CMakeSettings.json
__pycache__
+dist
zig-out/
zig-cache/
examples/jeopardy/results.txt
-pyproject.toml
poetry.lock
poetry.toml
--- /dev/null
+MIT License
+
+Copyright (c) 2023 Georgi Gerganov
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
--- /dev/null
+## gguf
+
+This is a Python package for writing binary files in the [GGUF](https://github.com/ggerganov/ggml/pull/302)
+(GGML Universal File) format.
+
+See [convert-llama-hf-to-gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert-llama-hf-to-gguf.py)
+as an example for its usage.
+
+## Installation
+```sh
+pip install gguf
+```
+
+## Development
+Maintainers who participate in development of this package are advised to install it in editable mode:
+
+```sh
+cd /path/to/llama.cpp/gguf-py
+
+pip install --editable .
+```
+
+**Note**: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires `setup.py`.
+In this case, upgrade Pip to the latest:
+
+```sh
+pip install --upgrade pip
+```
+
+## Publishing
+To publish the package, you need to have `twine` and `build` installed:
+
+```sh
+pip install build twine
+```
+
+Then, folow these steps to release a new version:
+
+1. Update the version in `pyproject.toml`.
+2. Build the package:
+
+```sh
+python -m build
+```
+
+3. Upload the generated distribution archives:
+
+```sh
+python -m twine upload dist/*
+```
+
+## TODO
+- [ ] Add tests
+- [ ] Include conversion scripts as command line entry points in this package.
+- Add CI workflow for releasing the package.
--- /dev/null
+from .gguf import GGUFWriter
--- /dev/null
+#!/usr/bin/env python3
+import shutil
+import sys
+import struct
+import tempfile
+import numpy as np
+
+from enum import IntEnum, auto
+from typing import Any, IO, List, Optional
+
+#
+# constants
+#
+
+GGUF_MAGIC = 0x46554747
+GGUF_VERSION = 1
+GGUF_DEFAULT_ALIGNMENT = 32
+
+# general
+KEY_GENERAL_ARCHITECTURE = "general.architecture"
+KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
+KEY_GENERAL_ALIGNMENT = "general.alignment"
+KEY_GENERAL_NAME = "general.name"
+KEY_GENERAL_AUTHOR = "general.author"
+KEY_GENERAL_URL = "general.url"
+KEY_GENERAL_DESCRIPTION = "general.description"
+KEY_GENERAL_LICENSE = "general.license"
+KEY_GENERAL_SOURCE_URL = "general.source.url"
+KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
+KEY_GENERAL_FILE_TYPE = "general.file_type"
+
+# LLM
+KEY_CONTEXT_LENGTH = "{arch}.context_length"
+KEY_EMBEDDING_LENGTH = "{arch}.embedding_length"
+KEY_BLOCK_COUNT = "{arch}.block_count"
+KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
+KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
+KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
+
+# attention
+KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
+KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
+KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
+KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
+KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
+KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
+
+# RoPE
+KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
+KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base"
+KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
+
+# tokenization
+KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
+KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
+KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
+KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
+KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
+KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
+KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
+KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
+KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
+KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
+KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
+KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
+
+
+#
+# recommended mapping of model tensor names for storage in gguf
+#
+
+
+class MODEL_ARCH(IntEnum):
+ LLAMA = auto()
+ FALCON = auto()
+ GPT2 = auto()
+ GPTJ = auto()
+ GPTNEOX = auto()
+ MPT = auto()
+
+
+class MODEL_TENSOR(IntEnum):
+ TOKEN_EMBD = auto()
+ POS_EMBD = auto()
+ OUTPUT = auto()
+ OUTPUT_NORM = auto()
+ ROPE_FREQS = auto()
+ ATTN_Q = auto()
+ ATTN_K = auto()
+ ATTN_V = auto()
+ ATTN_QKV = auto()
+ ATTN_OUT = auto()
+ ATTN_NORM = auto()
+ ATTN_NORM_2 = auto()
+ ATTN_ROT_EMBD = auto()
+ FFN_GATE = auto()
+ FFN_DOWN = auto()
+ FFN_UP = auto()
+ FFN_NORM = auto()
+
+
+MODEL_ARCH_NAMES = {
+ MODEL_ARCH.LLAMA: "llama",
+ MODEL_ARCH.FALCON: "falcon",
+ MODEL_ARCH.GPT2: "gpt2",
+ MODEL_ARCH.GPTJ: "gptj",
+ MODEL_ARCH.GPTNEOX: "gptneox",
+ MODEL_ARCH.MPT: "mpt",
+}
+
+MODEL_TENSOR_NAMES = {
+ MODEL_ARCH.LLAMA: {
+ MODEL_TENSOR.TOKEN_EMBD: "token_embd",
+ MODEL_TENSOR.OUTPUT_NORM: "output_norm",
+ MODEL_TENSOR.OUTPUT: "output",
+ MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
+ MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
+ MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
+ MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
+ MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
+ MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
+ MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
+ MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
+ MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
+ MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
+ MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
+ },
+ MODEL_ARCH.GPTNEOX: {
+ MODEL_TENSOR.TOKEN_EMBD: "token_embd",
+ MODEL_TENSOR.OUTPUT_NORM: "output_norm",
+ MODEL_TENSOR.OUTPUT: "output",
+ MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
+ MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
+ MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
+ MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
+ MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
+ MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
+ },
+ MODEL_ARCH.FALCON: {
+ MODEL_TENSOR.TOKEN_EMBD: "token_embd",
+ MODEL_TENSOR.OUTPUT_NORM: "output_norm",
+ MODEL_TENSOR.OUTPUT: "output",
+ MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
+ MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
+ MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
+ MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
+ MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
+ MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
+ },
+ MODEL_ARCH.GPT2: {
+ # TODO
+ },
+ # TODO
+}
+
+# tensors that will not be serialized
+MODEL_TENSOR_SKIP = {
+ MODEL_ARCH.LLAMA: [
+ MODEL_TENSOR.ROPE_FREQS,
+ MODEL_TENSOR.ATTN_ROT_EMBD,
+ ],
+}
+
+
+# TODO: the following helper functions should be removed
+# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
+# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
+# REMOVE
+def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
+ for skip in MODEL_TENSOR_SKIP.get(arch, []):
+ for i in range(n_blocks):
+ if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
+ return True
+
+ return False
+
+
+def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
+ tensor_map = {}
+
+ # Token embeddings
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
+
+ tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
+ tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
+ tensor_map["transformer.word_embeddings"] = mapped_to # falcon
+ tensor_map["model.embed_tokens"] = mapped_to # llama-hf
+ tensor_map["tok_embeddings"] = mapped_to # llama-pth
+
+ # Position embeddings
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
+
+ tensor_map["transformer.wpe"] = mapped_to # gpt2
+
+ # Output
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
+
+ tensor_map["embed_out"] = mapped_to # gptneox
+ tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
+ tensor_map["output"] = mapped_to # llama-pth
+
+ # Output norm
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
+
+ tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
+ tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
+ tensor_map["transformer.norm_f"] = mapped_to # mpt
+ tensor_map["model.norm"] = mapped_to # llama-hf
+ tensor_map["norm"] = mapped_to # llama-pth
+
+ # Rope frequencies
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
+
+ tensor_map["rope.freqs"] = mapped_to # llama-pth
+
+ # Attention and feed-forward blocks
+ for i in range(0, n_blocks):
+ # Attention norm
+ # TODO: is there are simpler way to write these 2 lines in Python?
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to else None
+
+ tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
+ tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
+ tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
+ tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
+ tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
+ tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
+
+ # Attention norm 2
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
+
+ # Attention query-key-value
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
+ tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
+ tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
+ tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
+
+ # Attention query
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
+
+ # Attention key
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
+
+ # Attention value
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
+
+ # Attention output
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
+ tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
+ tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
+ tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
+ tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
+
+ # Rotary embeddings
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
+
+ # Feed-forward norm
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
+ tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
+ tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
+ tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
+
+ # Feed-forward up
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
+ tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
+ tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
+ tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
+ tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
+
+ # Feed-forward gate
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
+
+ # Feed-forward down
+ mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
+ mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
+
+ tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
+ tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
+ tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
+ tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
+ tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
+ tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
+
+ return tensor_map
+
+
+class TokenType(IntEnum):
+ NORMAL = 1
+ UNKNOWN = 2
+ CONTROL = 3
+ USER_DEFINED = 4
+ UNUSED = 5
+ BYTE = 6
+
+#
+# implementation
+#
+
+
+class GGMLQuantizationType(IntEnum):
+ F32 = 0
+ F16 = 1
+ Q4_0 = 2
+ Q4_1 = 3
+ Q5_0 = 6
+ Q5_1 = 7
+ Q8_0 = 8
+ Q8_1 = 9
+ Q2_K = 10
+ Q3_K = 11
+ Q4_K = 12
+ Q5_K = 13
+ Q6_K = 14
+ Q8_K = 15
+
+
+class GGUFValueType(IntEnum):
+ UINT8 = 0
+ INT8 = 1
+ UINT16 = 2
+ INT16 = 3
+ UINT32 = 4
+ INT32 = 5
+ FLOAT32 = 6
+ BOOL = 7
+ STRING = 8
+ ARRAY = 9
+
+ @staticmethod
+ def get_type(val):
+ if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
+ return GGUFValueType.STRING
+ elif isinstance(val, list):
+ return GGUFValueType.ARRAY
+ elif isinstance(val, float):
+ return GGUFValueType.FLOAT32
+ elif isinstance(val, bool):
+ return GGUFValueType.BOOL
+ elif isinstance(val, int):
+ return GGUFValueType.INT32
+ else:
+ print("Unknown type: "+str(type(val)))
+ sys.exit()
+
+
+class GGUFWriter:
+ def __init__(self, path: str, arch: str, use_temp_file = True):
+ self.fout = open(path, "wb")
+ self.arch = arch
+ self.offset_tensor = 0
+ self.data_alignment = GGUF_DEFAULT_ALIGNMENT
+ self.kv_data = b""
+ self.kv_data_count = 0
+ self.ti_data = b""
+ self.ti_data_count = 0
+ self.add_architecture()
+ self.use_temp_file = use_temp_file
+ self.tensors = []
+
+ def write_header_to_file(self):
+ self.fout.write(struct.pack("<I", GGUF_MAGIC))
+ self.fout.write(struct.pack("<I", GGUF_VERSION))
+ self.fout.write(struct.pack("<I", self.ti_data_count))
+ self.fout.write(struct.pack("<I", self.kv_data_count))
+ self.flush()
+# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
+
+ def write_kv_data_to_file(self):
+ self.fout.write(self.kv_data)
+ self.flush()
+
+ def write_ti_data_to_file(self):
+ self.fout.write(self.ti_data)
+ self.flush()
+
+ def add_key(self, key: str):
+ self.add_val(key, GGUFValueType.STRING, add_vtype=False)
+
+ def add_uint8(self, key: str, val: int):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.UINT8)
+
+ def add_int8(self, key: str, val: int):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.INT8)
+
+ def add_uint16(self, key: str, val: int):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.UINT16)
+
+ def add_int16(self, key: str, val: int):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.INT16)
+
+ def add_uint32(self, key: str, val: int):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.UINT32)
+
+ def add_int32(self, key: str, val: int):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.INT32)
+
+ def add_float32(self, key: str, val: float):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.FLOAT32)
+
+ def add_bool(self, key: str, val: bool):
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.BOOL)
+
+ def add_string(self, key: str, val: str):
+ if len(val) == 0:
+ return
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.STRING)
+
+ def add_array(self, key: str, val: list):
+ if not isinstance(val, list):
+ raise ValueError("Value must be a list for array type")
+
+ self.add_key(key)
+ self.add_val(val, GGUFValueType.ARRAY)
+
+ def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
+ if vtype is None:
+ vtype = GGUFValueType.get_type(val)
+
+ if add_vtype:
+ self.kv_data += struct.pack("<I", vtype)
+ self.kv_data_count += 1
+
+ if vtype == GGUFValueType.UINT8:
+ self.kv_data += struct.pack("<B", val)
+ elif vtype == GGUFValueType.INT8:
+ self.kv_data += struct.pack("<b", val)
+ elif vtype == GGUFValueType.UINT16:
+ self.kv_data += struct.pack("<H", val)
+ elif vtype == GGUFValueType.INT16:
+ self.kv_data += struct.pack("<h", val)
+ elif vtype == GGUFValueType.UINT32:
+ self.kv_data += struct.pack("<I", val)
+ elif vtype == GGUFValueType.INT32:
+ self.kv_data += struct.pack("<i", val)
+ elif vtype == GGUFValueType.FLOAT32:
+ self.kv_data += struct.pack("<f", val)
+ elif vtype == GGUFValueType.BOOL:
+ self.kv_data += struct.pack("?", val)
+ elif vtype == GGUFValueType.STRING:
+ encoded_val = val.encode("utf8") if isinstance(val, str) else val
+ self.kv_data += struct.pack("<I", len(encoded_val))
+ self.kv_data += encoded_val
+ elif vtype == GGUFValueType.ARRAY:
+ ltype = set([GGUFValueType.get_type(item) for item in val])
+ assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
+ self.kv_data += struct.pack("<I", list(ltype)[0])
+ self.kv_data += struct.pack("<I", len(val))
+ for item in val:
+ self.add_val(item, add_vtype=False)
+ else:
+ raise ValueError("Invalid GGUF metadata value type")
+
