-opencl_transpose_32.cl.h"
- };
-#else
- const std::string transpose_32_src = read_file("ggml-opencl_transpose_32.cl");
-#endif
- backend_ctx->program_transpose_32 = build_program_from_source(context, device, transpose_32_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose_32, "kernel_transpose_32", &err), err));
-
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string transpose_32_16_src {
- #include "ggml-opencl_transpose_32_16.cl.h"
- };
-#else
- const std::string transpose_32_16_src = read_file("ggml-opencl_transpose_32_16.cl");
-#endif
- backend_ctx->program_transpose_32_16 = build_program_from_source(context, device, transpose_32_16_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose_32_16, "kernel_transpose_32_16", &err), err));
-
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string transpose_16_src {
- #include "ggml-opencl_transpose_16.cl.h"
- };
-#else
- const std::string transpose_16_src = read_file("ggml-opencl_transpose_16.cl");
-#endif
- backend_ctx->program_transpose_16 = build_program_from_source(context, device, transpose_16_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err));
-
- // Gemv general
- std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv_general {
- #include "ggml-opencl_gemv_noshuffle_general.cl.h"
- };
-#else
- const std::string kernel_src_CL_gemv_general = read_file("ggml-opencl_gemv_noshuffle_general.cl");
-#endif
-
- backend_ctx->program_CL_gemv_general = build_program_from_source(
- context, device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
-
- // Gemv 2048, 16384
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv {
- #include "ggml-opencl_gemv_noshuffle.cl.h"
- };
-#else
- const std::string kernel_src_CL_gemv = read_file("ggml-opencl_gemv_noshuffle.cl");
-#endif
-
- backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
- context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
-
- // Gemv 2048, 16384
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
-
- backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
- context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
-
- // Gemv 5504, 44032
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=5504 "
- " -DBLOCK_STRIDE_A=44032 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
-
- backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
- context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
-
- // Gemv 16000, 128000
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=16000 "
- " -DBLOCK_STRIDE_A=128000 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
-
- backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
-
- // Gemm
-#ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemm {
- #include "ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h"
- };
-#else
- const std::string kernel_src_CL_gemm = read_file("ggml-opencl_mul_mat_Ab_Bi_8x4.cl");
-#endif
- backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
-
- // TODO: fixme: these sizes are hardcoded for now.
- // they should be allocated based on the model's size
- // and the device's max alloc size
// Allocate intermediate buffers and images
size_t required_A_q_d_bytes = 311164928;
size_t required_A_s_d_bytes = 38895616;
// The optimized gemm and gemv kernels are used for large matrices without batch.
// tensor is the quantized weights matrix.
-inline bool use_adreno_kernels(const ggml_tensor *tensor) {
- return tensor->ne[0] >= 512 && tensor->ne[1] >= 512 &&
+inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
+ int64_t threshold_ne0 = 512;
+ int64_t threshold_ne1 = 512;
+ if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
+ backend_ctx->adreno_cl_compiler_version.type != DX) {
+ threshold_ne0 = 128;
+ threshold_ne1 = 128;
+ }
+ return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
// The optimized kernels need weights in natural order, so unshuffle.
- if (use_adreno_kernels(tensor)) {
+ if (use_adreno_kernels(backend_ctx, tensor)) {
kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
}
#else
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Only do transpose for large, non batched matrix
// TODO: use preallocated images instead of sub-buffer then image
- if (use_adreno_kernels(tensor)) {
+ if (use_adreno_kernels(backend_ctx, tensor)) {
// <----------------------------------------------------------------------------------> //
// start transpose
// <----------------------------------------------------------------------------------> //
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
- ggml_backend_opencl_device_context * dev_ctx =
- (ggml_backend_opencl_device_context *)backend->device->context;
+ //ggml_backend_opencl_device_context * dev_ctx =
+ // (ggml_backend_opencl_device_context *)backend->device->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
// Note, this kernel declares local memory in kernel args and the size
// depends on subgroup size.
- // Retrieve subgroup size.
// Note, this requires OpenCL 2.1 and above
+ // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
size_t sgs;
- CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
- CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
- sizeof(local_work_size), local_work_size,
- sizeof(size_t), &sgs, NULL));
+ //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
+ // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
+ // sizeof(local_work_size), local_work_size,
+ // sizeof(size_t), &sgs, NULL));
+ if (backend_ctx->gpu_family == ADRENO) {
+ sgs = 64;
+ } else if (backend_ctx->gpu_family == INTEL) {
+ sgs = 32;
+ } else {
+ GGML_ASSERT(false && "Unsupported GPU");
+ }
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
cl_context context = backend_ctx->context;
- if (ne01 && ne1 && use_adreno_kernels(src0)) {
+ if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
// init CL objects
// <--------------------------------------------> //
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// add
+//------------------------------------------------------------------------------
+
+// general-purpose kernel for addition of two tensors
+// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
+// cons: not very efficient
+kernel void kernel_add(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global char * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne10,
+ int ne11,
+ int ne12,
+ int ne13,
+ ulong nb10,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3
+) {
+ src0 = src0 + offset0;
+ src1 = src1 + offset1;
+ dst = dst + offsetd;
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ int i13 = i03 % ne13;
+ int i12 = i02 % ne12;
+ int i11 = i01 % ne11;
+
+ global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
+ global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
+ global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
+
+ for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
+ const int i10 = i0 % ne10;
+ *((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) + *((global float *)(src1_ptr + i10*nb10));
+ }
+}
+
+// assumption: src1 is a row
+// broadcast src1 into src0
+kernel void kernel_add_row(
+ global float4 * src0,
+ ulong offset0,
+ global float4 * src1,
+ ulong offset1,
+ global float4 * dst,
+ ulong offsetd,
+ int ne
+) {
+ src0 = (global float4*)((global char*)src0 + offset0);
+ src1 = (global float4*)((global char*)src1 + offset1);
+ dst = (global float4*)((global char*)dst + offsetd);
+
+ // This performs better than using %.
+ uint gid = get_global_id(0);
+ uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
+ dst[gid] = src0[gid] + src1[idx1];
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// clamp
+//------------------------------------------------------------------------------
+kernel void kernel_clamp(
+ global float * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd,
+ float min,
+ float max
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ dst[get_global_id(0)] = src0[get_global_id(0)] < min ?
+ min :
+ (src0[get_global_id(0)] > max ? max : src0[get_global_id(0)]);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// cpy
+//------------------------------------------------------------------------------
+
+kernel void kernel_cpy_f16_f16(
+ global half * src0,
+ ulong offset0,
+ global half * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3
+) {
+ src0 = (global half*)((global char*)src0 + offset0);
+ dst = (global half*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ int i3 = n / (ne2*ne1*ne0);
+ int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ global half * dst_data = (global half *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ global const half * src = (global half *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+ dst_data[i00] = src[0];
+ }
+}
+
+kernel void kernel_cpy_f16_f32(
+ global half * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3
+) {
+
+ src0 = (global half*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ int i3 = n / (ne2*ne1*ne0);
+ int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ global float * dst_data = (global float *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ global half * src = (global half *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+ dst_data[i00] = src[0];
+ }
+}
+
+kernel void kernel_cpy_f32_f16(
+ global float * src0,
+ ulong offset0,
+ global half * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global half*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ int i3 = n / (ne2*ne1*ne0);
+ int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ global half * dst_data = (global half *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ global const float * src = (global float *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+ dst_data[i00] = src[0];
+ }
+}
+
+kernel void kernel_cpy_f32_f32(
+ global float * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ int i3 = n / (ne2*ne1*ne0);
+ int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
+ int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
+ int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
+
+ global float * dst_data = (global float *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ global const float * src = (global float *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
+
+ dst_data[i00] = src[0];
+ }
+}
--- /dev/null
+//------------------------------------------------------------------------------
+// This file is contains kernels for data conversion.
+// These kernels are used when loading the model, so its performance is less
+// important.
+//------------------------------------------------------------------------------
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QR4_1 2
+#define QK5_0 32
+#define QR5_0 2
+#define QK5_1 32
+#define QR5_1 2
+#define QK8_0 32
+#define QR8_0 1
+#define QK_K 256
+#define K_QUANTS_PER_ITERATION 2
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+//------------------------------------------------------------------------------
+// kernel_convert_block_q4_0
+// Convert the block_q4_0 format to 2 separate arrays (AOS -> SOA).
+// This kernel does not deshuffle the bits.
+//------------------------------------------------------------------------------
+kernel void kernel_convert_block_q4_0(
+ global struct block_q4_0 * src0,
+ global uchar * dst_q,
+ global half * dst_d
+) {
+ global struct block_q4_0 * b = (global struct block_q4_0 *) src0 + get_global_id(0);
+ global uchar * q = (global uchar *) dst_q + QK4_0/2*get_global_id(0);
+ global half * d = (global half *) dst_d + get_global_id(0);
+
+ *d = b->d;
+
+ for (int i = 0; i < QK4_0/2; ++i) {
+ q[i] = b->qs[i];
+ }
+}
+
+kernel void kernel_restore_block_q4_0(
+ global uchar * src_q,
+ global half * src_d,
+ global struct block_q4_0 * dst
+) {
+ global struct block_q4_0 * b = (global struct block_q4_0 *) dst + get_global_id(0);
+ global uchar * q = (global uchar *) src_q + QK4_0/2*get_global_id(0);
+ global half * d = (global half *) src_d + get_global_id(0);
+
+ b->d = *d;
+ for (int i = 0; i < QK4_0/2; ++i) {
+ b->qs[i] = q[i];
+ }
+}
+
+//------------------------------------------------------------------------------
+// kernel_convert_block_q4_0_noshuffle
+// Flatten q4_0 weights and unshuffle the bits
+//------------------------------------------------------------------------------
+
+kernel void kernel_convert_block_q4_0_noshuffle(
+ global struct block_q4_0 * src0,
+ global uchar * dst_q,
+ global half * dst_d
+) {
+ global struct block_q4_0 * b = (global struct block_q4_0 *) src0 + get_global_id(0);
+ global uchar * q = (global uchar *) dst_q + QK4_0/2*get_global_id(0);
+ global half * d = (global half *) dst_d + get_global_id(0);
+
+ *d = b->d;
+ for (int i = 0; i < QK4_0/4; ++i) {
+ uchar x0 = b->qs[2*i + 0];
+ uchar x1 = b->qs[2*i + 1];
+
+ q[i + 0 ] = convert_uchar(x0 & 0x0F) | convert_uchar((x1 & 0x0F) << 4);
+ q[i + QK4_0/4] = convert_uchar((x0 & 0xF0) >> 4) | convert_uchar(x1 & 0xF0);
+
+#ifdef ADRENO_GPU
+ // Workaround for adreno - must have the following printf statement for
+ // the kernel to work properly. Otherwise it produces incorrect result.
+ // convert_uchar above also seems necessary.
+ // Compare against a large number so that it does not print anything.
+ // get_sub_group_local_id() also works.
