static bool g_verbose = false;
+struct tensor_transformation {
+ struct ggml_tensor * in;
+ struct ggml_tensor * out;
+ bool is_copy;
+};
+
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
int id = gguf_find_key(ctx_gguf, key.c_str());
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
}
// mapping base tensor to out tensor (same shape with base, but different type)
- // if out_tensor == nullptr, we only copy it
- std::vector<std::pair<struct ggml_tensor *, struct ggml_tensor *>> base_to_out_tensors;
+ std::vector<tensor_transformation> trans;
for (auto & it : base_model.tensors) {
bool t_a = true;
bool t_b = true;
// only copy
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
ggml_set_name(cpy_tensor, base_tensor->name);
- base_to_out_tensors.push_back(std::make_pair(cpy_tensor, nullptr));
+ trans.push_back({
+ cpy_tensor,
+ cpy_tensor,
+ true,
+ });
gguf_add_tensor(ctx_out, cpy_tensor);
} else if (t_a && t_b) {
// need merging
struct ggml_tensor * out_tensor = ggml_new_tensor(
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
ggml_set_name(out_tensor, base_tensor->name);
- base_to_out_tensors.push_back(std::make_pair(base_tensor, out_tensor));
+ trans.push_back({
+ base_tensor,
+ out_tensor,
+ false,
+ });
gguf_add_tensor(ctx_out, out_tensor);
} else {
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
// process base model tensors
size_t n_merged = 0;
- for (auto & it : base_to_out_tensors) {
- if (it.second != nullptr) {
- merge_tensor(it.first, it.second);
+ for (auto & it : trans) {
+ if (!it.is_copy) {
+ merge_tensor(it.in, it.out);
n_merged++;
} else {
- copy_tensor(it.first);
+ copy_tensor(it.in);
}
}
}
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
- printf("%s : wrote %ld tensors to output file\n", __func__, base_to_out_tensors.size());
+ printf("%s : wrote %ld tensors to output file\n", __func__, trans.size());
}
void copy_tensor(struct ggml_tensor * base) {
for (size_t i = 0; i < adapters.size(); ++i) {
auto t_a = adapters[i]->get_tensor(name_lora_a);
auto t_b = adapters[i]->get_tensor(name_lora_b);
+ // TODO: add support for quantized lora
+ if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) {
+ throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32");
+ }
inp_a[i] = ggml_dup_tensor(ctx, t_a);
inp_b[i] = ggml_dup_tensor(ctx, t_b);
}