+ @staticmethod
+ def ggml_pad(x: int, n: int) -> int:
+ return ((x + n - 1) // n) * n
+
+ def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
+ assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
+
+ encoded_name = name.encode("utf8")
+ self.ti_data += struct.pack("<I", len(encoded_name))
+ self.ti_data += encoded_name
+ n_dims = len(tensor_shape)
+ self.ti_data += struct.pack("<I", n_dims)
+ for i in range(n_dims):
+ self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
+ if raw_dtype is None:
+ dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
+ else:
+ dtype = raw_dtype
+ self.ti_data += struct.pack("<I", dtype)
+ self.ti_data += struct.pack("<Q", self.offset_tensor)
+ self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
+ self.ti_data_count += 1
+
+ def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
+ if self.use_temp_file and not hasattr(self, "temp_file"):
+ self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
+ self.temp_file.seek(0)
+
+ self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
+
+ pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
+
+ if not self.use_temp_file:
+ self.tensors.append((tensor, pad))
+ return
+
+ tensor.tofile(self.temp_file)
+
+ if pad != 0:
+ self.temp_file.write(bytes([0] * pad))
+
+ def write_tensor_data(self, tensor: np.ndarray):
+ pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
+ if pad != 0:
+ self.fout.write(bytes([0] * pad))
+
+ tensor.tofile(self.fout)
+
+ pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
+ if pad != 0:
+ self.fout.write(bytes([0] * pad))
+
+ def write_tensors_to_file(self):
+ self.write_ti_data_to_file()
+
+ pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
+ if pad != 0:
+ self.fout.write(bytes([0] * pad))
+
+ if not self.use_temp_file:
+ for (currtensor, currpad) in self.tensors:
+ currtensor.tofile(self.fout)
+ if currpad != 0:
+ self.fout.write(bytes([0] * currpad))
+ return
+
+ self.temp_file.seek(0)
+
+ shutil.copyfileobj(self.temp_file, self.fout)
+ self.flush()
+ self.temp_file.close()
+
+ def flush(self):
+ self.fout.flush()
+
+ def close(self):
+ self.fout.close()
+
+ def add_architecture(self):
+ self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
+
+ def add_author(self, author: str):
+ self.add_string(KEY_GENERAL_AUTHOR, author)
+
+ def add_tensor_data_layout(self, layout: str):
+ self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
+
+ def add_url(self, url: str):
+ self.add_string(KEY_GENERAL_URL, url)
+
+ def add_description(self, description: str):
+ self.add_string(KEY_GENERAL_DESCRIPTION, description)
+
+ def add_source_url(self, url: str):
+ self.add_string(KEY_GENERAL_SOURCE_URL, url)
+
+ def add_source_hf_repo(self, repo: str):
+ self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
+
+ def add_file_type(self, ftype: int):
+ self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
+
+ def add_name(self, name: str):
+ self.add_string(KEY_GENERAL_NAME, name)
+
+ def add_quantization_version(self, quantization_version: GGMLQuantizationType):
+ self.add_uint32(
+ KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
+
+ def add_custom_alignment(self, alignment: int):
+ self.data_alignment = alignment
+ self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
+
+ def add_context_length(self, length: int):
+ self.add_uint32(
+ KEY_CONTEXT_LENGTH.format(arch=self.arch), length)
+
+ def add_embedding_length(self, length: int):
+ self.add_uint32(
+ KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
+
+ def add_block_count(self, length: int):
+ self.add_uint32(
+ KEY_BLOCK_COUNT.format(arch=self.arch), length)
+
+ def add_feed_forward_length(self, length: int):
+ self.add_uint32(
+ KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
+
+ def add_parallel_residual(self, use: bool):
+ self.add_bool(
+ KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
+
+ def add_tensor_data_layout(self, layout: str):
+ self.add_string(
+ KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
+
+ def add_head_count(self, count: int):
+ self.add_uint32(
+ KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
+
+ def add_head_count_kv(self, count: int):
+ self.add_uint32(
+ KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
+
+ def add_max_alibi_bias(self, bias: float):
+ self.add_float32(
+ KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
+
+ def add_clamp_kqv(self, value: float):
+ self.add_float32(
+ KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
+
+ def add_layer_norm_eps(self, value: float):
+ self.add_float32(
+ KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
+
+ def add_layer_norm_rms_eps(self, value: float):
+ self.add_float32(
+ KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
+
+ def add_rope_dimension_count(self, count: int):
+ self.add_uint32(
+ KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
+
+ def add_rope_freq_base(self, value: float):
+ self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value)
+
+ def add_rope_scale_linear(self, value: float):
+ self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
+
+ def add_tokenizer_model(self, model: str):
