]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
model : add BailingMoeV2 support (#16063)
authorSigbjørn Skjæret <redacted>
Mon, 20 Oct 2025 19:38:20 +0000 (21:38 +0200)
committerGitHub <redacted>
Mon, 20 Oct 2025 19:38:20 +0000 (21:38 +0200)
* add BailingMoeV2 support

* update llm types

* undo

* undo

* update llm types

* add model collection link

* update

* almost working

* correct group selection and rename n_group_exp

* avoid large top_k and use argmax instead for now

if we had something like argmax2 that would be equivalent, but this works fine until then

* poke

* skip group selection when there are no tokens

* fix 1T conversion

* hopefully fixed expert group selection

third time's the charm?

* make expert group selection generally available

The new LLaDA2Moe model uses this method too, make it generally available regardless of architecture.

* allow n_expert_groups to be 1 (Kimi K2)

* address review suggestions

15 files changed:
README.md
convert_hf_to_gguf.py
convert_hf_to_gguf_update.py
gguf-py/gguf/constants.py
gguf-py/gguf/gguf_writer.py
gguf-py/gguf/tensor_mapping.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-chat.cpp
src/llama-chat.h
src/llama-graph.cpp
src/llama-hparams.h
src/llama-model.cpp
src/llama-model.h
src/llama-vocab.cpp

index 0a755f4800e47e414d12386352bcf9a3a3881608..e373611051e445f96e37520c20d9eea993f8b86b 100644 (file)
--- a/README.md
+++ b/README.md
@@ -138,6 +138,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
 - [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
 - [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
 - [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
+- [x] [BailingMoeV2 (Ring/Ling 2.0) models](https://huggingface.co/collections/inclusionAI/ling-v2-68bf1dd2fc34c306c1fa6f86)
 
 #### Multimodal
 
index 8c5132193e0e0318c982832f21562cce52e96175..ed99dc84772315a73e5ca478a9e1fec449456ded 100755 (executable)
@@ -892,8 +892,8 @@ class TextModel(ModelBase):
             # ref: https://huggingface.co/JetBrains/Mellum-4b-base
             res = "mellum"
         if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
-            # ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
-            res = "llada-moe"
+            # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
+            res = "bailingmoe2"
         if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
             # ref: https://huggingface.co/ibm-granite/granite-docling-258M
             res = "granite-docling"
@@ -8055,6 +8055,103 @@ class BailingMoeModel(TextModel):
                 raise ValueError(f"Unprocessed experts: {experts}")
 
 
+@ModelBase.register("BailingMoeV2ForCausalLM")
+class BailingMoeV2Model(TextModel):
+    model_arch = gguf.MODEL_ARCH.BAILINGMOE2
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
+            self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
+            self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
+
+    def set_vocab(self):
+        self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        if (rope_dim := hparams.get("head_dim")) is None:
+            rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+
+        self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
+        rope_scaling = self.hparams.get("rope_scaling") or {}
+        if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+            self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
+            self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
+        else:
+            self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+        self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
+        self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
+        self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
+        self.gguf_writer.add_expert_count(hparams["num_experts"])
+        self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
+        self.gguf_writer.add_expert_group_count(hparams["n_group"])
+        self.gguf_writer.add_expert_group_used_count(hparams["topk_group"])
+        self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
+
+        if hparams["score_function"] == "sigmoid":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+        elif hparams["score_function"] == "softmax":
+            self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
+        else:
+            raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
+
+        if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
+            self.gguf_writer.add_nextn_predict_layers(nextn_layers)
+
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        if "mlp.experts" in name:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            tensors: list[tuple[str, Tensor]] = []
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                # merge the experts into a single 3d tensor
+                for w_name in ["down_proj", "gate_proj", "up_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename])
+                        del self._experts[bid][ename]
+
+                    data_torch = torch.stack(datas, dim=0)
+
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+                    new_name = self.map_tensor_name(merged_name)
+
+                    tensors.append((new_name, data_torch))
+
+            return tensors
+
+        if name.endswith(".expert_bias"):
+            name = name.replace(".expert_bias", ".expert_bias.bias")
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
 @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
 class GroveMoeModel(TextModel):
     model_arch = gguf.MODEL_ARCH.GROVEMOE
index 28002f766e23be8c736b41c2d051af0c9b56e107..0ebc1b160f603c354efaa1325c36ef318facfa95 100755 (executable)
@@ -139,7 +139,7 @@ models = [
     {"name": "lfm2",             "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
     {"name": "exaone4",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
     {"name": "mellum",           "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
-    {"name": "llada-moe",        "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
+    {"name": "bailingmoe2",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
     {"name": "granite-docling",  "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
 ]
 