+ if (get_global_id(0) == 65536*4096) {
+ printf("%04x - %02x\n", *(global ushort*)d, ((x0 & 0xF0) >> 4) | (x1 & 0xF0));
+ }
+#endif
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// diag_mask_inf kernels
+//------------------------------------------------------------------------------
+kernel void kernel_diag_mask_inf(
+ global float * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int n_past
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i02 = get_global_id(2);
+ int i01 = get_global_id(1);
+ int i00 = get_global_id(0);
+
+ if (i00 > n_past + i01) {
+ dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
+ } else {
+ dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
+ }
+}
+
+kernel void kernel_diag_mask_inf_8(
+ global float4 * src0,
+ ulong offset0,
+ global float4 * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int n_past
+) {
+ src0 = (global float4*)((global char*)src0 + offset0);
+ dst = (global float4*)((global char*)dst + offsetd);
+
+ int i = 2*get_global_id(0);
+
+ dst[i+0] = src0[i+0];
+ dst[i+1] = src0[i+1];
+ int i4 = 4*i;
+ int i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
+ int i01 = i4/(ne00); i4 -= i01*ne00;
+ int i00 = i4;
+ for (int k = 3; k >= 0; --k) {
+ if (i00 + 4 + k <= n_past + i01) {
+ break;
+ }
+ (&dst[i+1])[k] = -INFINITY;
+ if (i00 + k > n_past + i01) {
+ (&dst[i])[k] = -INFINITY;
+ }
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// gelu
+//------------------------------------------------------------------------------
+#define GELU_COEF_A 0.044715f
+#define GELU_QUICK_COEF -1.702f
+#define SQRT_2_OVER_PI 0.79788456080286535587989211986876f
+
+kernel void kernel_gelu(
+ global float * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ float x = src0[get_global_id(0)];
+
+ dst[get_global_id(0)] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
+}
+
+kernel void kernel_gelu_4(
+ global float4 * src0,
+ ulong offset0,
+ global float4 * dst,
+ ulong offsetd
+) {
+ src0 = (global float4*)((global char*)src0 + offset0);
+ dst = (global float4*)((global char*)dst + offsetd);
+
+ float4 x = src0[get_global_id(0)];
+
+ dst[get_global_id(0)] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
+}
+
+kernel void kernel_gelu_quick(
+ global float * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ float x = src0[get_global_id(0)];
+ dst[get_global_id(0)] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
+}
+
+kernel void kernel_gelu_quick_4(
+ global float4 * src0,
+ ulong offset0,
+ global float4 * dst,
+ ulong offsetd
+) {
+ src0 = (global float4*)((global char*)src0 + offset0);
+ dst = (global float4*)((global char*)dst + offsetd);
+
+ float4 x = src0[get_global_id(0)];
+ dst[get_global_id(0)] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+
+#ifdef cl_qcom_reqd_sub_group_size
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#endif
+
+// assume
+#define QK4_0 32
+#define N_SIMDGROUP 4
+
+#define dequantizeBlockAccum_ns_sgbroadcast_1_hi(total_sums, bits4, scale, y) \
+ float shared_y; \
+ shared_y = sub_group_broadcast(y.s0, 0); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 0); \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 0); \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 0); \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 0); \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 0); \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 0); \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 0); \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s0, 1); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 1); \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 1); \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 1); \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 1); \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 1); \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 1); \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 1); \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+
+
+#define dequantizeBlockAccum_ns_sgbroadcast_1_lo(total_sums, bits4, scale, y) \
+ shared_y = sub_group_broadcast(y.s0, 2); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 2); \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 2); \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 2); \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 2); \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 2); \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 2); \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 2); \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s0, 3); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 3); \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 3); \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 3); \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 3); \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 3); \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 3); \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 3); \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+
+
+#define dequantizeBlockAccum_ns_sgbroadcast_8_hi(total_sums, bits4, scale, y) \
+ float8 shared_y; \
+ shared_y = sub_group_broadcast(y, 0); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+ shared_y = sub_group_broadcast(y, 1); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+
+
+#define dequantizeBlockAccum_ns_sgbroadcast_8_lo(total_sums, bits4, scale, y) \
+ shared_y = sub_group_broadcast(y, 2); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+ shared_y = sub_group_broadcast(y, 3); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+__kernel void kernel_gemv_noshuffle(
+ __read_only image1d_buffer_t src0_q, // quantized A
+ global half2 * src0_d, // A scales
+ __read_only image1d_buffer_t src1, // B
+ ulong offset1, // offset to B (0)
+ global float * dst, // C
+ ulong offsetd, // offset to C (0)
+ uint K, // K
+ int ne01, // M
+ int ne02, // 1
+ int ne10, // K
+ int ne12, // 1
+ int ne0, // M
+ int ne1, // N
+ int r2, // 1
+ int r3)
+{
+ uint groupId = get_local_id(1);
+ uint gid = get_global_id(0);
+ ushort slid = get_sub_group_local_id();
+
+ __private uint4 regA;
+ __private half2 regS;
+ __private float8 regB;
+
+ __private float2 totalSum = (float2)(0.0f);
+
+ // loop along K in block granularity, skip 4 blocks every iter
+ for (uint k = groupId; k < (K / QK4_0); k += N_SIMDGROUP) {
+ regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of two rows
+ // first 4 fibers in each wave load 8 B values to its private scope
+ if (slid < 4) {
+ regB.s0123 = read_imagef(src1, (slid * 2 + k * 8));
+ regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8));
+ }
+
+ // load half weights for two blocks in consecutive rows
+ regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x;
+ regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x;
+ regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x;
+ regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x;
+#ifdef VECTOR_SUB_GROUP_BROADCAT
+ dequantizeBlockAccum_ns_sgbroadcast_8_hi(totalSum, as_ushort8(regA), regS, regB);
+#else
+ dequantizeBlockAccum_ns_sgbroadcast_1_hi(totalSum, as_ushort8(regA), regS, regB);
+#endif // VECTOR_SUB_GROUP_BROADCAT
+
+ regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x;
+ regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x;
+ regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x;
+ regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x;
+#ifdef VECTOR_SUB_GROUP_BROADCAT
+ dequantizeBlockAccum_ns_sgbroadcast_8_lo(totalSum, as_ushort8(regA), regS, regB);
+#else
+ dequantizeBlockAccum_ns_sgbroadcast_1_lo(totalSum, as_ushort8(regA), regS, regB);
+#endif // VECTOR_SUB_GROUP_BROADCAT
+ }
+
+ // reduction in local memory, assumes #wave=4
+ __local float2 reduceLM[SIMDGROUP_WIDTH * 3];
+ if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum;
+ if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum;
+ if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum;
+ barrier(CLK_LOCAL_MEM_FENCE);
+ if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
+ if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
+ if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
+
+ // 2 outputs per fiber in wave 0
+ if (groupId == 0) {
+ dst = (global float*)((global char*)dst + offsetd);
+ vstore2(totalSum, 0, &(dst[gid * 2]));
+ }
+
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+
+#ifdef cl_qcom_reqd_sub_group_size
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#endif
+
+// assume
+#define QK4_0 32
+#define N_SIMDGROUP 4
+
+#define dequantizeBlockAccum_ns_sgbroadcast_1_hi(total_sums, bits4, scale, y) \
+ float shared_y; \
+ shared_y = sub_group_broadcast(y.s0, 0); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 0); \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 0); \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 0); \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 0); \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 0); \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 0); \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 0); \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s0, 1); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 1); \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 1); \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 1); \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 1); \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 1); \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 1); \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 1); \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+
+
+#define dequantizeBlockAccum_ns_sgbroadcast_1_lo(total_sums, bits4, scale, y) \
+ shared_y = sub_group_broadcast(y.s0, 2); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 2); \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 2); \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 2); \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 2); \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 2); \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 2); \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 2); \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s0, 3); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s1, 3); \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s2, 3); \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s3, 3); \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s4, 3); \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s5, 3); \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s6, 3); \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
+ shared_y = sub_group_broadcast(y.s7, 3); \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
+
+
+#define dequantizeBlockAccum_ns_sgbroadcast_8_hi(total_sums, bits4, scale, y) \
+ float8 shared_y; \
+ shared_y = sub_group_broadcast(y, 0); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+ shared_y = sub_group_broadcast(y, 1); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+
+
+#define dequantizeBlockAccum_ns_sgbroadcast_8_lo(total_sums, bits4, scale, y) \
+ shared_y = sub_group_broadcast(y, 2); \
+ total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+ shared_y = sub_group_broadcast(y, 3); \
+ total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
+ total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
+ total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
+ total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
+ total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
+ total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
+ total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
+ total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
+ total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
+ total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
+ total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
+ total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
+ total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
+ total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
+ total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
+ total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+__kernel void kernel_gemv_noshuffle(
+ __read_only image1d_buffer_t src0_q, // quantized A
+ global half2 * src0_d, // A scales
+ __read_only image1d_buffer_t src1, // B
+ ulong offset1, // offset to B (0)
+ global float * dst, // C
+ ulong offsetd, // offset to C (0)
+ int ne00, // K
+ int ne01, // M
+ int ne02, // 1
+ int ne10, // K
+ int ne12, // 1
+ int ne0, // M
+ int ne1, // N
+ int r2, // 1
+ int r3)
+{
+ uint groupId = get_local_id(1);
+ uint gid = get_global_id(0);
+ ushort slid = get_sub_group_local_id();
+
+ uint K = ne00;
+ uint M = ne01;
+
+ uint LINE_STRIDE_A = M / 2;
+ uint BLOCK_STRIDE_A = N_SIMDGROUP * M;
+
+ __private uint4 regA;
+ __private half2 regS;
+ __private float8 regB;
+
+ __private float2 totalSum = (float2)(0.0f);
+
+ // loop along K in block granularity, skip 4 blocks every iter
+ for (uint k = groupId; k < (K / QK4_0); k += N_SIMDGROUP) {
+ regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of two rows
+ // first 4 fibers in each wave load 8 B values to its private scope
+ if (slid < 4) {
+ regB.s0123 = read_imagef(src1, (slid * 2 + k * 8));
+ regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8));
+ }
+
+ // load half weights for two blocks in consecutive rows
+ regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x;
+ regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x;
+ regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x;
+ regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x;
+#ifdef VECTOR_SUB_GROUP_BROADCAT
+ dequantizeBlockAccum_ns_sgbroadcast_8_hi(totalSum, as_ushort8(regA), regS, regB);
+#else
+ dequantizeBlockAccum_ns_sgbroadcast_1_hi(totalSum, as_ushort8(regA), regS, regB);
+#endif // VECTOR_SUB_GROUP_BROADCAT
+
+ regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x;
+ regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x;
+ regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x;
+ regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x;
+#ifdef VECTOR_SUB_GROUP_BROADCAT
+ dequantizeBlockAccum_ns_sgbroadcast_8_lo(totalSum, as_ushort8(regA), regS, regB);
+#else
+ dequantizeBlockAccum_ns_sgbroadcast_1_lo(totalSum, as_ushort8(regA), regS, regB);
+#endif // VECTOR_SUB_GROUP_BROADCAT
+ }
+
+ // reduction in local memory, assumes #wave=4
+ __local float2 reduceLM[SIMDGROUP_WIDTH * 3];
+ if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum;
+ if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum;
+ if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum;
+ barrier(CLK_LOCAL_MEM_FENCE);
+ if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
+ if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
+ if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
+
+ // 2 outputs per fiber in wave 0
+ if (groupId == 0) {
+ dst = (global float*)((global char*)dst + offsetd);
+ vstore2(totalSum, 0, &(dst[gid * 2]));
+ }
+
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+#define QK4_0 32
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+
+//------------------------------------------------------------------------------
+// dequantize_q4_0_f32, dequantize_q4_0_f16
+//------------------------------------------------------------------------------
+void dequantize_q4_0_f32(global struct block_q4_0 * xb, short il, float16 * reg) {
+ global ushort * qs = ((global ushort *)xb + 1);
+ float d1 = il ? (xb->d / 16.h) : xb->d;
+ float d2 = d1 / 256.f;
+ float md = -8.h * xb->d;
+ ushort mask0 = il ? 0x00F0 : 0x000F;
+ ushort mask1 = mask0 << 8;
+
+ reg->s0 = d1 * (qs[0] & mask0) + md;
+ reg->s1 = d2 * (qs[0] & mask1) + md;
+
+ reg->s2 = d1 * (qs[1] & mask0) + md;
+ reg->s3 = d2 * (qs[1] & mask1) + md;
+
+ reg->s4 = d1 * (qs[2] & mask0) + md;
+ reg->s5 = d2 * (qs[2] & mask1) + md;
+
+ reg->s6 = d1 * (qs[3] & mask0) + md;
+ reg->s7 = d2 * (qs[3] & mask1) + md;
+
+ reg->s8 = d1 * (qs[4] & mask0) + md;
+ reg->s9 = d2 * (qs[4] & mask1) + md;
+
+ reg->sa = d1 * (qs[5] & mask0) + md;
+ reg->sb = d2 * (qs[5] & mask1) + md;
+
+ reg->sc = d1 * (qs[6] & mask0) + md;
+ reg->sd = d2 * (qs[6] & mask1) + md;
+
+ reg->se = d1 * (qs[7] & mask0) + md;
+ reg->sf = d2 * (qs[7] & mask1) + md;
+}
+
+
+//------------------------------------------------------------------------------
+// get_rows
+//------------------------------------------------------------------------------
+kernel void kernel_get_rows_f32(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ ulong nb01,
+ ulong nb02,
+ int ne10,
+ ulong nb10,
+ ulong nb11,
+ ulong nb1,
+ ulong nb2
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i10 = get_group_id(0);
+ int i11 = get_group_id(1);
+
+ int r = ((global int *) ((global char *) src1 + i11*nb11 + i10*nb10))[0];
+
+ int i02 = i11;
+
+ for (int ind = get_local_id(0); ind < ne00; ind += get_local_size(0)) {
+ ((global float *) ((global char *) dst + i11*nb2 + i10*nb1))[ind] =
+ ((global float *) ((global char *) src0 + r*nb01 + i02*nb02))[ind];
+ }
+}
+
+kernel void kernel_get_rows_f16(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ ulong nb01,
+ ulong nb02,
+ int ne10,
+ ulong nb10,
+ ulong nb11,
+ ulong nb1,
+ ulong nb2
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i10 = get_group_id(0);
+ int i11 = get_group_id(1);
+
+ int r = ((global int32_t *) ((global char *) src1 + i11*nb11 + i10*nb10))[0];
+
+ int i02 = i11;
+
+ for (int ind = get_local_id(0); ind < ne00; ind += get_local_size(0)) {
+ ((global float *) ((global char *) dst + i11*nb2 + i10*nb1))[ind] =
+ ((global half *) ((global char *) src0 + r*nb01 + i02*nb02))[ind];
+ }
+}
+
+kernel void kernel_get_rows_q4_0(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ ulong nb01,
+ ulong nb02,
+ int ne10,
+ ulong nb10,
+ ulong nb11,
+ ulong nb1,
+ ulong nb2
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ const int NL = 2;
+
+ int i10 = get_group_id(0);
+ int i11 = get_group_id(1);
+
+ int r = ((global int32_t *) ((global char *) src1 + i11*nb11 + i10*nb10))[0];
+
+ int i02 = i11;
+
+ for (int ind = get_local_id(0); ind < ne00/16; ind += get_local_size(0)) {
+ float16 temp;
+ dequantize_q4_0_f32(
+ ((global struct block_q4_0 *) ((global char *) src0 + r*nb01 + i02*nb02)) + ind/NL, ind%NL, &temp);
+ *(((global float16 *) ((global char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+kernel void kernel_im2col_f16(
+ global float * src1,
+ ulong offset1,
+ global half * dst,
+ ulong offsetd,
+ ulong batch_offset,
+ ulong delta_offset,
+ long IW,
+ long IH,
+ long IC,
+ long OW,
+ long OH,
+ long KW,
+ long KH,
+ long pelements,
+ long CHW,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1
+) {
+ long i = get_global_id(0);
+ if (i >= pelements) {
+ return;
+ }
+
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global half*)((global char*)dst + offsetd);
+
+ long ksize = OW * (KH > 1 ? KW : 1);
+ long kx = i / ksize;
+ long kd = kx * ksize;
+ long ky = (i - kd) / OW;
+ long ix = i % OW;
+
+ long oh = get_group_id(1);
+ long batch = get_group_id(2) / IC;
+ long ic = get_group_id(2) % IC;
+
+ long iiw = ix * s0 + kx * d0 - p0;
+ long iih = oh * s1 + ky * d1 - p1;
+
+ long offset_dst =
+ ((batch * OH + oh) * OW + ix) * CHW +
+ (ic * (KW * KH) + ky * KW + kx);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] = 0.0f;
+ } else {
+ long offset_src = ic * delta_offset + batch * batch_offset;
+ dst[offset_dst] = src1[offset_src + iih * IW + iiw];
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+kernel void kernel_im2col_f32(
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ ulong batch_offset,
+ ulong delta_offset,
+ long IW,
+ long IH,
+ long IC,
+ long OW,
+ long OH,
+ long KW,
+ long KH,
+ long pelements,
+ long CHW,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1
+) {
+ long i = get_global_id(0);
+ if (i >= pelements) {
+ return;
+ }
+
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ long ksize = OW * (KH > 1 ? KW : 1);
+ long kx = i / ksize;
+ long kd = kx * ksize;
+ long ky = (i - kd) / OW;
+ long ix = i % OW;
+
+ long oh = get_group_id(1);
+ long batch = get_group_id(2) / IC;
+ long ic = get_group_id(2) % IC;
+
+ long iiw = ix * s0 + kx * d0 - p0;
+ long iih = oh * s1 + ky * d1 - p1;
+
+ long offset_dst =
+ ((batch * OH + oh) * OW + ix) * CHW +
+ (ic * (KW * KH) + ky * KW + kx);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] = 0.0f;
+ } else {
+ long offset_src = ic * delta_offset + batch * batch_offset;
+ dst[offset_dst] = src1[offset_src + iih * IW + iiw];
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// mul
+//------------------------------------------------------------------------------
+kernel void kernel_mul(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global char * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne10,
+ int ne11,
+ int ne12,
+ int ne13,
+ ulong nb10,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3
+) {
+ src0 = src0 + offset0;
+ src1 = src1 + offset1;
+ dst = dst + offsetd;
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ int i13 = i03 % ne13;
+ int i12 = i02 % ne12;
+ int i11 = i01 % ne11;
+
+ global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
+ global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
+ global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
+
+ for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
+ const int i10 = i0 % ne10;
+ *((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) * *((global float *)(src1_ptr + i10*nb10));
+ }
+}
+
+// assumption: src1 is a row
+// broadcast src1 into src0
+kernel void kernel_mul_row(
+ global float4 * src0,
+ ulong offset0,
+ global float4 * src1,
+ ulong offset1,
+ global float4 * dst,
+ ulong offsetd,
+ int ne
+) {
+ src0 = (global float4*)((global char*)src0 + offset0);
+ src1 = (global float4*)((global char*)src1 + offset1);
+ dst = (global float4*)((global char*)dst + offsetd);
+
+ // This performs better than using %.
+ uint gid = get_global_id(0);
+ uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
+ dst[gid] = src0[gid] * src1[idx1];
+}
--- /dev/null
+// src0_q, src0_d, src1 are transposed as a preprocessing step
+// 4-bit weights are transposed in groups of 4 (unsigned short int)
+// consider weights originally "next to each other", now "on top of each other"
+// each fiber computes a 8x4 tile of output elements
+// using unshuffled weights
+
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+
+#ifdef cl_qcom_reqd_sub_group_size
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_128
+#endif
+
+kernel void kernel_mul_mat_Ab_Bi_8x4(
+ global const ushort * src0_q, // quantized A
+ global const half * src0_d, // A scales
+ __read_only image1d_buffer_t src1, // B (1d image)
+ global float * dst, // C
+ int m, // M
+ int n, // N with padding
+ int k, // K
+ int n_no_padding // N without padding
+) {
+
+ int m_4 = m >> 2;
+ int n_4 = n >> 2;
+
+ int gy = get_global_id(0);
+ int gx = get_global_id(1);
+ int gx_2 = gx << 2;
+
+ half8 c0 = 0, c1 = 0, c2 = 0, c3 = 0; // 8x4 output elements
+ half8 B; // registers for activations
+ half4 dequantized_weights; // registers for dequantized weights
+ __global const ushort* weight_ptr = src0_q + gx_2; // pointer for weights
+ __global const half* scale_ptr = src0_d + gx_2; // pointer for scales
+
+ for(int i=0; i<k; i+=4){ //loop through K dimension
+
+ B.s0123 = read_imageh(src1, gy*2 + (i)*(n_4));
+ B.s4567 = read_imageh(src1, gy*2 + (i)*(n_4)+1);
+
+ // keep (i/4) and (i/32) in parenthesis, rounds down
+ // load 4 consecutive groups of 4 weights
+ ushort4 bits4 = vload4(0, weight_ptr + (i/4)*(m)); // (i/4) because weights grouped in 4s
+
+ // load 4 consecutive scales
+ half4 scale = vload4(0, scale_ptr + (i/32)*(m));// (i/32) because 1 scale per 32 elements
+
+ // j=0
+ dequantized_weights.s0 = ((bits4.s0 & (0x000F)) - 8) * scale.s0; // dequantize a row of the 16 weights
+ dequantized_weights.s1 = ((bits4.s1 & (0x000F)) - 8) * scale.s1;
+ dequantized_weights.s2 = ((bits4.s2 & (0x000F)) - 8) * scale.s2;
+ dequantized_weights.s3 = ((bits4.s3 & (0x000F)) - 8) * scale.s3;
+ c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
+ c1 += B * dequantized_weights.s1;
+ c2 += B * dequantized_weights.s2;
+ c3 += B * dequantized_weights.s3;
+
+ // j=1
+ B.s0123 = read_imageh(src1, gy*2 + (i+1)*(n_4));
+ B.s4567 = read_imageh(src1, gy*2 + (i+1)*(n_4)+1);
+ dequantized_weights.s0 = (((bits4.s0 & (0x00F0)) >> 4) - 8) * scale.s0; // dequantize a row of the 16 weights
+ dequantized_weights.s1 = (((bits4.s1 & (0x00F0)) >> 4) - 8) * scale.s1;
+ dequantized_weights.s2 = (((bits4.s2 & (0x00F0)) >> 4) - 8) * scale.s2;
+ dequantized_weights.s3 = (((bits4.s3 & (0x00F0)) >> 4) - 8) * scale.s3;
+ c0 += B * dequantized_weights.s0; //vector-scalar multiplication to accumulate
+ c1 += B * dequantized_weights.s1;
+ c2 += B * dequantized_weights.s2;
+ c3 += B * dequantized_weights.s3;
+
+ // j=2
+ B.s0123 = read_imageh(src1, gy*2 + (i+2)*(n_4));
+ B.s4567 = read_imageh(src1, gy*2 + (i+2)*(n_4)+1);
+ dequantized_weights.s0 = (((bits4.s0 & (0x0F00)) >> 8) - 8) * scale.s0; // dequantize a row of the 16 weights
+ dequantized_weights.s1 = (((bits4.s1 & (0x0F00)) >> 8) - 8) * scale.s1;
+ dequantized_weights.s2 = (((bits4.s2 & (0x0F00)) >> 8) - 8) * scale.s2;
+ dequantized_weights.s3 = (((bits4.s3 & (0x0F00)) >> 8) - 8) * scale.s3;
+ c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
+ c1 += B * dequantized_weights.s1;
+ c2 += B * dequantized_weights.s2;
+ c3 += B * dequantized_weights.s3;
+
+ // j=3
+ B.s0123 = read_imageh(src1, gy*2 + (i+3)*(n_4));
+ B.s4567 = read_imageh(src1, gy*2 + (i+3)*(n_4)+1);
+ dequantized_weights.s0 = (((bits4.s0 & (0xF000)) >> 12) - 8) * scale.s0; // dequantize a row of the 16 weights
+ dequantized_weights.s1 = (((bits4.s1 & (0xF000)) >> 12) - 8) * scale.s1;
+ dequantized_weights.s2 = (((bits4.s2 & (0xF000)) >> 12) - 8) * scale.s2;
+ dequantized_weights.s3 = (((bits4.s3 & (0xF000)) >> 12) - 8) * scale.s3;
+ c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
+ c1 += B * dequantized_weights.s1;
+ c2 += B * dequantized_weights.s2;
+ c3 += B * dequantized_weights.s3;
+ }
+
