break;
}
params.lora_base = argv[i];
+ } else if (arg == "--control-vector") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.control_vectors.push_back({ 1.0f, argv[i], });
+ } else if (arg == "--control-vector-scaled") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ const char * fname = argv[i];
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.control_vectors.push_back({ std::stof(argv[i]), fname, });
+ } else if (arg == "--control-vector-layer-range") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.control_vector_layer_start = std::stoi(argv[i]);
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.control_vector_layer_end = std::stoi(argv[i]);
} else if (arg == "--mmproj") {
if (++i >= argc) {
invalid_param = true;
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
+ printf(" --control-vector FNAME\n");
+ printf(" add a control vector\n");
+ printf(" --control-vector-scaled FNAME S\n");
+ printf(" add a control vector with user defined scaling S\n");
+ printf(" --control-vector-layer-range START END\n");
+ printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -md FNAME, --model-draft FNAME\n");
return std::make_tuple(nullptr, nullptr);
}
+ if (!params.control_vectors.empty()) {
+ if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
+ if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
+
+ const auto cvec = llama_control_vector_load(params.control_vectors);
+ if (cvec.n_embd == -1) {
+ llama_free(lctx);
+ llama_free_model(model);
+ return std::make_tuple(nullptr, nullptr);
+ }
+
+ int err = llama_control_vector_apply(lctx,
+ cvec.data.data(),
+ cvec.data.size(),
+ cvec.n_embd,
+ params.control_vector_layer_start,
+ params.control_vector_layer_end);
+ if (err) {
+ llama_free(lctx);
+ llama_free_model(model);
+ return std::make_tuple(nullptr, nullptr);
+ }
+ }
+
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
return sum / (sqrt(sum1) * sqrt(sum2));
}
+
+//
+// Control vector utils
+//
+
+static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
+ int32_t n_tensors;
+
+ size_t n_bytes = 0;
+
+ uint32_t max_direction_layer = 0;
+
+ llama_control_vector_data result = { -1, {} };
+
+ // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
+ {
+ struct ggml_init_params meta_params = {
+ /* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
+ /* .mem_buffer = */ nullptr,
+ /* .no_alloc = */ true,
+ };
+ ggml_context * meta_ctx = ggml_init(meta_params);
+ struct gguf_init_params meta_gguf_params = {
+ /* .no_alloc = */ true,
+ /* .ctx = */ &meta_ctx,
+ };
+ struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
+ if (!meta_ctx_gguf) {
+ fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
+ ggml_free(meta_ctx);
+ return result;
+ }
+
+ n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
+ for (int i = 0; i < n_tensors; i++) {
+ std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
+
+ // split on '.'
+ size_t dotpos = name.find('.');
+ if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
+ try {
+ uint32_t layer = std::stoi(name.substr(dotpos + 1));
+ if (layer == 0) {
+ fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
+ ggml_free(meta_ctx);
+ gguf_free(meta_ctx_gguf);
+ return result;
+ }
+ if (layer > max_direction_layer) {
+ max_direction_layer = layer;
+ }
+ } catch (...) {
+ fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
+ ggml_free(meta_ctx);
+ gguf_free(meta_ctx_gguf);
+ return result;
+ }
+ }
+
+ struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
+ if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
+ fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
+ ggml_free(meta_ctx);
+ gguf_free(meta_ctx_gguf);
+ return result;
+ }
+ if (result.n_embd == -1) {
+ result.n_embd = ggml_nelements(tensor_meta);
+ } else if (ggml_nelements(tensor_meta) != result.n_embd) {
+ fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
+ ggml_free(meta_ctx);
+ gguf_free(meta_ctx_gguf);
+ return result;
+ }
+ n_bytes += ggml_nbytes(tensor_meta);
+ }
+ ggml_free(meta_ctx);
+ gguf_free(meta_ctx_gguf);
+ }
+
+ if (n_tensors == 0) {
+ fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
+ return result;
+ }
+
+ // load and scale tensors into final control vector context
+ struct ggml_init_params ggml_params = {
+ /* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
+ /* .mem_buffer = */ nullptr,
+ /* .no_alloc = */ false,
+ };
+ struct ggml_context * ctx = ggml_init(ggml_params);
+
+ struct gguf_init_params params = {
+ /*.no_alloc = */ false,
+ /*.ctx = */ &ctx,
+ };
+ struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
+ if (!ctx_gguf) {
+ fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
+ ggml_free(ctx);
+ return result;
+ }
+
+ // do not store data for layer 0 (it's not used)
+ result.data.resize(result.n_embd * max_direction_layer);
+
+ for (uint32_t il = 1; il <= max_direction_layer; il++) {
+ const std::string name = "direction." + std::to_string(il);
+ const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
+
+ float * dst = result.data.data() + result.n_embd * (il - 1);
+
+ if (tensor) {
+ const float * src = (const float *) tensor->data;
+ for (int j = 0; j < result.n_embd; j++) {
+ dst[j] = src[j] * load_info.strength;
+ }
+ } else {
+ for (int j = 0; j < result.n_embd; j++) {
+ dst[j] = 0.0f;
+ }
+ }
+ }
+
+ return result;
+}
+
+llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
+ llama_control_vector_data result = { -1, {} };
+
+ for (const auto & info : load_infos) {
+ auto cur = llama_control_vector_load_one(info);
+
+ if (cur.n_embd == -1) {
+ return result;
+ }
+ if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
+ fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
+ return result;
+ }
+
+ if (result.n_embd == -1) {
+ result = std::move(cur);
+ } else {
+ for (size_t i = 0; i < cur.data.size(); i++) {
+ result.data[i] += cur.data[i];
+ }
+ }
+ }
+
+ if (result.n_embd == -1) {
+ fprintf(stderr, "%s: no vectors passed\n", __func__);
+ }
+
+ return result;
+}
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
+struct llama_control_vector_load_info;
+
+int32_t get_num_physical_cores();
+
//
// CLI argument parsing
//
-int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
+ std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
+
+ int32_t control_vector_layer_start = -1; // layer range for control vector
+ int32_t control_vector_layer_end = -1; // layer range for control vector
+
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
void llama_embd_normalize(const float * inp, float * out, int n);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
+
+//
+// Control vector utils
+//
+
+struct llama_control_vector_data {
+ int n_embd;
+
+ // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
+ std::vector<float> data;
+};
+
+struct llama_control_vector_load_info {
+ float strength;
+
+ std::string fname;
+};
+
+// Load control vectors, scale each by strength, and add them together.