index f5e5fba8008bd0e64baf231b3d773098a0c9010f..1b71fb3749aaa6483f9080159fd6077ecbbb1bfb 100644 (file)
@@ -102,6 +102,8 @@ class Keys:
         EXPERT_COUNT                      = "{arch}.expert_count"
         EXPERT_USED_COUNT                 = "{arch}.expert_used_count"
         EXPERT_SHARED_COUNT               = "{arch}.expert_shared_count"
+        EXPERT_GROUP_COUNT                = "{arch}.expert_group_count"
+        EXPERT_GROUP_USED_COUNT           = "{arch}.expert_group_used_count"
         EXPERT_WEIGHTS_SCALE              = "{arch}.expert_weights_scale"
         EXPERT_WEIGHTS_NORM               = "{arch}.expert_weights_norm"
         EXPERT_GATING_FUNC                = "{arch}.expert_gating_func"
@@ -400,6 +402,7 @@ class MODEL_ARCH(IntEnum):
     WAVTOKENIZER_DEC = auto()
     PLM              = auto()
     BAILINGMOE       = auto()
+    BAILINGMOE2      = auto()
     DOTS1            = auto()
     ARCEE            = auto()
     ERNIE4_5         = auto()
@@ -744,6 +747,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
     MODEL_ARCH.PLM:              "plm",
     MODEL_ARCH.BAILINGMOE:       "bailingmoe",
+    MODEL_ARCH.BAILINGMOE2:      "bailingmoe2",
     MODEL_ARCH.DOTS1:            "dots1",
     MODEL_ARCH.ARCEE:            "arcee",
     MODEL_ARCH.ERNIE4_5:         "ernie4_5",
@@ -2533,6 +2537,35 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN_SHEXP,
         MODEL_TENSOR.FFN_UP_SHEXP,
     ],
+    MODEL_ARCH.BAILINGMOE2: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_QKV,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_EXP_PROBS_B,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+        MODEL_TENSOR.FFN_GATE_SHEXP,
+        MODEL_TENSOR.FFN_DOWN_SHEXP,
+        MODEL_TENSOR.FFN_UP_SHEXP,
+        MODEL_TENSOR.NEXTN_EH_PROJ,
+        MODEL_TENSOR.NEXTN_EMBED_TOKENS,
+        MODEL_TENSOR.NEXTN_ENORM,
+        MODEL_TENSOR.NEXTN_HNORM,
+        MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
+        MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
+        MODEL_TENSOR.LAYER_OUT_NORM,
+    ],
     MODEL_ARCH.DOTS1: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index 306679e21834b88ab09dc070da0a51a8bc712177..d52d4f40f78847354f9015ea2269d05c6f415084 100644 (file)
@@ -755,6 +755,12 @@ class GGUFWriter:
     def add_expert_shared_count(self, count: int) -> None:
         self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
 
+    def add_expert_group_count(self, count: int) -> None:
+        self.add_uint32(Keys.LLM.EXPERT_GROUP_COUNT.format(arch=self.arch), count)
+
+    def add_expert_group_used_count(self, count: int) -> None:
+        self.add_uint32(Keys.LLM.EXPERT_GROUP_USED_COUNT.format(arch=self.arch), count)
+
     def add_expert_weights_scale(self, value: float) -> None:
         self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
 