+ int idx = (gy<<3)*m + (gx<<2); // vectorized store 16 elements
+
+ // conditional check if store is to a valid location. Required when N is not a multiple of 8
+ // if statements allow registers to be reused for each store
+ // provides a performance boost due to reduced register footprint, which increases number of concurrent waves
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s0, c1.s0, c2.s0, c3.s0), 0, dst + idx);
+ idx += m;
+ }
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s1, c1.s1, c2.s1, c3.s1), 0, dst + idx);
+ idx += m;
+ }
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s2, c1.s2, c2.s2, c3.s2), 0, dst + idx);
+ idx += m;
+ }
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s3, c1.s3, c2.s3, c3.s3), 0, dst + idx);
+ idx += m;
+ }
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s4, c1.s4, c2.s4, c3.s4), 0, dst + idx);
+ idx += m;
+ }
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s5, c1.s5, c2.s5, c3.s5), 0, dst + idx);
+ idx += m;
+ }
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s6, c1.s6, c2.s6, c3.s6), 0, dst + idx);
+ idx += m;
+ }
+ if(idx+3 < m*n_no_padding){
+ vstore4((float4)(c0.s7, c1.s7, c2.s7, c3.s7), 0, dst + idx);
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define N_F16_F16 4
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_f16_f16(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne10,
+ int ne11,
+ int ne12,
+ ulong nb10,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3)
+{
+ src0 = (global char*)((global char*)src0 + offset0);
+ src1 = (global char*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int r0 = get_group_id(0);
+ int rb = get_group_id(1)*N_F16_F16;
+ int im = get_group_id(2);
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+
+ global half * x = (global half *) (src0 + offset_src0);
+
+ if (ne00 < 128) {
+ for (int row = 0; row < N_F16_F16; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global half * y = (global half *) (src1 + offset_src1);
+
+ float sumf = 0;
+ for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
+ sumf += (half) x[i] * (half) y[i];
+ }
+
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ } else {
+ global half4 * x4 = (global half4 *)x;
+ for (int row = 0; row < N_F16_F16; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global half * y = (global half *) (src1 + offset_src1);
+ global half4 * y4 = (global half4 *) y;
+
+ float sumf = 0;
+ for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
+ sumf += (half) x4[i].s0 * y4[i].s0;
+ sumf += (half) x4[i].s1 * y4[i].s1;
+ sumf += (half) x4[i].s2 * y4[i].s2;
+ sumf += (half) x4[i].s3 * y4[i].s3;
+ }
+
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) {
+ all_sum += (half) x[i] * y[i];
+ }
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define N_F16_F32 4
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_f16_f32(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne10,
+ int ne11,
+ int ne12,
+ ulong nb10,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src0 = (global char*)((global char*)src0 + offset0);
+ src1 = (global char*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int r0 = get_group_id(0);
+ int rb = get_group_id(1)*N_F16_F32;
+ int im = get_group_id(2);
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+
+ global half * x = (global half *) (src0 + offset_src0);
+
+ if (ne00 < 128) {
+ for (int row = 0; row < N_F16_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global float * y = (global float *) (src1 + offset_src1);
+
+ float sumf = 0;
+ for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
+ sumf += convert_float(x[i]) * y[i];
+ }
+
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ } else {
+ global half4 * x4 = (global half4 *)x;
+ for (int row = 0; row < N_F16_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global float * y = (global float *) (src1 + offset_src1);
+ global float4 * y4 = (global float4 *) y;
+
+ float sumf = 0;
+ for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
+ sumf += convert_float(x4[i].s0) * y4[i].s0;
+ sumf += convert_float(x4[i].s1) * y4[i].s1;
+ sumf += convert_float(x4[i].s2) * y4[i].s2;
+ sumf += convert_float(x4[i].s3) * y4[i].s3;
+ }
+
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) {
+ all_sum += (float) x[i] * y[i];
+ }
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_f16_f32_1row(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne10,
+ int ne11,
+ int ne12,
+ ulong nb10,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src0 = (global char*)((global char*)src0 + offset0);
+ src1 = (global char*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global half * x = (global half *) (src0 + offset_src0);
+ global float * y = (global float *) (src1 + offset_src1);
+
+ float sumf = 0;
+ if (ne00 < 128) {
+ for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
+ sumf += (float) x[i] * (float) y[i];
+ }
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ } else {
+ global half4 * x4 = (global half4 *) x;
+ global float4 * y4 = (global float4 *) y;
+ for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
+ sumf += (float) x4[i].s0 * y4[i].s0;
+ sumf += (float) x4[i].s1 * y4[i].s1;
+ sumf += (float) x4[i].s2 * y4[i].s2;
+ sumf += (float) x4[i].s3 * y4[i].s3;
+ }
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) {
+ all_sum += (float) x[i] * y[i];
+ }
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+// Assumes row size (ne00) is a multiple of 4
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_f16_f32_l4(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne10,
+ int ne11,
+ int ne12,
+ ulong nb10,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src0 = (global char*)((global char*)src0 + offset0);
+ src1 = (global char*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int nrows = ne11;
+ int r0 = get_group_id(0);
+ int im = get_group_id(2);
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+
+ global half4 * x4 = (global half4 *) (src0 + offset_src0);
+
+ for (int r1 = 0; r1 < nrows; ++r1) {
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global float4 * y4 = (global float4 *) (src1 + offset_src1);
+
+ float sumf = 0;
+ for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
+ sumf += convert_float(x4[i].s0) * y4[i].s0;
+ sumf += convert_float(x4[i].s1) * y4[i].s1;
+ sumf += convert_float(x4[i].s2) * y4[i].s2;
+ sumf += convert_float(x4[i].s3) * y4[i].s3;
+ }
+
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define N_F32_F32 4
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_f32_f32(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne10,
+ int ne11,
+ int ne12,
+ ulong nb10,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src0 = (global char*)((global char*)src0 + offset0);
+ src1 = (global char*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int r0 = get_group_id(0);
+ int rb = get_group_id(1)*N_F32_F32;
+ int im = get_group_id(2);
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+
+ global float * x = (global float *) (src0 + offset_src0);
+
+ if (ne00 < 128) {
+ for (int row = 0; row < N_F32_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global float * y = (global float *) (src1 + offset_src1);
+
+ float sumf = 0;
+ for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
+ sumf += (float) x[i] * (float) y[i];
+ }
+
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ } else {
+ global float4 * x4 = (global float4 *)x;
+ for (int row = 0; row < N_F32_F32; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global float * y = (global float *) (src1 + offset_src1);
+ global float4 * y4 = (global float4 *) y;
+
+ float sumf = 0;
+ for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
+ sumf += (float) x4[i].s0 * y4[i].s0;
+ sumf += (float) x4[i].s1 * y4[i].s1;
+ sumf += (float) x4[i].s2 * y4[i].s2;
+ sumf += (float) x4[i].s3 * y4[i].s3;
+ }
+
+ float all_sum = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) {
+ all_sum += (float) x[i] * y[i];
+ }
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QR4_1 2
+#define QK5_0 32
+#define QR5_0 2
+#define QK5_1 32
+#define QR5_1 2
+#define QK8_0 32
+#define QR8_0 1
+#define QK_K 256
+#define K_QUANTS_PER_ITERATION 2
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+//------------------------------------------------------------------------------
+// mul_vec_q_n_f32
+//------------------------------------------------------------------------------
+// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
+// il indicates where the q4 quants begin (0 or QK4_0/4)
+// we assume that the yl's have been multiplied with the appropriate scale factor
+// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
+inline float block_q_4_0_dot_y(
+ global struct block_q4_0 * qb_curr,
+ float sumy,
+ private float * yl,
+ int il
+) {
+ float d = qb_curr->d;
+ float2 acc = 0.f;
+ global ushort * qs = ((global ushort *)qb_curr + 1 + il/2);
+ for (int i = 0; i < 8; i+=2) {
+ acc.s0 += yl[i + 0] * (qs[i / 2] & 0x000F)
+ + yl[i + 1] * (qs[i / 2] & 0x0F00);
+ acc.s1 += yl[i + 8] * (qs[i / 2] & 0x00F0)
+ + yl[i + 9] * (qs[i / 2] & 0xF000);
+ }
+ return d * (sumy * -8.f + acc.s0 + acc.s1);
+}
+
+#ifdef INTEL_GPU
+#define N_DST 4 // each SIMD group works on 4 rows
+#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
+#elif defined (ADRENO_GPU)
+#define N_DST 4
+#define N_SIMDGROUP 1
+#define N_SIMDWIDTH 64
+#endif
+
+inline void mul_vec_q_n_f32(
+ global void * src0,
+ global float * src1,
+ global float * dst,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+
+ const ulong nb = ne00/QK4_0;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ // (r0 * N_SIMDGROUP + get_sub_group_id()) is essenatially the linear global
+ // id of a SIMD group in the grid.
+ int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ global struct block_q4_0 * x = (global struct block_q4_0 *) src0 + offset0;
+ global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float yl[16]; // src1 vector cache
+ float sumf[N_DST]={0.f};
+
+ int ix = get_sub_group_local_id()/2;
+ int il = 8*(get_sub_group_local_id()%2);
+
+ global float * yb = y + ix * QK4_0 + il;
+
+ // each thread in a SIMD group deals with half a block.
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ float sumy = 0;
+ for (int i = 0; i < 8; i += 2) {
+ sumy += yb[i] + yb[i+1];
+ yl[i+0] = yb[i+ 0];
+ yl[i+1] = yb[i+ 1]/256.f;
+ sumy += yb[i+16] + yb[i+17];
+ yl[i+8] = yb[i+16]/16.f;
+ yl[i+9] = yb[i+17]/4096.f;
+ }
+
+ for (int row = 0; row < N_DST; row++) {
+ sumf[row] += block_q_4_0_dot_y(x+ib+row*nb, sumy, yl, il);
+ }
+
+ // One thread in a SIMD group (i.e., subgroup) handles a half block,
+ // hence then entire SIMD group handles SIMDWIDTH/2 blocks.
+ // y points to the activation matrix (of type float). Therefore for
+ // one thread, the # of blocks y should advance is SIMDWIDTH/2 (because
+ // SIMDWIDTH/2 blocks are processed by a SIMD group) - in terms of
+ // floats, it is QK4_0 * (SIMDWIDTH/2), where QK4_0 is the block size.
+ yb += QK4_0 * (N_SIMDWIDTH/2);
+ }
+
+ // The above does not work for Adreno - it produces incorrect results for
+ // row = 1, 2, 3 and only row = 0 gives the correct result.
+ // If N_DST is changed, the below array must be initialized accordingly.
+ // This also seems to perform better on Intel.
+ float tot[N_DST] = {
+ sub_group_reduce_add(sumf[0]), sub_group_reduce_add(sumf[1]),
+ sub_group_reduce_add(sumf[2]), sub_group_reduce_add(sumf[3])};
+ for (int row = 0; row < N_DST; ++row) {
+ if (get_sub_group_local_id() == 0 && first_row + row < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot[row];
+ }
+ }
+}
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_q4_0_f32(
+ global void * src0,
+ ulong offset0,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ mul_vec_q_n_f32(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QR4_1 2
+#define QK5_0 32
+#define QR5_0 2
+#define QK5_1 32
+#define QR5_1 2
+#define QK8_0 32
+#define QR8_0 1
+#define QK_K 256
+#define K_QUANTS_PER_ITERATION 2
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+inline float mm_block_q_4_0_dot_y_flat(
+ global uchar * x,
+ global half * dh,
+ float sumy,
+ float16 yl,
+ int il
+) {
+ float d = *dh;
+ global ushort * qs = ((global ushort *)x + il/2);
+ float acc = 0.f;
+
+ acc += yl.s0 * (qs[0] & 0x000F);
+ acc += yl.s1 * (qs[0] & 0x0F00);
+ acc += yl.s8 * (qs[0] & 0x00F0);
+ acc += yl.s9 * (qs[0] & 0xF000);
+
+ acc += yl.s2 * (qs[1] & 0x000F);
+ acc += yl.s3 * (qs[1] & 0x0F00);
+ acc += yl.sa * (qs[1] & 0x00F0);
+ acc += yl.sb * (qs[1] & 0xF000);
+
+ acc += yl.s4 * (qs[2] & 0x000F);
+ acc += yl.s5 * (qs[2] & 0x0F00);
+ acc += yl.sc * (qs[2] & 0x00F0);
+ acc += yl.sd * (qs[2] & 0xF000);
+
+ acc += yl.s6 * (qs[3] & 0x000F);
+ acc += yl.s7 * (qs[3] & 0x0F00);
+ acc += yl.se * (qs[3] & 0x00F0);
+ acc += yl.sf * (qs[3] & 0xF000);
+
+ return d * (sumy * -8.f + acc);
+}
+
+#ifdef INTEL_GPU
+#define N_DST 16 // each SIMD group works on 8 rows (in weights matrix)
+#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
+#elif defined (ADRENO_GPU)
+#define N_DST 16
+#define N_SIMDGROUP 1
+#define N_SIMDWIDTH 64
+#endif
+//
+// This variant performs 1d blocking with 16x output.