+ self.add_string(KEY_TOKENIZER_MODEL, model)
+
+ def add_token_list(self, tokens: List):
+ self.add_array(KEY_TOKENIZER_LIST, tokens)
+
+ def add_token_merges(self, merges: List):
+ self.add_array(KEY_TOKENIZER_MERGES, merges)
+
+ def add_token_types(self, types: List[int]):
+ self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
+
+ def add_token_scores(self, scores: List[float]):
+ self.add_array(KEY_TOKENIZER_SCORES, scores)
+
+ def add_bos_token_id(self, id: int):
+ self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
+
+ def add_eos_token_id(self, id: int):
+ self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
+
+ def add_unk_token_id(self, id: int):
+ self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
+
+ def add_sep_token_id(self, id: int):
+ self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
+
+ def add_pad_token_id(self, id: int):
+ self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
+
+
+# Example usage:
+if __name__ == "__main__":
+ # Example usage with a file
+ gguf_writer = GGUFWriter("example.gguf", "llama")
+
+ gguf_writer.add_architecture()
+ gguf_writer.add_block_count(12)
+ gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
+ gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
+ gguf_writer.add_custom_alignment(64)
+
+ tensor1 = np.ones((32,), dtype=np.float32) * 100.0
+ tensor2 = np.ones((64,), dtype=np.float32) * 101.0
+ tensor3 = np.ones((96,), dtype=np.float32) * 102.0
+
+ gguf_writer.add_tensor("tensor1", tensor1)
+ gguf_writer.add_tensor("tensor2", tensor2)
+ gguf_writer.add_tensor("tensor3", tensor3)
+
+ gguf_writer.write_header_to_file()
+ gguf_writer.write_kv_data_to_file()
+ gguf_writer.write_tensors_to_file()
+
+ gguf_writer.close()
--- /dev/null
+[tool.poetry]
+name = "gguf"
+version = "0.2.0"
+description = "Write ML models in GGUF for GGML"
+authors = ["GGML <ggml@ggml.ai>"]
+packages = [
+ {include = "gguf"},
+]
+readme = "README.md"
+homepage = "https://ggml.ai"
+repository = "https://github.com/ggerganov/llama.cpp"
+keywords = ["ggml", "gguf", "llama.cpp"]
+classifiers = [
+ "Programming Language :: Python :: 3",
+ "License :: OSI Approved :: MIT License",
+ "Operating System :: OS Independent",
+]
+
+[tool.poetry.dependencies]
+python = ">=3.8"
+numpy = ">=1.17"
+
+[tool.poetry.dev-dependencies]
+pytest = "^5.2"
+
+[build-system]
+requires = ["poetry-core>=1.0.0"]
+build-backend = "poetry.core.masonry.api"
--- /dev/null
+import gguf
+
+# TODO: add tests
+
+
+def test_write_gguf():
+ pass
+++ /dev/null
-#!/usr/bin/env python3
-import shutil
-import sys
-import struct
-import tempfile
-import numpy as np
-
-from enum import IntEnum, auto
-from typing import Any, IO, List, Optional
-
-#
-# constants
-#
-
-GGUF_MAGIC = 0x46554747
-GGUF_VERSION = 1
-GGUF_DEFAULT_ALIGNMENT = 32
-
-# general
-KEY_GENERAL_ARCHITECTURE = "general.architecture"
-KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
-KEY_GENERAL_ALIGNMENT = "general.alignment"
-KEY_GENERAL_NAME = "general.name"
-KEY_GENERAL_AUTHOR = "general.author"
-KEY_GENERAL_URL = "general.url"
-KEY_GENERAL_DESCRIPTION = "general.description"
-KEY_GENERAL_LICENSE = "general.license"
-KEY_GENERAL_SOURCE_URL = "general.source.url"
-KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
-KEY_GENERAL_FILE_TYPE = "general.file_type"
-
-# LLM
-KEY_CONTEXT_LENGTH = "{arch}.context_length"
-KEY_EMBEDDING_LENGTH = "{arch}.embedding_length"
-KEY_BLOCK_COUNT = "{arch}.block_count"
-KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
-KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
-KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
-
-# attention
-KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
-KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
-KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
-KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
-KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
-KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
-
-# RoPE
-KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
-KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base"
-KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
-
-# tokenization
-KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
-KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
-KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
-KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
-KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
-KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
-KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
-KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
-KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
-KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
-KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
-KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
-
-
-#
-# recommended mapping of model tensor names for storage in gguf
-#
-
-
-class MODEL_ARCH(IntEnum):
- LLAMA = auto()
- FALCON = auto()
- GPT2 = auto()
- GPTJ = auto()
- GPTNEOX = auto()
- MPT = auto()
-
-
-class MODEL_TENSOR(IntEnum):
- TOKEN_EMBD = auto()
- POS_EMBD = auto()
- OUTPUT = auto()
