else:
tokenizer = AutoTokenizer.from_pretrained(model_path)
- config = AutoConfig.from_pretrained(model_path)
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
- model = model_class.from_pretrained(model_path, config=config)
+ model = model_class.from_pretrained(model_path, config=config, trust_remote_code=True)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
- model = AutoModel.from_pretrained(model_path, config=config)
+ model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True)
print(f"Model class: {type(model)}")
print(f"Model file: {type(model).__module__}")
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
- all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
+ all_embeddings = hidden_states[0].float().cpu().numpy() # Shape: [seq_len, hidden_size]
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
# Load the python model to get configuration information and also to load the tokenizer.
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
- config = AutoConfig.from_pretrained(args.model_path)
+ config = AutoConfig.from_pretrained(args.model_path, trust_remote_code=True)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
exit(1)
else:
if args.causal:
- model = AutoModelForCausalLM.from_pretrained(args.model_path)
+ model = AutoModelForCausalLM.from_pretrained(args.model_path, trust_remote_code=True)
else:
- model = AutoModel.from_pretrained(args.model_path)
+ model = AutoModel.from_pretrained(args.model_path, trust_remote_code=True)
encoded = tokenizer(prompt, return_tensors="pt")
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])