+// Eeach simdgroup outputs 16 values on `n0` dim (row in the output matrix).
+//
+inline void mul_mat_q_n_f32_1d_16x_flat(
+ global uchar * src0_q,
+ global half * src0_d,
+ global float * src1,
+ global float * dst,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ const int nb = ne00/QK4_0;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ // (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of
+ // a SIMD group in the grid. Each SIMD group produces N_DST values in the
+ // result, hence uses nb blocks, i.e., the offset becomes first_row*nb.
+ // Currently with llama2 7B, im is always 0.
+ // TODO: how to handle im/gqa*(nb*ne0)?
+ int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ // The number of scales is the same as the number of blocks.
+ ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+ // Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
+ ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
+
+ global uchar * x = (global uchar *) src0_q + offset0_q;
+ global half * d = (global half *) src0_d + offset0_d;
+ global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float16 yl;
+ float16 sumf = (float16)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
+ 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
+
+ int ix = get_sub_group_local_id()/2;
+ int il = 8*(get_sub_group_local_id()%2);
+
+ global float * yb = y + ix*QK4_0 + il;
+
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ float sumy = 0.f;
+
+ sumy += yb[0];
+ sumy += yb[1];
+ sumy += yb[2];
+ sumy += yb[3];
+ sumy += yb[4];
+ sumy += yb[5];
+ sumy += yb[6];
+ sumy += yb[7];
+
+ sumy += yb[16];
+ sumy += yb[17];
+ sumy += yb[18];
+ sumy += yb[19];
+ sumy += yb[20];
+ sumy += yb[21];
+ sumy += yb[22];
+ sumy += yb[23];
+
+ yl.s0 = yb[0];
+ yl.s1 = yb[1]/256.f;
+
+ yl.s2 = yb[2];
+ yl.s3 = yb[3]/256.f;
+
+ yl.s4 = yb[4];
+ yl.s5 = yb[5]/256.f;
+
+ yl.s6 = yb[6];
+ yl.s7 = yb[7]/256.f;
+
+ yl.s8 = yb[16]/16.f;
+ yl.s9 = yb[17]/4096.f;
+
+ yl.sa = yb[18]/16.f;
+ yl.sb = yb[19]/4096.f;
+
+ yl.sc = yb[20]/16.f;
+ yl.sd = yb[21]/4096.f;
+
+ yl.se = yb[22]/16.f;
+ yl.sf = yb[23]/4096.f;
+
+ sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
+ sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
+ sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
+ sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
+
+ sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
+ sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
+ sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
+ sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
+
+ sumf.s8 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 8*nb*QK4_0/2, d + ib + 8*nb, sumy, yl, il);
+ sumf.s9 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 9*nb*QK4_0/2, d + ib + 9*nb, sumy, yl, il);
+ sumf.sa += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 10*nb*QK4_0/2, d + ib + 10*nb, sumy, yl, il);
+ sumf.sb += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 11*nb*QK4_0/2, d + ib + 11*nb, sumy, yl, il);
+
+ sumf.sc += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 12*nb*QK4_0/2, d + ib + 12*nb, sumy, yl, il);
+ sumf.sd += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 13*nb*QK4_0/2, d + ib + 13*nb, sumy, yl, il);
+ sumf.se += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 14*nb*QK4_0/2, d + ib + 14*nb, sumy, yl, il);
+ sumf.sf += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 15*nb*QK4_0/2, d + ib + 15*nb, sumy, yl, il);
+
+ yb += QK4_0 * (N_SIMDWIDTH/2);
+ }
+
+ float16 tot = (float16)(
+ sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
+ sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
+ sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
+ sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7),
+
+ sub_group_reduce_add(sumf.s8), sub_group_reduce_add(sumf.s9),
+ sub_group_reduce_add(sumf.sa), sub_group_reduce_add(sumf.sb),
+ sub_group_reduce_add(sumf.sc), sub_group_reduce_add(sumf.sd),
+ sub_group_reduce_add(sumf.se), sub_group_reduce_add(sumf.sf)
+ );
+
+ if (get_sub_group_local_id() == 0) {
+ if (first_row + 0 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
+ }
+ if (first_row + 1 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
+ }
+ if (first_row + 2 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
+ }
+ if (first_row + 3 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
+ }
+
+ if (first_row + 4 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
+ }
+ if (first_row + 5 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
+ }
+ if (first_row + 6 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
+ }
+ if (first_row + 7 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
+ }
+
+ if (first_row + 8 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 8] = tot.s8;
+ }
+ if (first_row + 9 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 9] = tot.s9;
+ }
+ if (first_row + 10 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 10] = tot.sa;
+ }
+ if (first_row + 11 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 11] = tot.sb;
+ }
+
+ if (first_row + 12 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 12] = tot.sc;
+ }
+ if (first_row + 13 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 13] = tot.sd;
+ }
+ if (first_row + 14 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 14] = tot.se;
+ }
+ if (first_row + 15 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 15] = tot.sf;
+ }
+ }
+}
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_q4_0_f32_1d_16x_flat(
+ global uchar * src0_q,
+ global half * src0_d,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ mul_mat_q_n_f32_1d_16x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QR4_1 2
+#define QK5_0 32
+#define QR5_0 2
+#define QK5_1 32
+#define QR5_1 2
+#define QK8_0 32
+#define QR8_0 1
+#define QK_K 256
+#define K_QUANTS_PER_ITERATION 2
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+inline float mm_block_q_4_0_dot_y_flat(
+ global uchar * x,
+ global half * dh,
+ float sumy,
+ float16 yl,
+ int il
+) {
+ float d = *dh;
+ global ushort * qs = ((global ushort *)x + il/2);
+ float acc = 0.f;
+
+ acc += yl.s0 * (qs[0] & 0x000F);
+ acc += yl.s1 * (qs[0] & 0x0F00);
+ acc += yl.s8 * (qs[0] & 0x00F0);
+ acc += yl.s9 * (qs[0] & 0xF000);
+
+ acc += yl.s2 * (qs[1] & 0x000F);
+ acc += yl.s3 * (qs[1] & 0x0F00);
+ acc += yl.sa * (qs[1] & 0x00F0);
+ acc += yl.sb * (qs[1] & 0xF000);
+
+ acc += yl.s4 * (qs[2] & 0x000F);
+ acc += yl.s5 * (qs[2] & 0x0F00);
+ acc += yl.sc * (qs[2] & 0x00F0);
+ acc += yl.sd * (qs[2] & 0xF000);
+
+ acc += yl.s6 * (qs[3] & 0x000F);
+ acc += yl.s7 * (qs[3] & 0x0F00);
+ acc += yl.se * (qs[3] & 0x00F0);
+ acc += yl.sf * (qs[3] & 0xF000);
+
+ return d * (sumy * -8.f + acc);
+}
+
+#ifdef INTEL_GPU
+#define N_DST 8 // each SIMD group works on 8 rows (in weights matrix)
+#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
+#elif defined (ADRENO_GPU)
+#define N_DST 8
+#define N_SIMDGROUP 1
+#define N_SIMDWIDTH 64
+#endif
+//
+// This variant performs 1d blocking with 8x output.
+// Eeach simdgroup outputs 8 values on `n0` dim (row in the output matrix).
+//
+inline void mul_mat_q_n_f32_1d_8x_flat(
+ global uchar * src0_q,
+ global half * src0_d,
+ global float * src1,
+ global float * dst,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ const int nb = ne00/QK4_0;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ // (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of
+ // a SIMD group in the grid. Each SIMD group produces N_DST values in the
+ // result, hence uses nb blocks, i.e., the offset becomes first_row*nb.
+ // Currently with llama2 7B, im is always 0.
+ // TODO: how to handle im/gqa*(nb*ne0)?
+ int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ // The number of scales is the same as the number of blocks.
+ ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+ // Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
+ ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
+
+ global uchar * x = (global uchar *) src0_q + offset0_q;
+ global half * d = (global half *) src0_d + offset0_d;
+ global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float16 yl;
+ float8 sumf = (float8)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
+
+ int ix = get_sub_group_local_id()/2;
+ int il = 8*(get_sub_group_local_id()%2);
+
+ global float * yb = y + ix*QK4_0 + il;
+
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ float sumy = 0.f;
+
+ sumy += yb[0];
+ sumy += yb[1];
+ sumy += yb[2];
+ sumy += yb[3];
+ sumy += yb[4];
+ sumy += yb[5];
+ sumy += yb[6];
+ sumy += yb[7];
+
+ sumy += yb[16];
+ sumy += yb[17];
+ sumy += yb[18];
+ sumy += yb[19];
+ sumy += yb[20];
+ sumy += yb[21];
+ sumy += yb[22];
+ sumy += yb[23];
+
+ yl.s0 = yb[0];
+ yl.s1 = yb[1]/256.f;
+
+ yl.s2 = yb[2];
+ yl.s3 = yb[3]/256.f;
+
+ yl.s4 = yb[4];
+ yl.s5 = yb[5]/256.f;
+
+ yl.s6 = yb[6];
+ yl.s7 = yb[7]/256.f;
+
+ yl.s8 = yb[16]/16.f;
+ yl.s9 = yb[17]/4096.f;
+
+ yl.sa = yb[18]/16.f;
+ yl.sb = yb[19]/4096.f;
+
+ yl.sc = yb[20]/16.f;
+ yl.sd = yb[21]/4096.f;
+
+ yl.se = yb[22]/16.f;
+ yl.sf = yb[23]/4096.f;
+
+ sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
+ sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
+ sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
+ sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
+
+ sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
+ sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
+ sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
+ sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
+
+ yb += QK4_0 * (N_SIMDWIDTH/2);
+ }
+
+ float8 tot = (float8)(
+ sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
+ sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
+ sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
+ sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7)
+ );
+
+ if (get_sub_group_local_id() == 0) {
+ if (first_row + 0 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
+ }
+ if (first_row + 1 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
+ }
+ if (first_row + 2 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
+ }
+ if (first_row + 3 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
+ }
+
+ if (first_row + 4 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
+ }
+ if (first_row + 5 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
+ }
+ if (first_row + 6 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
+ }
+ if (first_row + 7 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
+ }
+ }
+}
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_q4_0_f32_1d_8x_flat(
+ global uchar * src0_q,
+ global half * src0_d,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ mul_mat_q_n_f32_1d_8x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QR4_1 2
+#define QK5_0 32
+#define QR5_0 2
+#define QK5_1 32
+#define QR5_1 2
+#define QK8_0 32
+#define QR8_0 1
+#define QK_K 256
+#define K_QUANTS_PER_ITERATION 2
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+// This function requires the original shuffled weights.
+// As a reminder, the original weights are shuffled so that (q[0], q[16]) are
+// packed together in a byte, so are (q[1], q[17]) and so on.
+inline float block_q_4_0_dot_y_flat(
+ global uchar * x,
+ global half * dh,
+ float sumy,
+ float16 yl,
+ int il
+) {
+ float d = *dh;
+ global ushort * qs = ((global ushort *)x + il/2);
+ float acc = 0.f;
+
+ acc += yl.s0 * (qs[0] & 0x000F);
+ acc += yl.s1 * (qs[0] & 0x0F00);
+ acc += yl.s8 * (qs[0] & 0x00F0);
+ acc += yl.s9 * (qs[0] & 0xF000);
+
+ acc += yl.s2 * (qs[1] & 0x000F);
+ acc += yl.s3 * (qs[1] & 0x0F00);
+ acc += yl.sa * (qs[1] & 0x00F0);
+ acc += yl.sb * (qs[1] & 0xF000);
+
+ acc += yl.s4 * (qs[2] & 0x000F);
+ acc += yl.s5 * (qs[2] & 0x0F00);
+ acc += yl.sc * (qs[2] & 0x00F0);
+ acc += yl.sd * (qs[2] & 0xF000);
+
+ acc += yl.s6 * (qs[3] & 0x000F);
+ acc += yl.s7 * (qs[3] & 0x0F00);
+ acc += yl.se * (qs[3] & 0x00F0);
+ acc += yl.sf * (qs[3] & 0xF000);
+
+ return d * (sumy * -8.f + acc);
+}
+
+//
+// This variant outputs 8 values.