+// On error, returns {-1, empty}
+llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
}
};
+struct llama_control_vector {
+ std::vector<struct ggml_tensor *> tensors; // per layer
+ std::vector<struct ggml_context *> ctxs;
+ std::vector<ggml_backend_buffer_t> bufs;
+
+ int32_t layer_start = -1;
+ int32_t layer_end = -1;
+
+ ggml_tensor * tensor_for(int il) const {
+ if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
+ return nullptr;
+ }
+ return tensors[il];
+ }
+
+ ~llama_control_vector() {
+ for (struct ggml_context * ctx : ctxs) {
+ ggml_free(ctx);
+ }
+ for (ggml_backend_buffer_t buf : bufs) {
+ ggml_backend_buffer_free(buf);
+ }
+ }
+};
+
struct llama_vocab {
using id = int32_t;
using token = std::string;
struct ggml_tensor * inp_s_mask; // F32 [1, kv_size]
struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch]
+ // control vectors
+ struct llama_control_vector cvec;
+
#ifdef GGML_USE_MPI
ggml_mpi_context * ctx_mpi = NULL;
#endif
}
cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
+ if (layer_dir != nullptr) {
+ cur = ggml_add(ctx0, cur, layer_dir);
+ }
cb(cur, "l_out", il);
// input for next layer
return model->hparams.n_embd;
}
+int32_t llama_n_layer(const struct llama_model * model) {
+ return model->hparams.n_layer;
+}
+
float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train;
}
}
}
+static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
+ GGML_ASSERT(cvec.tensors.empty());
+ GGML_ASSERT(cvec.ctxs.empty());
+ GGML_ASSERT(cvec.bufs.empty());
+
+ // count layer buffer types
+ std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
+ for (int64_t i = 0; i < model.hparams.n_layer; i++) {
+ buft_layer_count[model.buft_layer[i].buft]++;
+ }
+
+ // allocate contexts
+ std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+ for (auto & it : buft_layer_count) {
+ int n_layers = it.second;
+ struct ggml_init_params params = {
+ /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ggml_context * ctx = ggml_init(params);
+ if (!ctx) {
+ LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
+ return 1;
+ }
+ ctx_map[it.first] = ctx;
+ }
+
+ // make tensors
+ cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
+ for (size_t il = 1; il < model.hparams.n_layer; il++) {
+ struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
+ ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
+ cvec.tensors.push_back(tensor);
+ }
+
+ // allocate tensors / buffers and zero
+ for (auto it : ctx_map) {
+ ggml_backend_buffer_type_t buft = it.first;
+ ggml_context * ctx = it.second;
+ ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+ if (!buf) {
+ LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
+ return false;
+ }
+ ggml_backend_buffer_clear(buf, 0);
+ cvec.ctxs.push_back(ctx);
+ cvec.bufs.push_back(buf);
+ }
+
+ return true;
+}
+
+int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
+ const llama_model & model = lctx->model;
+ llama_control_vector & cvec = lctx->cvec;
+
+ if (data == nullptr) {
+ // disable the current control vector (but leave allocated for later)
+ cvec.layer_start = -1;
+ cvec.layer_end = -1;
+ return 0;
+ }
+
+ if (n_embd != (int) model.hparams.n_embd) {
+ LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
+ return 1;
+ }
+
+ if (cvec.tensors.empty()) {
+ if (!llama_control_vector_init(cvec, model)) {
+ return 1;
+ }
+ }
+
+ cvec.layer_start = il_start;
+ cvec.layer_end = il_end;
+
+ for (size_t il = 1; il < model.hparams.n_layer; il++) {
+ assert(cvec.tensors[il] != nullptr);
+
+ const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
+ if (off + n_embd <= len) {
+ ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
+ }
+ }
+
+ return 0;
+}
+
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
+ LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
// Returns 0 on success
LLAMA_API int32_t llama_model_apply_lora_from_file(
const struct llama_model * model,
- const char * path_lora,
- float scale,
- const char * path_base_model,
- int32_t n_threads);
+ const char * path_lora,
+ float scale,
+ const char * path_base_model,
+ int32_t n_threads);
+
+ // Apply a loaded control vector to a llama_context, or if data is NULL, clear
+ // the currently loaded vector.
+ // n_embd should be the size of a single layer's control, and data should point
+ // to an n_embd x n_layers buffer starting from layer 1.
+ // il_start and il_end are the layer range the vector should apply to (both inclusive)
+ // See llama_control_vector_load in common to load a control vector.
+ LLAMA_API int32_t llama_control_vector_apply(
+ struct llama_context * lctx,
+ const float * data,
+ size_t len,
+ int32_t n_embd,
+ int32_t il_start,
+ int32_t il_end);
//
// KV cache