index c05aa6cc488de6489a6c33d05de8fb4f79ab645b..d7dcd8efb84260871f5035dd384ce1d37a15b3ec 100644 (file)
@@ -174,6 +174,7 @@ class TensorNameMap:
             "h.{bid}.self_attention.query_key_value",                              # bloom
             "language_model.encoder.layers.{bid}.self_attention.query_key_value",  # persimmon
             "model.layers.{bid}.self_attn.query_key_value",                        # persimmon
+            "model.layers.{bid}.attention.query_key_value",                        # bailingmoe2
             "h.{bid}.attn.c_attn",                                                 # gpt2
             "transformer.h.{bid}.mixer.Wqkv",                                      # phi2
             "encoder.layers.{bid}.attn.Wqkv",                                      # nomic-bert
@@ -260,6 +261,7 @@ class TensorNameMap:
             "transformer.h.{bid}.attn.out_proj",                            # gpt-j
             "language_model.encoder.layers.{bid}.self_attention.dense",     # persimmon
             "model.layers.{bid}.self_attn.dense",                           # persimmon
+            "model.layers.{bid}.attention.dense",                           # bailingmoe2
             "h.{bid}.attn.c_proj",                                          # gpt2
             "transformer.h.{bid}.mixer.out_proj",                           # phi2
             "model.layers.layers.{bid}.self_attn.o_proj",                   # plamo
@@ -373,6 +375,7 @@ class TensorNameMap:
         MODEL_TENSOR.FFN_EXP_PROBS_B: (
             "model.layers.{bid}.mlp.gate.e_score_correction",               # deepseek-v3 dots1
             "model.layers.{bid}.mlp.moe_statics.e_score_correction",        # ernie4.5-moe
+            "model.layers.{bid}.mlp.gate.expert_bias",                      # bailingmoe2
             "model.layers.{bid}.feed_forward.expert_bias",                  # lfm2moe
         ),
 
@@ -549,6 +552,7 @@ class TensorNameMap:
             "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
             "model.layers.{bid}.self_attn.q_layernorm",                       # persimmon
             "model.layers.{bid}.self_attn.query_layernorm",                   # hunyuan
+            "model.layers.{bid}.attention.query_layernorm",                   # bailingmoe2
             "model.layers.{bid}.self_attn.q_norm",                            # cohere olmoe chameleon olmo2
             "layers.{bid}.self_attn.q_norm",                                  # embeddinggemma
             "transformer.blocks.{bid}.attn.q_ln",                             # sea-lion
@@ -563,6 +567,7 @@ class TensorNameMap:
             "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
             "model.layers.{bid}.self_attn.k_layernorm",                       # persimmon
             "model.layers.{bid}.self_attn.key_layernorm",                     # hunyuan
+            "model.layers.{bid}.attention.key_layernorm",                     # bailingmoe2
             "model.layers.{bid}.self_attn.k_norm",                            # cohere olmoe chameleon olmo2
             "layers.{bid}.self_attn.k_norm",                                  # embeddinggemma
             "transformer.blocks.{bid}.attn.k_ln",                             # sea-lion
@@ -584,6 +589,7 @@ class TensorNameMap:
             "transformer.decoder_layer.{bid}.rms_norm_3",   # Grok
             "encoder.layer.{bid}.mlp.layernorm",            # jina-bert-v2
             "encoder.layer.{bid}.layer_norm_2",             # jina-v2-code
+            "model.layers.{bid}.final_layernorm",           # bailingmoe2
         ),
 
         MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
index b7e00b275b6f7a68bf33ab9a0d8e898c1ad11806..8ca769c5fd2ef7e0d3be88e34a33fc11d0e70c83 100644 (file)
@@ -85,6 +85,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
     { LLM_ARCH_PLM,              "plm"              },
     { LLM_ARCH_BAILINGMOE,       "bailingmoe"       },
+    { LLM_ARCH_BAILINGMOE2,      "bailingmoe2"      },
     { LLM_ARCH_DOTS1,            "dots1"            },
     { LLM_ARCH_ARCEE,            "arcee"            },
     { LLM_ARCH_ERNIE4_5,         "ernie4_5"         },
@@ -135,6 +136,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
     { LLM_KV_EXPERT_COUNT,                      "%s.expert_count"                      },
     { LLM_KV_EXPERT_USED_COUNT,                 "%s.expert_used_count"                 },
     { LLM_KV_EXPERT_SHARED_COUNT,               "%s.expert_shared_count"               },
+    { LLM_KV_EXPERT_GROUP_COUNT,                "%s.expert_group_count"                },
+    { LLM_KV_EXPERT_GROUP_USED_COUNT,           "%s.expert_group_used_count"           },
     { LLM_KV_EXPERT_WEIGHTS_SCALE,              "%s.expert_weights_scale"              },
     { LLM_KV_EXPERT_WEIGHTS_NORM,               "%s.expert_weights_norm"               },
     { LLM_KV_EXPERT_GATING_FUNC,                "%s.expert_gating_func"                },
@@ -1946,6 +1949,38 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
         },
     },
+    {
+        LLM_ARCH_BAILINGMOE2,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q_NORM,        "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K_NORM,        "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_QKV,           "blk.%d.attn_qkv" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_EXP_PROBS_B,    "blk.%d.exp_probs_b" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,           "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,           "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,             "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_GATE_SHEXP,     "blk.%d.ffn_gate_shexp" },
+            { LLM_TENSOR_FFN_DOWN_SHEXP,     "blk.%d.ffn_down_shexp" },
+            { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
+            { LLM_TENSOR_NEXTN_EH_PROJ,      "blk.%d.nextn.eh_proj" },
+            { LLM_TENSOR_NEXTN_EMBED_TOKENS, "blk.%d.nextn.embed_tokens" },
+            { LLM_TENSOR_NEXTN_ENORM,        "blk.%d.nextn.enorm" },
+            { LLM_TENSOR_NEXTN_HNORM,        "blk.%d.nextn.hnorm" },
+            { LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "blk.%d.nextn.shared_head_head" },
+            { LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "blk.%d.nextn.shared_head_norm" },
+            { LLM_TENSOR_LAYER_OUT_NORM,     "blk.%d.layer_output_norm" },
+        },
+    },
     {
         LLM_ARCH_DOTS1,
         {
index c41de89859d5c44641d3d4f14efe680d9af652b9..dea725c1a753a92736fd61bcc0228fa9e3f19bac 100644 (file)
@@ -89,6 +89,7 @@ enum llm_arch {
     LLM_ARCH_WAVTOKENIZER_DEC,
     LLM_ARCH_PLM,
     LLM_ARCH_BAILINGMOE,
+    LLM_ARCH_BAILINGMOE2,
     LLM_ARCH_DOTS1,
     LLM_ARCH_ARCEE,
     LLM_ARCH_ERNIE4_5,
@@ -139,6 +140,8 @@ enum llm_kv {
     LLM_KV_EXPERT_COUNT,
     LLM_KV_EXPERT_USED_COUNT,
     LLM_KV_EXPERT_SHARED_COUNT,
+    LLM_KV_EXPERT_GROUP_COUNT,
+    LLM_KV_EXPERT_GROUP_USED_COUNT,
     LLM_KV_EXPERT_WEIGHTS_SCALE,
     LLM_KV_EXPERT_WEIGHTS_NORM,
     LLM_KV_EXPERT_GATING_FUNC,
index 956c4e085e5b6e10e787d61d9dcf4f31f9e6ff23..0285006d73caa874527ffebf7e1c020ff0e9c635 100644 (file)
@@ -63,6 +63,8 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
     { "megrez",            LLM_CHAT_TEMPLATE_MEGREZ            },
     { "yandex",            LLM_CHAT_TEMPLATE_YANDEX            },
     { "bailing",           LLM_CHAT_TEMPLATE_BAILING           },
+    { "bailing-think",     LLM_CHAT_TEMPLATE_BAILING_THINK     },
+    { "bailing2",          LLM_CHAT_TEMPLATE_BAILING2          },
     { "llama4",            LLM_CHAT_TEMPLATE_LLAMA4            },
     { "smolvlm",           LLM_CHAT_TEMPLATE_SMOLVLM           },
     { "hunyuan-moe",       LLM_CHAT_TEMPLATE_HUNYUAN_MOE       },
@@ -191,6 +193,10 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
         return LLM_CHAT_TEMPLATE_YANDEX;
     } else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("'HUMAN'")) {
         return LLM_CHAT_TEMPLATE_BAILING;
+    } else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("\"HUMAN\"") && tmpl_contains("<think>")) {
+        return LLM_CHAT_TEMPLATE_BAILING_THINK;
+    } else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("<role>HUMAN</role>") && tmpl_contains("<|role_end|>")) {
+        return LLM_CHAT_TEMPLATE_BAILING2;
     } else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) {
         return LLM_CHAT_TEMPLATE_LLAMA4;
     } else if (tmpl_contains("<|endofuserprompt|>")) {
@@ -644,8 +650,8 @@ int32_t llm_chat_apply_template(
         if (add_ass) {
             ss << " Ассистент:[SEP]";
         }
-    }  else if (tmpl == LLM_CHAT_TEMPLATE_BAILING) {
-        // Bailing (Ling) template
+    } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING || tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) {
+        // Bailing (Ling/Ring) template
         for (auto message : chat) {
             std::string role(message->role);
 
@@ -658,6 +664,33 @@ int32_t llm_chat_apply_template(
             ss << "<role>" << role << "</role>" << message->content;
         }
 