+//
+#undef N_DST
+#undef N_SIMDGROUP
+#undef N_SIMDWIDTH
+
+#ifdef INTEL_GPU
+#define N_DST 8 // each SIMD group works on 8 rows
+#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 16 // assuming SIMD group size is 32
+#elif defined (ADRENO_GPU)
+#define N_DST 8
+#define N_SIMDGROUP 1
+#define N_SIMDWIDTH 64
+#endif
+
+inline void mul_vec_q_n_f32_8x_flat(
+ global uchar * src0_q,
+ global half * src0_d,
+ global float * src1,
+ global float * dst,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ const ulong nb = ne00/QK4_0;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ // (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of
+ // a SIMD group in the grid. Each SIMD group produces N_DST values in the
+ // result, hence uses nb blocks, i.e., the offset becomes first_row*nb.
+ // Currently with llama2 7B, im is always 0.
+ // TODO: how to handle im/gqa*(nb*ne0)?
+ int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ // The number of scales is the same as the number of blocks.
+ ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+ // Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
+ ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
+
+ global uchar * x = (global uchar *) src0_q + offset0_q;
+ global half * d = (global half *) src0_d + offset0_d;
+ global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float16 yl;
+ float8 sumf = 0.f;
+
+ int ix = get_sub_group_local_id()/2;
+ int il = 8*(get_sub_group_local_id()%2);
+
+ global float * yb = y + ix*QK4_0 + il;
+
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ float sumy = 0.f;
+
+ sumy += yb[0];
+ sumy += yb[1];
+ sumy += yb[2];
+ sumy += yb[3];
+ sumy += yb[4];
+ sumy += yb[5];
+ sumy += yb[6];
+ sumy += yb[7];
+
+ sumy += yb[16];
+ sumy += yb[17];
+ sumy += yb[18];
+ sumy += yb[19];
+ sumy += yb[20];
+ sumy += yb[21];
+ sumy += yb[22];
+ sumy += yb[23];
+
+ yl.s0 = yb[0];
+ yl.s1 = yb[1]/256.f;
+
+ yl.s2 = yb[2];
+ yl.s3 = yb[3]/256.f;
+
+ yl.s4 = yb[4];
+ yl.s5 = yb[5]/256.f;
+
+ yl.s6 = yb[6];
+ yl.s7 = yb[7]/256.f;
+
+ yl.s8 = yb[16]/16.f;
+ yl.s9 = yb[17]/4096.f;
+
+ yl.sa = yb[18]/16.f;
+ yl.sb = yb[19]/4096.f;
+
+ yl.sc = yb[20]/16.f;
+ yl.sd = yb[21]/4096.f;
+
+ yl.se = yb[22]/16.f;
+ yl.sf = yb[23]/4096.f;
+
+ sumf.s0 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
+ sumf.s1 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
+ sumf.s2 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
+ sumf.s3 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
+
+ sumf.s4 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
+ sumf.s5 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
+ sumf.s6 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
+ sumf.s7 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
+
+ yb += QK4_0 * (N_SIMDWIDTH/2);
+ }
+
+ float8 tot = (float8)(
+ sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
+ sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
+ sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
+ sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7)
+ );
+
+ if (get_sub_group_local_id() == 0) {
+ if (first_row + 0 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
+ }
+ if (first_row + 1 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
+ }
+ if (first_row + 2 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
+ }
+ if (first_row + 3 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
+ }
+
+ if (first_row + 4 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
+ }
+ if (first_row + 5 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
+ }
+ if (first_row + 6 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
+ }
+ if (first_row + 7 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
+ }
+ }
+}
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_q4_0_f32_8x_flat(
+ global uchar * src0_q,
+ global half * src0_d,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ mul_vec_q_n_f32_8x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QR4_1 2
+#define QK5_0 32
+#define QR5_0 2
+#define QK5_1 32
+#define QR5_1 2
+#define QK8_0 32
+#define QR8_0 1
+#define QK_K 256
+#define K_QUANTS_PER_ITERATION 2
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+//
+// This variant unrolls the loops and uses vector types instead of pointers.
+// It improves performance on Adreno but not so much on Intel.
+//
+inline float block_q_4_0_dot_y_v(
+ global struct block_q4_0 * qb_curr,
+ float sumy,
+ float16 yl,
+ int il
+) {
+ float d = qb_curr->d;
+ float acc = 0.f;
+ global ushort * qs = ((global ushort *)qb_curr + 1 + il/2);
+
+ acc += yl.s0 * (qs[0] & 0x000F);
+ acc += yl.s1 * (qs[0] & 0x0F00);
+ acc += yl.s8 * (qs[0] & 0x00F0);
+ acc += yl.s9 * (qs[0] & 0xF000);
+
+ acc += yl.s2 * (qs[1] & 0x000F);
+ acc += yl.s3 * (qs[1] & 0x0F00);
+ acc += yl.sa * (qs[1] & 0x00F0);
+ acc += yl.sb * (qs[1] & 0xF000);
+
+ acc += yl.s4 * (qs[2] & 0x000F);
+ acc += yl.s5 * (qs[2] & 0x0F00);
+ acc += yl.sc * (qs[2] & 0x00F0);
+ acc += yl.sd * (qs[2] & 0xF000);
+
+ acc += yl.s6 * (qs[3] & 0x000F);
+ acc += yl.s7 * (qs[3] & 0x0F00);
+ acc += yl.se * (qs[3] & 0x00F0);
+ acc += yl.sf * (qs[3] & 0xF000);
+
+ return d * (sumy * -8.f + acc);
+}
+
+#undef N_DST
+#undef N_SIMDGROUP
+#undef N_SIMDWIDTH
+
+#ifdef INTEL_GPU
+#define N_DST 4 // each SIMD group works on 4 rows
+#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
+#elif defined (ADRENO_GPU)
+#define N_DST 4
+#define N_SIMDGROUP 1
+#define N_SIMDWIDTH 64
+#endif
+
+inline void mul_vec_q_n_f32_v(
+ global void * src0,
+ global float * src1,
+ global float * dst,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ const ulong nb = ne00/QK4_0;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ // (r0 * N_SIMDGROUP + get_sub_group_id()) is essenatially the linear global
+ // id of a SIMD group in the grid.
+ int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ global struct block_q4_0 * x = (global struct block_q4_0 *) src0 + offset0;
+ global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float16 yl; // src1 vector cache
+ float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f);
+
+ int ix = get_sub_group_local_id()/2;
+ int il = 8*(get_sub_group_local_id()%2);
+
+ global float * yb = y + ix * QK4_0 + il;
+
+ // each thread in a SIMD group deals with half a block.
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ float sumy = 0;
+
+ sumy += yb[0];
+ sumy += yb[1];
+ sumy += yb[2];
+ sumy += yb[3];
+ sumy += yb[4];
+ sumy += yb[5];
+ sumy += yb[6];
+ sumy += yb[7];
+
+ sumy += yb[16];
+ sumy += yb[17];
+ sumy += yb[18];
+ sumy += yb[19];
+ sumy += yb[20];
+ sumy += yb[21];
+ sumy += yb[22];
+ sumy += yb[23];
+
+
+ yl.s0 = yb[0];
+ yl.s1 = yb[1]/256.f;
+
+ yl.s2 = yb[2];
+ yl.s3 = yb[3]/256.f;
+
+ yl.s4 = yb[4];
+ yl.s5 = yb[5]/256.f;
+
+ yl.s6 = yb[6];
+ yl.s7 = yb[7]/256.f;
+
+ yl.s8 = yb[16]/16.f;
+ yl.s9 = yb[17]/4096.f;
+
+ yl.sa = yb[18]/16.f;
+ yl.sb = yb[19]/4096.f;
+
+ yl.sc = yb[20]/16.f;
+ yl.sd = yb[21]/4096.f;
+
+ yl.se = yb[22]/16.f;
+ yl.sf = yb[23]/4096.f;
+
+ sumf.s0 += block_q_4_0_dot_y_v(x+ib+0*nb, sumy, yl, il);
+ sumf.s1 += block_q_4_0_dot_y_v(x+ib+1*nb, sumy, yl, il);
+ sumf.s2 += block_q_4_0_dot_y_v(x+ib+2*nb, sumy, yl, il);
+ sumf.s3 += block_q_4_0_dot_y_v(x+ib+3*nb, sumy, yl, il);
+
+ // One thread in a SIMD group (i.e., subgroup) handles a half block,
+ // hence then entire SIMD group handles SIMDWIDTH/2 blocks.
+ // y points to the activation matrix (of type float). Therefore for
+ // one thread, the # of blocks y should advance is SIMDWIDTH/2 (because
+ // SIMDWIDTH/2 blocks are processed by a SIMD group) - in terms of
+ // floats, it is QK4_0 * (SIMDWIDTH/2), where QK4_0 is the block size.
+ yb += QK4_0 * (N_SIMDWIDTH/2);
+ }
+
+ // The above does not work for Adreno - it produces incorrect results for
+ // row = 1, 2, 3 and only row = 0 gives the correct result.
+ // If N_DST is changed, the below array must be initialized accordingly.
+ // This also seems to perform better on Intel.
+ float4 tot = (float4)(
+ sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
+ sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3)
+ );
+
+ if (get_sub_group_local_id() == 0) {
+ if (first_row + 0 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
+ }
+ if (first_row + 1 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
+ }
+ if (first_row + 2 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
+ }
+ if (first_row + 3 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
+ }
+ }
+}
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mat_q4_0_f32_v(
+ global void * src0,
+ ulong offset0,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ mul_vec_q_n_f32_v(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+#define QR4_0 2
+#define QK4_1 32
+#define QR4_1 2
+#define QK5_0 32
+#define QR5_0 2
+#define QK5_1 32
+#define QR5_1 2
+#define QK8_0 32
+#define QR8_0 1
+#define QK_K 256
+#define K_QUANTS_PER_ITERATION 2
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q6_K
+//------------------------------------------------------------------------------
+// 6-bit quantization
+// weight is represented as x = a * q
+// 16 blocks of 16 elements each
+// Effectively 6.5625 bits per weight
+typedef struct {
+ uint8_t ql[QK_K/2]; // quants, lower 4 bits
+ uint8_t qh[QK_K/4]; // quants, upper 2 bits
+ int8_t scales[QK_K/16]; // scales, quantized with 8 bits
+ half d; // super-block scale
+} block_q6_K;
+
+//------------------------------------------------------------------------------
+// kernel_mul_mv_q6_K_f32
+//------------------------------------------------------------------------------
+
+#undef N_DST
+#undef N_SIMDGROUP
+#undef N_SIMDWIDTH
+
+#ifdef INTEL_GPU
+#define N_DST 1 // number of rows each SIMD group works on
+#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 16 // SIMD group size
+#elif defined (ADRENO_GPU)
+#define N_DST 1
+#define N_SIMDGROUP 2
+#define N_SIMDWIDTH 64
+#endif
+
+#define BLOCK_STRIDE (N_SIMDWIDTH/16) // number of blocks each subgroup processes
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_q6_K_f32(
+ global void * src0,
+ ulong offset0,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ uchar kmask1 = 0x03;
+ uchar kmask2 = 0x0C;
+ uchar kmask3 = 0x30;
+ uchar kmask4 = 0xC0;
+
+ int nb = ne00/QK_K;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ int row = N_SIMDGROUP * r0 + get_sub_group_id();
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ ulong offset_src0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+
+ global block_q6_K * x = (global block_q6_K *) src0 + row*nb + offset_src0;
+ global float * yy = (global float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float sumf = 0;
+
+ // For Q6_K quantization, 16 values forms a subblock, 16 subblock forms a
+ // block. Values in a subblock shares a scale that is quantized with 8 bits;
+ // the entire block shares a single floating point scale.
+ // For work distribution, each thread processes a subblock (16 weights), hence
+ // 16 threads process a (super) block -- a subgroup thus handles SIMDWIDTH/16
+ // (super) blocks -- this is the block stride.
+ // The 16 threads that process a (super) block are split into 2 portions, each has
+ // 8 threads; each portion works on 8 subblocks.
+ // For subgroup of 16 threads, the entire subgroup works on a single (super) block
+ // before moving to the next (super) block. Thread0 - thread7 work on the
+ // first 8 subblocks; thread8 - thread15 works on the last 8 subblocks.
