cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
- ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
- }
+ ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
} else {
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
- // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
- // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- }
+ // note: this op tends to require high floating point range
+ // while for some models F16 is enough, for others it is not, so we default to F32 here
+ ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
if (model.arch == LLM_ARCH_GROK) {
// need to do the following:
// kq = 30 * tanh(kq / 30)
// before the softmax below
- //try from phi2
- //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
-
kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
kq = ggml_scale(ctx, kq, 30);
}