+        if (add_ass) {
+            ss << "<role>ASSISTANT</role>";
+
+            if (tmpl == LLM_CHAT_TEMPLATE_BAILING_THINK) {
+                ss << "<think>";
+            }
+        }
+    } else if (tmpl == LLM_CHAT_TEMPLATE_BAILING2) {
+        // Bailing2 (Ling 2.0) template
+        bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
+
+        if (!has_system) {
+            ss << "<role>SYSTEM</role>detailed thinking off<|role_end|>";
+        }
+
+        for (auto message : chat) {
+            std::string role(message->role);
+
+            if (role == "user") {
+                role = "HUMAN";
+            } else {
+                std::transform(role.begin(), role.end(), role.begin(), ::toupper);
+            }
+
+            ss << "<role>" << role << "</role>" << message->content << "<|role_end|>";
+        }
+
         if (add_ass) {
             ss << "<role>ASSISTANT</role>";
         }
index 5a87d9ab627bcccd214c41b4c3260449357c1d7b..da1b7c47997ca5af878de1a10b5214971419752e 100644 (file)
@@ -42,6 +42,8 @@ enum llm_chat_template {
     LLM_CHAT_TEMPLATE_MEGREZ,
     LLM_CHAT_TEMPLATE_YANDEX,
     LLM_CHAT_TEMPLATE_BAILING,
+    LLM_CHAT_TEMPLATE_BAILING_THINK,
+    LLM_CHAT_TEMPLATE_BAILING2,
     LLM_CHAT_TEMPLATE_LLAMA4,
     LLM_CHAT_TEMPLATE_SMOLVLM,
     LLM_CHAT_TEMPLATE_DOTS1,
index f29a1e98c9103e1135962d60aa5ff0a2e054e372..41fa6894377ea9bed2cb3d0497eac78704756d5f 100644 (file)
@@ -950,6 +950,31 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
         cb(selection_probs, "ffn_moe_probs_biased", il);
     }
 
+    // select top n_group_used expert groups
+    // https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/e815299b0bcbac849fa540c768ef21845365c9eb/modeling_deepseek.py#L440-L457
+    if (hparams.n_expert_groups > 1 && n_tokens > 0) {
+        const int64_t n_exp_per_group = n_expert / hparams.n_expert_groups;
+
+        // organize experts into n_expert_groups
+        ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens]
+
+        ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens]
+        group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens]
+
+        // get top n_group_used expert groups
+        group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens]
+        group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens]
+
+        ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens]
+        cb(expert_groups, "ffn_moe_group_topk", il);
+
+        // mask out the other groups
+        selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
+        selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
+        selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
+        cb(selection_probs, "ffn_moe_probs_masked", il);
+    }
+
     // select experts
     ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
     cb(selected_experts->src[0], "ffn_moe_argsort", il);
@@ -981,6 +1006,11 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
         ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
         cb(weights_sum, "ffn_moe_weights_sum", il);
 
+        if (arch == LLM_ARCH_BAILINGMOE2) {
+            weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20);
+            cb(weights_sum, "ffn_moe_weights_sum_biased", il);
+        }
+
         weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
         cb(weights, "ffn_moe_weights_norm", il);
 
index 4e7f73ec234c33f1164b2e191273436f17bda2fd..6fcf91b7daa47e8d8987e06ef6e72000071ae35d 100644 (file)
@@ -72,6 +72,8 @@ struct llama_hparams {
     uint32_t n_ff_chexp         = 0;
     uint32_t n_expert_shared    = 0;
     uint32_t n_norm_groups      = 0;
+    uint32_t n_expert_groups    = 0;
+    uint32_t n_group_used       = 0;
     uint32_t n_group_experts    = 0;
 
     float    expert_group_scale   = 0.05f;
index 909b49e8e645002723233a7eadb3b465ea9bd97e..e4609963300800b1fca694dcfabd44f1f172982c 100644 (file)
@@ -116,8 +116,10 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_A13B:          return "A13B";
         case LLM_TYPE_7B_A1B:        return "7B.A1B";
         case LLM_TYPE_8B_A1B:        return "8B.A1B";
+        case LLM_TYPE_16B_A1B:       return "16B.A1B";
         case LLM_TYPE_21B_A3B:       return "21B.A3B";
         case LLM_TYPE_30B_A3B:       return "30B.A3B";
+        case LLM_TYPE_100B_A6B:      return "100B.A6B";
         case LLM_TYPE_106B_A12B:     return "106B.A12B";
         case LLM_TYPE_235B_A22B:     return "235B.A22B";
         case LLM_TYPE_300B_A47B:     return "300B.A47B";
@@ -481,11 +483,13 @@ void llama_model::load_hparams(llama_model_loader & ml) {
         return;
     }
 