+ // Thread0 - thread3 work on subblocks 0, 2, 4, 6; thread4 - thread7 work on
+ // subblocks 1, 3, 5, 7. Each thread does not work on an entire subblock, but
+ // works on a total of 16 weight values.
+ int tid = get_sub_group_local_id()/BLOCK_STRIDE; // first block_stride groups have tid=0
+ int ix = get_sub_group_local_id()%BLOCK_STRIDE; // first block is 0..block_stride-1
+ int ip = tid/8; // first or second half of (super) block (0 or 1)
+ int il = tid%8; // each half has 8 parts, one per scale
+ int n = 4; // 4 scales at a time (and 4 sums)
+ int l0 = n*il; // offset into half-block, 0..28
+ int is = 8*ip + l0/16; // 0, 1, 8, 9
+
+ int y_offset = 128*ip + l0;
+ int q_offset_l = 64*ip + l0;
+ int q_offset_h = 32*ip + l0;
+
+ for (int i = ix; i < nb; i += BLOCK_STRIDE) {
+
+ global uint8_t * q1 = x[i].ql + q_offset_l;
+ global uint8_t * q2 = q1 + QK_K/8;
+ global uint8_t * qh = x[i].qh + q_offset_h;
+ global int8_t * sc = x[i].scales + is;
+
+ global float * y = yy + i * QK_K + y_offset;
+
+ float dall = x[i].d;
+
+ float4 sums = {0.f, 0.f, 0.f, 0.f};
+
+ sums.s0 += y[0+ 0] * ((float)((q1[0] & 0xF) | ((qh[0] & kmask1) << 4)) - 32.f);
+ sums.s1 += y[0+32] * ((float)((q2[0] & 0xF) | ((qh[0] & kmask2) << 2)) - 32.f);
+ sums.s2 += y[0+64] * ((float)((q1[0] >> 4) | ((qh[0] & kmask3) << 0)) - 32.f);
+ sums.s3 += y[0+96] * ((float)((q2[0] >> 4) | ((qh[0] & kmask4) >> 2)) - 32.f);
+
+ sums.s0 += y[1+ 0] * ((float)((q1[1] & 0xF) | ((qh[1] & kmask1) << 4)) - 32.f);
+ sums.s1 += y[1+32] * ((float)((q2[1] & 0xF) | ((qh[1] & kmask2) << 2)) - 32.f);
+ sums.s2 += y[1+64] * ((float)((q1[1] >> 4) | ((qh[1] & kmask3) << 0)) - 32.f);
+ sums.s3 += y[1+96] * ((float)((q2[1] >> 4) | ((qh[1] & kmask4) >> 2)) - 32.f);
+
+ sums.s0 += y[2+ 0] * ((float)((q1[2] & 0xF) | ((qh[2] & kmask1) << 4)) - 32.f);
+ sums.s1 += y[2+32] * ((float)((q2[2] & 0xF) | ((qh[2] & kmask2) << 2)) - 32.f);
+ sums.s2 += y[2+64] * ((float)((q1[2] >> 4) | ((qh[2] & kmask3) << 0)) - 32.f);
+ sums.s3 += y[2+96] * ((float)((q2[2] >> 4) | ((qh[2] & kmask4) >> 2)) - 32.f);
+
+ sums.s0 += y[3+ 0] * ((float)((q1[3] & 0xF) | ((qh[3] & kmask1) << 4)) - 32.f);
+ sums.s1 += y[3+32] * ((float)((q2[3] & 0xF) | ((qh[3] & kmask2) << 2)) - 32.f);
+ sums.s2 += y[3+64] * ((float)((q1[3] >> 4) | ((qh[3] & kmask3) << 0)) - 32.f);
+ sums.s3 += y[3+96] * ((float)((q2[3] >> 4) | ((qh[3] & kmask4) >> 2)) - 32.f);
+
+ sumf += dall * (sums.s0 * sc[0] + sums.s1 * sc[2] + sums.s2 * sc[4] + sums.s3 * sc[6]);
+ }
+
+ float tot = sub_group_reduce_add(sumf);
+ if (get_sub_group_local_id() == 0) {
+ dst[r1*ne0 + im*ne0*ne1 + row] = tot;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+//------------------------------------------------------------------------------
+// norm
+//------------------------------------------------------------------------------
+kernel void kernel_norm(
+ global void * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ float eps,
+ local float * sum
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ dst = (global void*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ global float * x = (global float *) ((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01);
+
+ // MEAN
+ // parallel sum
+ sum[get_local_id(0)] = 0.0f;
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ sum[get_local_id(0)] += x[i00];
+ }
+ // reduce
+ barrier(CLK_LOCAL_MEM_FENCE);
+ for (uint i = get_local_size(0)/2; i > 0; i /= 2) {
+ if (get_local_id(0) < i) {
+ sum[get_local_id(0)] += sum[get_local_id(0) + i];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ float mean = sum[0] / ne00;
+
+ // recenter and VARIANCE
+ barrier(CLK_LOCAL_MEM_FENCE);
+ global float * y = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+ sum[get_local_id(0)] = 0.0f;
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ y[i00] = x[i00] - mean;
+ sum[get_local_id(0)] += y[i00] * y[i00];
+ }
+
+ // reduce
+ barrier(CLK_LOCAL_MEM_FENCE);
+ for (uint i = get_local_size(0)/2; i > 0; i /= 2) {
+ if (get_local_id(0) < i) {
+ sum[get_local_id(0)] += sum[get_local_id(0) + i];
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+ float variance = sum[0] / ne00;
+
+ float scale = 1.0f/sqrt(variance + eps);
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ y[i00] = y[i00] * scale;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// relu
+//------------------------------------------------------------------------------
+kernel void kernel_relu(
+ global float * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ dst[get_global_id(0)] = fmax(0.0f, src0[get_global_id(0)]);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+//------------------------------------------------------------------------------
+// rms_norm
+//------------------------------------------------------------------------------
+// This kernel depends on subgroup size.
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_32
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_rms_norm(
+ global void * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ float eps,
+ local float * sum // Note, the size depends on number of subgroups
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ global float4 * x = (global float4 *) ((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01);
+ global float * x_scalar = (global float *) x;
+ float4 sumf = 0;
+ float all_sum = 0;
+
+ // parallel sum
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ sumf += x[i00] * x[i00];
+ }
+ all_sum = sumf.s0 + sumf.s1 + sumf.s2 + sumf.s3;
+ all_sum = sub_group_reduce_add(all_sum);
+ if (get_sub_group_local_id() == 0) {
+ sum[get_sub_group_id()] = all_sum;
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+ // broadcast
+ for (uint i = get_local_size(0) / get_max_sub_group_size() / 2; i > 0; i /= 2) {
+ if (get_local_id(0) < i) {
+ sum[get_local_id(0)] += sum[get_local_id(0) + i];
+ }
+ }
+ if (get_local_id(0) == 0) {
+ for (int i = 4 * (ne00 / 4); i < ne00; i++) {
+ sum[0] += x_scalar[i];
+ }
+ sum[0] /= ne00;
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ const float mean = sum[0];
+ const float scale = 1.0f/sqrt(mean + eps);
+
+ global float4 * y = (global float4 *) (dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
+ global float * y_scalar = (global float *) y;
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ y[i00] = x[i00] * scale;
+ }
+ if (get_local_id(0) == 0) {
+ for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {
+ y_scalar[i00] = x_scalar[i00] * scale;
+ }
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// kernel_rope
+//------------------------------------------------------------------------------
+float rope_yarn_ramp(float low, float high, int i0) {
+ const float y = (i0 / 2 - low) / max(0.001f, high - low);
+ return 1.0f - min(1.0f, max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+float2 rope_yarn(
+ float theta_extrap, float freq_scale, float2 corr_dims, int i0, float ext_factor, float mscale
+) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims.s0, corr_dims.s1, i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
+ }
+ return (float2)(cos(theta) * mscale, sin(theta) * mscale);
+}
+
+// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
+// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
+float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
+ return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base));
+}
+
+float2 rope_yarn_corr_dims(
+ int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow
+) {
+ // start and end correction dims
+ return (float2)(
+ max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base))),
+ min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)))
+ );
+}
+
+kernel void kernel_rope_norm_f32(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ float theta_base = (float) pos[i2];
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ if (i0 < n_dims) {
+ int ic = i0/2;
+
+ float theta = theta_base * pow(freq_base, inv_ndims*i0);
+
+ float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ float x0 = src[0];
+ float x1 = src[1];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[1] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ } else {
+ global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+}
+
+kernel void kernel_rope_norm_f16(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ float theta_base = (float) pos[i2];
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ if (i0 < n_dims) {
+ int ic = i0/2;
+
+ float theta = theta_base * pow(freq_base, inv_ndims*i0);
+
+ float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ float x0 = src[0];
+ float x1 = src[1];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[1] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ } else {
+ global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+}
+
+kernel void kernel_rope_neox_f32(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ float theta_base = (float) pos[i2];
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ if (i0 < n_dims) {
+ int ic = i0/2;
+
+ const float theta = theta_base * pow(freq_base, inv_ndims*i0);
+
+ const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ } else {
+ global float * const src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+}
+
+kernel void kernel_rope_neox_f16(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ float theta_base = (float) pos[i2];
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ if (i0 < n_dims) {
+ int ic = i0/2;
+
+ const float theta = theta_base * pow(freq_base, inv_ndims*i0);
+
+ const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ } else {
+ global half * const src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+}
+
+kernel void kernel_rope_multi_f32(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow,
+ int4 sections
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ const int sect_dims = sections.s0 + sections.s1 + sections.s2 + sections.s3;
+ const int sec_w = sections.s1 + sections.s0;
+
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ if (i0 < n_dims) {
+ int ic = i0/2;
+
+ const int sector = (i0 / 2) % sect_dims;
+ float theta_base = 0.0f;
+
+ if (sector < sections.s0) {
+ theta_base = pos[i2];
+ }
+ else if (sector >= sections.s0 && sector < sec_w) {
+ theta_base = pos[i2 + ne2 * 1];
+ }
+ else if (sector >= sec_w && sector < sec_w + sections.s2) {
+ theta_base = pos[i2 + ne2 * 2];
+ }
+ else if (sector >= sec_w + sections.s2) {
+ theta_base = pos[i2 + ne2 * 3];
+ }
+
+ const float theta = theta_base * pow(freq_base, inv_ndims*i0);
+
+ const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ } else {
+ global float * const src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+}
+
+kernel void kernel_rope_multi_f16(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global half * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow,
+ int4 sections
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ const int sect_dims = sections.s0 + sections.s1 + sections.s2 + sections.s3;
+ const int sec_w = sections.s1 + sections.s0;
+
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ if (i0 < n_dims) {
+ int ic = i0/2;
+
+ const int sector = (i0 / 2) % sect_dims;
+ float theta_base = 0.0f;
+
+ if (sector < sections.s0) {
+ theta_base = pos[i2];
+ }
+ else if (sector >= sections.s0 && sector < sec_w) {
+ theta_base = pos[i2 + ne2 * 1];
+ }
+ else if (sector >= sec_w && sector < sec_w + sections.s2) {
+ theta_base = pos[i2 + ne2 * 2];
+ }
+ else if (sector >= sec_w + sections.s2) {
+ theta_base = pos[i2 + ne2 * 3];
+ }
+
+ const float theta = theta_base * pow(freq_base, inv_ndims*i0);
+
+ const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ } else {
+ global half * const src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ dst_data[0] = src[0];
+ dst_data[1] = src[1];
+ }
+ }
+}
+
+kernel void kernel_rope_vision_f32(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow,
+ int4 sections
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ const int sect_dims = sections.s0 + sections.s1;
+ const int sec_w = sections.s1 + sections.s0;
+
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ int ic = i0/2;
+
+ const int sector = (i0/2) % sect_dims;
+ float theta_base = 0.0f;
+
+ if (sector < sections.s0) {
+ const int p = sector;
+ theta_base = pos[i2] * pow(freq_base, inv_ndims*2.0f*p);
+ } else if (sector >= sections.s0 && sector < sec_w) {
+ const int p = sector - sections.s0;
+ theta_base = pos[i2 + ne2] * pow(freq_base, inv_ndims*2.0f*p);
+ }
+
+ const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[n_dims] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ }
+}
+
