return BertModel
if model_architecture == "NomicBertModel":
return NomicBertModel
+ if model_architecture == "GemmaForCausalLM":
+ return GemmaModel
return Model
def _is_model_safetensors(self) -> bool:
return gguf.MODEL_ARCH.BERT
if arch == "NomicBertModel":
return gguf.MODEL_ARCH.NOMIC_BERT
+ if arch == "GemmaForCausalLM":
+ return gguf.MODEL_ARCH.GEMMA
raise NotImplementedError(f'Architecture "{arch}" not supported!')
yield name, data
+class GemmaModel(Model):
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def set_gguf_parameters(self):
+ hparams = self.hparams
+ block_count = hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_name(self.dir_model.name)
+ self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_key_length(hparams["head_dim"])
+ self.gguf_writer.add_value_length(hparams["head_dim"])
+
+ def write_tensors(self):
+ block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+ for name, data_torch in self.get_tensors():
+ # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
+ if name.endswith("norm.weight"):
+ data_torch = data_torch + 1
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+
###### CONVERSION LOGIC ######
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
cb(inpL, "inp_embd", -1);
+
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
+
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
cb(Qcur, "Qcur_scaled", il);
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
cb(cur, "kqv_out", il);
}
+
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);