- OUTPUT_NORM = auto()
- ROPE_FREQS = auto()
- ATTN_Q = auto()
- ATTN_K = auto()
- ATTN_V = auto()
- ATTN_QKV = auto()
- ATTN_OUT = auto()
- ATTN_NORM = auto()
- ATTN_NORM_2 = auto()
- ATTN_ROT_EMBD = auto()
- FFN_GATE = auto()
- FFN_DOWN = auto()
- FFN_UP = auto()
- FFN_NORM = auto()
-
-
-MODEL_ARCH_NAMES = {
- MODEL_ARCH.LLAMA: "llama",
- MODEL_ARCH.FALCON: "falcon",
- MODEL_ARCH.GPT2: "gpt2",
- MODEL_ARCH.GPTJ: "gptj",
- MODEL_ARCH.GPTNEOX: "gptneox",
- MODEL_ARCH.MPT: "mpt",
-}
-
-MODEL_TENSOR_NAMES = {
- MODEL_ARCH.LLAMA: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
- MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
- MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.GPTNEOX: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.FALCON: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.GPT2: {
- # TODO
- },
- # TODO
-}
-
-# tensors that will not be serialized
-MODEL_TENSOR_SKIP = {
- MODEL_ARCH.LLAMA: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
-}
-
-
-# TODO: the following helper functions should be removed
-# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
-# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
-# REMOVE
-def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
- for skip in MODEL_TENSOR_SKIP.get(arch, []):
- for i in range(n_blocks):
- if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
- return True
-
- return False
-
-
-def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
- tensor_map = {}
-
- # Token embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
-
- tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
- tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
- tensor_map["transformer.word_embeddings"] = mapped_to # falcon
- tensor_map["model.embed_tokens"] = mapped_to # llama-hf
- tensor_map["tok_embeddings"] = mapped_to # llama-pth
-
- # Position embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
-
- tensor_map["transformer.wpe"] = mapped_to # gpt2
-
- # Output
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
-
- tensor_map["embed_out"] = mapped_to # gptneox
- tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
- tensor_map["output"] = mapped_to # llama-pth
-
- # Output norm
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
-
- tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
- tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
- tensor_map["transformer.norm_f"] = mapped_to # mpt
- tensor_map["model.norm"] = mapped_to # llama-hf
- tensor_map["norm"] = mapped_to # llama-pth
-
- # Rope frequencies
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
-
- tensor_map["rope.freqs"] = mapped_to # llama-pth
-
- # Attention and feed-forward blocks
- for i in range(0, n_blocks):
- # Attention norm
- # TODO: is there are simpler way to write these 2 lines in Python?
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to else None
-
- tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
- tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
- tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
-
- # Attention norm 2
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
-
- # Attention query-key-value
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
-
- # Attention query
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
-
- # Attention key
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
-
- # Attention value
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
-
- # Attention output
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
-
- # Rotary embeddings
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
-
- # Feed-forward norm
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
- tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
-
- # Feed-forward up
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
-
- # Feed-forward gate
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
-
- # Feed-forward down
- mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
- mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
-
- tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
- tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
- tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
- tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
- tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
- tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
-
- return tensor_map
-
-
-class TokenType(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
-
-#
-# implementation
-#
-
-
-class GGMLQuantizationType(IntEnum):
- F32 = 0
- F16 = 1
- Q4_0 = 2
- Q4_1 = 3
- Q5_0 = 6
- Q5_1 = 7
- Q8_0 = 8
- Q8_1 = 9
- Q2_K = 10
- Q3_K = 11
- Q4_K = 12
- Q5_K = 13
- Q6_K = 14
- Q8_K = 15
-
-
-class GGUFValueType(IntEnum):
- UINT8 = 0
- INT8 = 1
- UINT16 = 2
- INT16 = 3
- UINT32 = 4
- INT32 = 5
- FLOAT32 = 6
- BOOL = 7
- STRING = 8
- ARRAY = 9
-
- @staticmethod
- def get_type(val):
- if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
- return GGUFValueType.STRING
- elif isinstance(val, list):
- return GGUFValueType.ARRAY
- elif isinstance(val, float):
- return GGUFValueType.FLOAT32
- elif isinstance(val, bool):