-    ml.get_key(LLM_KV_CONTEXT_LENGTH,    hparams.n_ctx_train);
-    ml.get_key(LLM_KV_EMBEDDING_LENGTH,  hparams.n_embd);
-    ml.get_key(LLM_KV_BLOCK_COUNT,       hparams.n_layer);
-    ml.get_key(LLM_KV_EXPERT_COUNT,      hparams.n_expert,      false);
-    ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
+    ml.get_key(LLM_KV_CONTEXT_LENGTH,          hparams.n_ctx_train);
+    ml.get_key(LLM_KV_EMBEDDING_LENGTH,        hparams.n_embd);
+    ml.get_key(LLM_KV_BLOCK_COUNT,             hparams.n_layer);
+    ml.get_key(LLM_KV_EXPERT_COUNT,            hparams.n_expert,        false);
+    ml.get_key(LLM_KV_EXPERT_USED_COUNT,       hparams.n_expert_used,   false);
+    ml.get_key(LLM_KV_EXPERT_GROUP_COUNT,      hparams.n_expert_groups, false);
+    ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used,    false);
 
     if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
         ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
@@ -501,8 +505,15 @@ void llama_model::load_hparams(llama_model_loader & ml) {
     GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
     if (hparams.n_expert > 0) {
         GGML_ASSERT(hparams.n_expert_used > 0);
+        GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
+        if (hparams.n_expert_groups > 1) {
+            GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
+            GGML_ASSERT(hparams.n_group_used > 0);
+            GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
+        }
     } else {
         GGML_ASSERT(hparams.n_expert_used == 0);
+        GGML_ASSERT(hparams.n_expert_groups == 0);
     }
 
     std::fill(hparams.n_head_arr.begin(),    hparams.n_head_arr.end(),    0);
@@ -1888,6 +1899,29 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_BAILINGMOE2:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
+                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
+                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,               hparams.n_expert_shared);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,              hparams.expert_weights_scale);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,               hparams.expert_weights_norm, false);
+                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,                hparams.expert_gating_func);
+                ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS,              hparams.nextn_predict_layers, false);
+
+                // TODO: when MTP is implemented, this should probably be updated if needed
+                hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
+
+                switch (hparams.n_layer) {
+                    case 20: type = LLM_TYPE_16B_A1B; break;
+                    case 21: type = LLM_TYPE_16B_A1B; break;
+                    case 32: type = LLM_TYPE_100B_A6B; break;
+                    case 33: type = LLM_TYPE_100B_A6B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_DOTS1:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -5498,6 +5532,70 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
                     }
                 } break;
+            case LLM_ARCH_BAILINGMOE2:
+                {
+                    const int64_t n_ff_exp        = hparams.n_ff_exp;
+                    const int64_t n_expert_shared = hparams.n_expert_shared;
+
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
+
+                    GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
+                    GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        int flags = 0;
+                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
+                            // skip all tensors in the NextN layers
+                            flags |= TENSOR_SKIP;
+                        }
+
+                        auto & layer = layers[i];
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
+
+                        layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);
+
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
+
+                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
+                            const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;
+
+                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
+                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
+
+                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);
+                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, flags);
+                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, flags);
+
+                            layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
+                            layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
+                            layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, flags);
+                        } else { // Dense layers
+                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, flags);
+                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, flags);
+                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, flags);
+                        }
+
+                        // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
+                        if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
+                            layer.nextn.eh_proj          = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
+                            layer.nextn.embed_tokens     = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
+                            layer.nextn.enorm            = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
+                            layer.nextn.hnorm            = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
+                            layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
+                            layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
+                            layer.layer_out_norm         = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
+                        }
+                    }
+                } break;
             case LLM_ARCH_DOTS1:
                 {
                     const int64_t n_ff_exp        = hparams.n_ff_exp;
@@ -6353,6 +6451,19 @@ void llama_model::print_info() const {
         LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
     }
 
