@ModelBase.register("Olmo2ForCausalLM")
+@ModelBase.register("Olmo3ForCausalLM")
class Olmo2Model(TextModel):
model_arch = gguf.MODEL_ARCH.OLMO2
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+
+ rope_scaling = self.hparams.get("rope_scaling") or {}
+ if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+ self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+ self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
+ self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
+
+ if "sliding_window" in self.hparams:
+ self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
+
+ sliding_window_pattern = []
+ if "layer_types" in self.hparams:
+ sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
+ else:
+ # Olmo2 does not use sliding window attention.
+ # Olmo3 defaults to using sliding window for all layers except every 4th.
+ for i in range(self.hparams["num_hidden_layers"]):
+ sliding_window_pattern.append((i + 1) % 4 != 0)
+
+ self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
+
@ModelBase.register("OlmoeForCausalLM")
class OlmoeModel(TextModel):
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
+ if (found_swa && hparams.n_swa > 0) {
+ hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
+ hparams.set_swa_pattern(4);
+ } else {
+ hparams.swa_type = LLAMA_SWA_TYPE_NONE;
+ }
+
switch (hparams.n_layer) {
case 16: type = LLM_TYPE_1B; break;
case 32: type = LLM_TYPE_7B; break;
}
};
+template <bool iswa>
struct llm_build_olmo2 : public llm_graph_context {
llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
- auto * inp_attn = build_attn_inp_kv();
+ using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
+ inp_attn_type * inp_attn = nullptr;
+
+ if constexpr (iswa) {
+ inp_attn = build_attn_inp_kv_iswa();
+ } else {
+ inp_attn = build_attn_inp_kv();
+ }
ggml_tensor * inp_out_ids = build_inp_out_ids();
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_ext(
+ const bool is_swa = hparams.is_swa(il);
+
+ if (is_swa) {
+ // For sliding window layers, Olmo3 use regular rope with no yarn rope scaling.
+ // This is achieved here by setting freq_scale and attn_factor to 1.
+ // We also set ext_factor to 0 to avoid a few unnecessary computations.
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
+ 0.0, 1.0, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
+ 0.0, 1.0, beta_fast, beta_slow
+ );
+ } else {
+ Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
- Kcur = ggml_rope_ext(
+ Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
+ }
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
} break;
case LLM_ARCH_OLMO2:
{
- llm = std::make_unique<llm_build_olmo2>(*this, params);
+ if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
+ llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
+ } else {
+ llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
+ }
} break;
case LLM_ARCH_OLMOE:
{