- return GGUFValueType.BOOL
- elif isinstance(val, int):
- return GGUFValueType.INT32
- else:
- print("Unknown type: "+str(type(val)))
- sys.exit()
-
-
-class GGUFWriter:
- def __init__(self, path: str, arch: str, use_temp_file = True):
- self.fout = open(path, "wb")
- self.arch = arch
- self.offset_tensor = 0
- self.data_alignment = GGUF_DEFAULT_ALIGNMENT
- self.kv_data = b""
- self.kv_data_count = 0
- self.ti_data = b""
- self.ti_data_count = 0
- self.add_architecture()
- self.use_temp_file = use_temp_file
- self.tensors = []
-
- def write_header_to_file(self):
- self.fout.write(struct.pack("<I", GGUF_MAGIC))
- self.fout.write(struct.pack("<I", GGUF_VERSION))
- self.fout.write(struct.pack("<I", self.ti_data_count))
- self.fout.write(struct.pack("<I", self.kv_data_count))
- self.flush()
-# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
-
- def write_kv_data_to_file(self):
- self.fout.write(self.kv_data)
- self.flush()
-
- def write_ti_data_to_file(self):
- self.fout.write(self.ti_data)
- self.flush()
-
- def add_key(self, key: str):
- self.add_val(key, GGUFValueType.STRING, add_vtype=False)
-
- def add_uint8(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT8)
-
- def add_int8(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT8)
-
- def add_uint16(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT16)
-
- def add_int16(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT16)
-
- def add_uint32(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT32)
-
- def add_int32(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT32)
-
- def add_float32(self, key: str, val: float):
- self.add_key(key)
- self.add_val(val, GGUFValueType.FLOAT32)
-
- def add_bool(self, key: str, val: bool):
- self.add_key(key)
- self.add_val(val, GGUFValueType.BOOL)
-
- def add_string(self, key: str, val: str):
- if len(val) == 0:
- return
- self.add_key(key)
- self.add_val(val, GGUFValueType.STRING)
-
- def add_array(self, key: str, val: list):
- if not isinstance(val, list):
- raise ValueError("Value must be a list for array type")
-
- self.add_key(key)
- self.add_val(val, GGUFValueType.ARRAY)
-
- def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
- if vtype is None:
- vtype = GGUFValueType.get_type(val)
-
- if add_vtype:
- self.kv_data += struct.pack("<I", vtype)
- self.kv_data_count += 1
-
- if vtype == GGUFValueType.UINT8:
- self.kv_data += struct.pack("<B", val)
- elif vtype == GGUFValueType.INT8:
- self.kv_data += struct.pack("<b", val)
- elif vtype == GGUFValueType.UINT16:
- self.kv_data += struct.pack("<H", val)
- elif vtype == GGUFValueType.INT16:
- self.kv_data += struct.pack("<h", val)
- elif vtype == GGUFValueType.UINT32:
- self.kv_data += struct.pack("<I", val)
- elif vtype == GGUFValueType.INT32:
- self.kv_data += struct.pack("<i", val)
- elif vtype == GGUFValueType.FLOAT32:
- self.kv_data += struct.pack("<f", val)
- elif vtype == GGUFValueType.BOOL:
- self.kv_data += struct.pack("?", val)
- elif vtype == GGUFValueType.STRING:
- encoded_val = val.encode("utf8") if isinstance(val, str) else val
- self.kv_data += struct.pack("<I", len(encoded_val))
- self.kv_data += encoded_val
- elif vtype == GGUFValueType.ARRAY:
- ltype = set([GGUFValueType.get_type(item) for item in val])
- assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
- self.kv_data += struct.pack("<I", list(ltype)[0])
- self.kv_data += struct.pack("<I", len(val))
- for item in val:
- self.add_val(item, add_vtype=False)
- else:
- raise ValueError("Invalid GGUF metadata value type")
-
- @staticmethod
- def ggml_pad(x: int, n: int) -> int:
- return ((x + n - 1) // n) * n
-
- def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
- assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
-
- encoded_name = name.encode("utf8")
- self.ti_data += struct.pack("<I", len(encoded_name))
- self.ti_data += encoded_name
- n_dims = len(tensor_shape)
- self.ti_data += struct.pack("<I", n_dims)
- for i in range(n_dims):
- self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
- if raw_dtype is None:
- dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
- else:
- dtype = raw_dtype
- self.ti_data += struct.pack("<I", dtype)
- self.ti_data += struct.pack("<Q", self.offset_tensor)
- self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
- self.ti_data_count += 1
-
- def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
- if self.use_temp_file and not hasattr(self, "temp_file"):
- self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
- self.temp_file.seek(0)
-
- self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
-
- pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
-
- if not self.use_temp_file:
- self.tensors.append((tensor, pad))
- return
-
- tensor.tofile(self.temp_file)
-
- if pad != 0:
- self.temp_file.write(bytes([0] * pad))
-
- def write_tensor_data(self, tensor: np.ndarray):
- pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
- if pad != 0:
- self.fout.write(bytes([0] * pad))
-
- tensor.tofile(self.fout)
-
- pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
- if pad != 0:
- self.fout.write(bytes([0] * pad))
-
- def write_tensors_to_file(self):