+    if (arch == LLM_ARCH_BAILINGMOE2) {
+        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
+        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
+        LLAMA_LOG_INFO("%s: n_ff_shexp           = %d\n",     __func__, hparams.n_ff_shexp);
+        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
+        LLAMA_LOG_INFO("%s: n_expert_groups      = %d\n",     __func__, hparams.n_expert_groups);
+        LLAMA_LOG_INFO("%s: n_group_used         = %d\n",     __func__, hparams.n_group_used);
+        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
+        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
+        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
+        LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n",     __func__, hparams.nextn_predict_layers);
+    }
+
     if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
         LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
         LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
@@ -17042,6 +17153,150 @@ struct llm_build_bailingmoe : public llm_graph_context {
     }
 };
 
+struct llm_build_bailingmoe2 : public llm_graph_context {
+    llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv();
+
+        ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+        const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
+        for (int il = 0; il < n_transformer_layers; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self_attention
+            {
+                cur = build_lora_mm(model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
+                ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
+                ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
+
+                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+                cb(Qcur, "Qcur_normed", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+                cb(Kcur, "Kcur_normed", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+            }
+
+            if (il == n_transformer_layers - 1 && inp_out_ids) {
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
+            cb(sa_out, "sa_out", il);
+
+            // MoE branch
+            cur = build_norm(sa_out,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "ffn_norm", il);
+
+            if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
+                cur = build_ffn(cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(cur, "ffn_out", il);
+            } else {
+                ggml_tensor * moe_out =
+                    build_moe_ffn(cur,
+                            model.layers[il].ffn_gate_inp,
+                            model.layers[il].ffn_up_exps,
+                            model.layers[il].ffn_gate_exps,
+                            model.layers[il].ffn_down_exps,
+                            model.layers[il].ffn_exp_probs_b,
+                            n_expert, n_expert_used,
+                            LLM_FFN_SILU, hparams.expert_weights_norm,
+                            true, hparams.expert_weights_scale,
+                            (llama_expert_gating_func_type) hparams.expert_gating_func,
+                            il);
+                cb(moe_out, "ffn_moe_out", il);
+
+                {
+                    ggml_tensor * ffn_shexp = build_ffn(cur,
+                            model.layers[il].ffn_up_shexp,   NULL, NULL,
+                            model.layers[il].ffn_gate_shexp, NULL, NULL,
+                            model.layers[il].ffn_down_shexp, NULL, NULL,
+                            NULL,
+                            LLM_FFN_SILU, LLM_FFN_PAR, il);
+                    cb(ffn_shexp, "ffn_shexp", il);
+
+                    cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                    cb(cur, "ffn_out", il);
+                }
+            }
+
+            cur = ggml_add(ctx0, cur, sa_out);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 struct llm_build_dots1 : public llm_graph_context {
     llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
         const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -19838,6 +20093,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_bailingmoe>(*this, params);
             } break;
+        case LLM_ARCH_BAILINGMOE2:
+            {
+                llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
+            } break;
         case LLM_ARCH_SEED_OSS:
             {
                 llm = std::make_unique<llm_build_seed_oss>(*this, params);
@@ -20104,6 +20363,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_EXAONE:
         case LLM_ARCH_EXAONE4:
         case LLM_ARCH_MINICPM3:
+        case LLM_ARCH_BAILINGMOE2:
         case LLM_ARCH_DOTS1:
         case LLM_ARCH_HUNYUAN_MOE:
         case LLM_ARCH_OPENAI_MOE:
index 05701e7d70c84a762057eedfdcefae512676059d..248f854101cd740491e051dce16a3ab1d22e222f 100644 (file)
@@ -109,8 +109,10 @@ enum llm_type {
     LLM_TYPE_A13B,
     LLM_TYPE_7B_A1B,
     LLM_TYPE_8B_A1B, // lfm2moe
+    LLM_TYPE_16B_A1B,
     LLM_TYPE_21B_A3B, // Ernie MoE small
     LLM_TYPE_30B_A3B,
+    LLM_TYPE_100B_A6B,
     LLM_TYPE_106B_A12B, // GLM-4.5-Air
     LLM_TYPE_235B_A22B,
     LLM_TYPE_300B_A47B, // Ernie MoE big
index 7fffd171491aa31f8f063c8a8daba946f72ac4f8..639fecbd31745801b8be2939bd1395b60a533699 100644 (file)
@@ -1968,6 +1968,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                 clean_spaces = false;
             } else if (
                 tokenizer_pre == "bailingmoe" ||
+                tokenizer_pre == "bailingmoe2" ||
                 tokenizer_pre == "llada-moe") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
                 clean_spaces = false;