+kernel void kernel_rope_vision_f16(
+ global void * src0,
+ ulong offset0,
+ global int * src1,
+ ulong offset1,
+ global float * src2,
+ ulong offset2,
+ global half * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne03,
+ ulong nb00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne0,
+ int ne1,
+ int ne2,
+ int ne3,
+ ulong nb0,
+ ulong nb1,
+ ulong nb2,
+ ulong nb3,
+ int n_past,
+ int n_dims,
+ int n_ctx_orig,
+ float freq_base,
+ float freq_scale,
+ float ext_factor,
+ float attn_factor,
+ float beta_fast,
+ float beta_slow,
+ int4 sections
+) {
+ src0 = (global void*)((global char*)src0 + offset0);
+ src1 = (global int*)((global char*)src1 + offset1);
+ src2 = (global float*)((global char*)src2 + offset2);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i3 = get_group_id(2);
+ int i2 = get_group_id(1);
+ int i1 = get_group_id(0);
+
+ float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
+
+ global int * pos = src1;
+
+ const int sect_dims = sections.s0 + sections.s1;
+ const int sec_w = sections.s1 + sections.s0;
+
+ float inv_ndims = -1.f/n_dims;
+
+ for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
+ int ic = i0/2;
+
+ const int sector = (i0/2) % sect_dims;
+ float theta_base = 0.0f;
+
+ if (sector < sections.s0) {
+ const int p = sector;
+ theta_base = pos[i2] * pow(freq_base, inv_ndims*2.0f*p);
+ } else if (sector >= sections.s0 && sector < sec_w) {
+ const int p = sector - sections.s0;
+ theta_base = pos[i2 + ne2] * pow(freq_base, inv_ndims*2.0f*p);
+ }
+
+ const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
+
+ float2 cos_sin_theta = rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
+
+ global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
+ global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims];
+
+ dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
+ dst_data[n_dims] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// scale
+//------------------------------------------------------------------------------
+kernel void kernel_scale(
+ global float4 * src0,
+ ulong offset0,
+ global float4 * dst,
+ ulong offsetd,
+ float scale
+) {
+ src0 = (global float4*)((global char*)src0 + offset0);
+ dst = (global float4*)((global char*)dst + offsetd);
+ dst[get_global_id(0)] = src0[get_global_id(0)] * scale;
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+//------------------------------------------------------------------------------
+// silu
+//------------------------------------------------------------------------------
+kernel void kernel_silu(
+ global float * src0,
+ ulong offset0,
+ global float * dst,
+ ulong offsetd
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ float x = src0[get_global_id(0)];
+ dst[get_global_id(0)] = x / (1.0f + exp(-x));
+}
+
+kernel void kernel_silu_4(
+ global float4 * src0,
+ ulong offset0,
+ global float4 * dst,
+ ulong offsetd
+) {
+ src0 = (global float4*)((global char*)src0 + offset0);
+ dst = (global float4*)((global char*)dst + offsetd);
+
+ float4 x = src0[get_global_id(0)];
+ dst[get_global_id(0)] = x / (1.0f + exp(-x));
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_soft_max_4_f16(
+ global float * src0,
+ ulong offset0,
+ global half * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ float scale,
+ float max_bias,
+ float m0,
+ float m1,
+ int n_head_log2
+) {
+ src0 = (global float *)((global char *)src0 + offset0);
+ src1 = (global half *)((global char *)src1 + offset1);
+ dst = (global float *)((global char *)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ global float4 * psrc4 = (global float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
+ global half4 * pmask = (global char *)src1 != (global char *)src0 ? (global half4 *)(src1 + i01*ne00) : 0;
+ global float4 * pdst4 = (global float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
+
+ float slope = 1.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ int h = i02;
+
+ float base = h < n_head_log2 ? m0 : m1;
+ int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = pow(base, exp);
+ }
+
+ // parallel max
+ float4 lmax4 = -INFINITY;
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ lmax4 = fmax(lmax4, psrc4[i00]*scale + slope*(pmask ? convert_float4(pmask[i00]) : 0.0f));
+ }
+ float lmax = fmax(fmax(lmax4.s0, lmax4.s1), fmax(lmax4.s2, lmax4.s3));
+
+ const float max = sub_group_reduce_max(lmax);
+
+ // parallel sum
+ float4 lsum4 = 0.0f;
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ const float4 exp_psrc4 = exp((psrc4[i00]*scale + slope*(pmask ? convert_float4(pmask[i00]) : 0.0f)) - max);
+ lsum4 += exp_psrc4;
+ pdst4[i00] = exp_psrc4;
+ }
+ float lsum = lsum4.s0 + lsum4.s1 + lsum4.s2 + lsum4.s3;
+
+ const float sum = sub_group_reduce_add(lsum);
+
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ pdst4[i00] /= sum;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_soft_max_4(
+ global float * src0,
+ ulong offset0,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ float scale,
+ float max_bias,
+ float m0,
+ float m1,
+ int n_head_log2
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ global float4 * psrc4 = (global float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
+ global float4 * pmask = src1 != src0 ? (global float4 *)(src1 + i01*ne00) : 0;
+ global float4 * pdst4 = (global float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
+
+ float slope = 1.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ int h = i02;
+
+ float base = h < n_head_log2 ? m0 : m1;
+ int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = pow(base, exp);
+ }
+
+ // parallel max
+ float4 lmax4 = -INFINITY;
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
+ }
+ float lmax = fmax(fmax(lmax4.s0, lmax4.s1), fmax(lmax4.s2, lmax4.s3));
+
+ const float max = sub_group_reduce_max(lmax);
+
+ // parallel sum
+ float4 lsum4 = 0.0f;
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max);
+ lsum4 += exp_psrc4;
+ pdst4[i00] = exp_psrc4;
+ }
+ float lsum = lsum4.s0 + lsum4.s1 + lsum4.s2 + lsum4.s3;
+
+ const float sum = sub_group_reduce_add(lsum);
+
+ for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
+ pdst4[i00] /= sum;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_soft_max_f16(
+ global float * src0,
+ ulong offset0,
+ global half * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ float scale,
+ float max_bias,
+ float m0,
+ float m1,
+ int n_head_log2
+) {
+ src0 = (global float *)((global char *)src0 + offset0);
+ src1 = (global half *)((global char *)src1 + offset1);
+ dst = (global float *)((global char *)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ global float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+ global half * pmask = (global char *)src1 != (global char *)src0 ? src1 + i01*ne00 : 0;
+ global float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ float slope = 1.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ int h = i02;
+
+ float base = h < n_head_log2 ? m0 : m1;
+ int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = pow(base, exp);
+ }
+
+ // parallel max
+ float lmax = -INFINITY;
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ lmax = fmax(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
+ }
+ float max = sub_group_reduce_max(lmax);
+
+ // parallel sum
+ float lsum = 0.0f;
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max);
+ lsum += exp_psrc0;
+ // Remember the result of exp here. exp is expensive, so we really do not
+ // wish to compute it twice.
+ pdst[i00] = exp_psrc0;
+ }
+
+ const float sum = sub_group_reduce_add(lsum);
+
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ pdst[i00] /= sum;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#ifdef ADRENO_GPU
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_soft_max(
+ global float * src0,
+ ulong offset0,
+ global float * src1,
+ ulong offset1,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ float scale,
+ float max_bias,
+ float m0,
+ float m1,
+ int n_head_log2
+) {
+ src0 = (global float*)((global char*)src0 + offset0);
+ src1 = (global float*)((global char*)src1 + offset1);
+ dst = (global float*)((global char*)dst + offsetd);
+
+ int i03 = get_group_id(2);
+ int i02 = get_group_id(1);
+ int i01 = get_group_id(0);
+
+ global float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+ global float * pmask = src1 != src0 ? src1 + i01*ne00 : 0;
+ global float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
+
+ float slope = 1.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ int h = i02;
+
+ float base = h < n_head_log2 ? m0 : m1;
+ int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = pow(base, exp);
+ }
+
+ // parallel max
+ float lmax = -INFINITY;
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ lmax = fmax(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
+ }
+ float max = sub_group_reduce_max(lmax);
+
+ // parallel sum
+ float lsum = 0.0f;
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max);
+ lsum += exp_psrc0;
+ // Remember the result of exp here. exp is expensive, so we really do not
+ // wish to compute it twice.
+ pdst[i00] = exp_psrc0;
+ }
+
+ const float sum = sub_group_reduce_add(lsum);
+
+ for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
+ pdst[i00] /= sum;
+ }
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+// 16-bit transpose, loading/storing a 4x4 tile of elements
+kernel void kernel_transpose_16(
+ __read_only image1d_buffer_t input,
+ __write_only image1d_buffer_t output,
+ const uint rows,
+ const uint cols
+) {
+
+ const int i = get_global_id(0);
+ const int j = get_global_id(1);
+ const int i_2 = i<<2;
+ const int j_2 = j<<2;
+
+ half4 temp0 = read_imageh(input, (j_2+0)*cols+i);
+ half4 temp1 = read_imageh(input, (j_2+1)*cols+i);
+ half4 temp2 = read_imageh(input, (j_2+2)*cols+i);
+ half4 temp3 = read_imageh(input, (j_2+3)*cols+i);
+
+ write_imageh(output, (i_2+0)*rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0));
+ write_imageh(output, (i_2+1)*rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
+ write_imageh(output, (i_2+2)*rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
+ write_imageh(output, (i_2+3)*rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
+}
+
+// 32-bit transpose, loading/storing a 4x4 tile of elements
+kernel void kernel_transpose_32(
+ __read_only image1d_buffer_t input,
+ __write_only image1d_buffer_t output,
+ const uint rows,
+ const uint cols
+) {
+
+ const int i = get_global_id(0);
+ const int j = get_global_id(1);
+ const int i_2 = i<<2;
+ const int j_2 = j<<2;
+
+ float4 temp0 = read_imagef(input, (j_2+0)*cols+i);
+ float4 temp1 = read_imagef(input, (j_2+1)*cols+i);
+ float4 temp2 = read_imagef(input, (j_2+2)*cols+i);
+ float4 temp3 = read_imagef(input, (j_2+3)*cols+i);
+
+ write_imagef(output, (i_2+0)*rows+j, (float4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0));
+ write_imagef(output, (i_2+1)*rows+j, (float4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
+ write_imagef(output, (i_2+2)*rows+j, (float4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
+ write_imagef(output, (i_2+3)*rows+j, (float4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
+
+}
+
+// 32-bit transpose, loading/storing a 4x4 tile of elements
+// Only used for activations
+// converts to FP16
+// also adds zero padding for non multiple of 8 prompt lengths
+kernel void kernel_transpose_32_16(__read_only image1d_buffer_t input, __write_only image1d_buffer_t output, const uint rows, const uint cols, const uint padded_rows) {
+
+ const int i = get_global_id(0);
+ const int j = get_global_id(1);
+ const int i_2 = i<<2;
+ const int j_2 = j<<2;
+ half4 temp0 = {0,0,0,0}; // initialize outputs to 0
+ half4 temp1 = {0,0,0,0};
+ half4 temp2 = {0,0,0,0};
+ half4 temp3 = {0,0,0,0};
+
+ if((j_2+0)*cols+i*4+3 < rows*cols*16){ // only load from a valid location. Otherwise keep register data as 0
+ temp0 = read_imageh(input, (j_2+0)*cols+i);
+ }
+ if((j_2+1)*cols+i*4+3 < rows*cols*16){
+ temp1 = read_imageh(input, (j_2+1)*cols+i);
+ }
+ if((j_2+2)*cols+i*4+3 < rows*cols*16){
+ temp2 = read_imageh(input, (j_2+2)*cols+i);
+ }
+ if((j_2+3)*cols+i*4+3 < rows*cols*16){
+ temp3 = read_imageh(input, (j_2+3)*cols+i);
+ }
+
+ write_imageh(output, (i_2+0)*padded_rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0)); // no conditionals for output, includes zero padding
+ write_imageh(output, (i_2+1)*padded_rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
+ write_imageh(output, (i_2+2)*padded_rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
+ write_imageh(output, (i_2+3)*padded_rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
+}