- self.write_ti_data_to_file()
-
- pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
- if pad != 0:
- self.fout.write(bytes([0] * pad))
-
- if not self.use_temp_file:
- for (currtensor, currpad) in self.tensors:
- currtensor.tofile(self.fout)
- if currpad != 0:
- self.fout.write(bytes([0] * currpad))
- return
-
- self.temp_file.seek(0)
-
- shutil.copyfileobj(self.temp_file, self.fout)
- self.flush()
- self.temp_file.close()
-
- def flush(self):
- self.fout.flush()
-
- def close(self):
- self.fout.close()
-
- def add_architecture(self):
- self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
-
- def add_author(self, author: str):
- self.add_string(KEY_GENERAL_AUTHOR, author)
-
- def add_tensor_data_layout(self, layout: str):
- self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
-
- def add_url(self, url: str):
- self.add_string(KEY_GENERAL_URL, url)
-
- def add_description(self, description: str):
- self.add_string(KEY_GENERAL_DESCRIPTION, description)
-
- def add_source_url(self, url: str):
- self.add_string(KEY_GENERAL_SOURCE_URL, url)
-
- def add_source_hf_repo(self, repo: str):
- self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
-
- def add_file_type(self, ftype: int):
- self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
-
- def add_name(self, name: str):
- self.add_string(KEY_GENERAL_NAME, name)
-
- def add_quantization_version(self, quantization_version: GGMLQuantizationType):
- self.add_uint32(
- KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
-
- def add_custom_alignment(self, alignment: int):
- self.data_alignment = alignment
- self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
-
- def add_context_length(self, length: int):
- self.add_uint32(
- KEY_CONTEXT_LENGTH.format(arch=self.arch), length)
-
- def add_embedding_length(self, length: int):
- self.add_uint32(
- KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
-
- def add_block_count(self, length: int):
- self.add_uint32(
- KEY_BLOCK_COUNT.format(arch=self.arch), length)
-
- def add_feed_forward_length(self, length: int):
- self.add_uint32(
- KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
-
- def add_parallel_residual(self, use: bool):
- self.add_bool(
- KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
-
- def add_tensor_data_layout(self, layout: str):
- self.add_string(
- KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
-
- def add_head_count(self, count: int):
- self.add_uint32(
- KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
-
- def add_head_count_kv(self, count: int):
- self.add_uint32(
- KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
-
- def add_max_alibi_bias(self, bias: float):
- self.add_float32(
- KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
-
- def add_clamp_kqv(self, value: float):
- self.add_float32(
- KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
-
- def add_layer_norm_eps(self, value: float):
- self.add_float32(
- KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
-
- def add_layer_norm_rms_eps(self, value: float):
- self.add_float32(
- KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
-
- def add_rope_dimension_count(self, count: int):
- self.add_uint32(
- KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
-
- def add_rope_freq_base(self, value: float):
- self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value)
-
- def add_rope_scale_linear(self, value: float):
- self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
-
- def add_tokenizer_model(self, model: str):
- self.add_string(KEY_TOKENIZER_MODEL, model)
-
- def add_token_list(self, tokens: List):
- self.add_array(KEY_TOKENIZER_LIST, tokens)
-
- def add_token_merges(self, merges: List):
- self.add_array(KEY_TOKENIZER_MERGES, merges)
-
- def add_token_types(self, types: List[int]):
- self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
-
- def add_token_scores(self, scores: List[float]):
- self.add_array(KEY_TOKENIZER_SCORES, scores)
-
- def add_bos_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
-
- def add_eos_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
-
- def add_unk_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
-
- def add_sep_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
-
- def add_pad_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
-
-
-# Example usage:
-if __name__ == "__main__":
- # Example usage with a file
- gguf_writer = GGUFWriter("example.gguf", "llama")
-
- gguf_writer.add_architecture()
- gguf_writer.add_block_count(12)
- gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
- gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
- gguf_writer.add_custom_alignment(64)
-
- tensor1 = np.ones((32,), dtype=np.float32) * 100.0
- tensor2 = np.ones((64,), dtype=np.float32) * 101.0
- tensor3 = np.ones((96,), dtype=np.float32) * 102.0
-
- gguf_writer.add_tensor("tensor1", tensor1)
- gguf_writer.add_tensor("tensor2", tensor2)
- gguf_writer.add_tensor("tensor3", tensor3)
-
- gguf_writer.write_header_to_file()
- gguf_writer.write_kv_data_to_file()
- gguf_writer.write_tensors_to_file()
-
- gguf_writer.close()
numpy==1.24
sentencepiece==0.1.98
+gguf>=0.1.0