LLM_ARCH_GEMMA,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
+ LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R,
LLM_ARCH_UNKNOWN,
};
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
+ { LLM_ARCH_XVERSE, "xverse" },
{ LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
+ LLM_KV_GENERAL_VERSION,
LLM_KV_GENERAL_URL,
LLM_KV_GENERAL_DESCRIPTION,
LLM_KV_GENERAL_LICENSE,
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
+ { LLM_KV_GENERAL_VERSION, "general.version" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_ACT,
- LLM_TENSOR_FFN_DOWN_EXP,
+ LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP,
+ LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
+ LLM_TENSOR_FFN_GATE_EXPS,
+ LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
},
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
+ { LLM_TENSOR_POS_EMBD, "position_embd" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
},
},
{
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
},
},
+ {
+ LLM_ARCH_XVERSE,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
{
LLM_ARCH_COMMAND_R,
{
// ff MoE
struct ggml_tensor * ffn_gate_inp;
- struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
- struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
- struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
+ struct ggml_tensor * ffn_gate_exps;
+ struct ggml_tensor * ffn_down_exps;
+ struct ggml_tensor * ffn_up_exps ;
// ff bias
struct ggml_tensor * ffn_down_b; // b2
ggml_backend_free(backend);
}
-#ifdef GGML_USE_VULKAN
- ggml_vk_free_cpu_assist();
-#endif
-
ggml_backend_buffer_free(buf_output);
}
llama_mmaps mappings;
- // Holds information on a model weights
- struct llama_tensor_weights {
+ // Holds information on a model weight
+ struct llama_tensor_weight {
uint16_t idx; // source file index
size_t offs; // tensor data offset in the original file
ggml_tensor * tensor;
- llama_tensor_weights(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
+ llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
}
};
- std::vector<llama_tensor_weights> weights;
+ std::vector<llama_tensor_weight> weights;
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
- weights.emplace_back(llama_tensor_weights(0, cur->name, meta, cur));
+ weights.emplace_back(0, cur->name, meta, cur);
}
files.emplace_back(new llama_file(fname.c_str(), "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
- weights.emplace_back(llama_tensor_weights(idx, cur->name, ctx_gguf, cur));
+ weights.emplace_back(idx, cur->name, ctx_gguf, cur);
}
files.emplace_back(new llama_file(split_path, "rb"));
contexts.emplace_back(ctx);
return weights.at(i).tensor->name;
}
- const llama_tensor_weights & get_weights(const char * name) const {
+ const llama_tensor_weight * get_weight(const char * name) const {
for (const auto & weight : weights) {
if (strcmp(name, weight.tensor->name) == 0) {
- return weight;
+ return &weight;
}
}
- throw std::runtime_error(format("tensor %s not found", name));
+ return nullptr;
+ }
+
+ const llama_tensor_weight & require_weight(const char * name) const {
+ const llama_tensor_weight * weight = get_weight(name);
+ if (!weight) {
+ throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
+ }
+ return *weight;
}
struct ggml_tensor * get_tensor_meta(const char * name) const {
- try {
- return get_weights(name).tensor;
- } catch (const std::runtime_error & e) {
- return NULL;
+ const auto * weight = get_weight(name);
+ if (!weight) {
+ return nullptr;
}
+ return weight->tensor;
+ }
+
+ struct ggml_tensor * require_tensor_meta(const char * name) const {
+ struct ggml_tensor * tensor = get_tensor_meta(name);
+ if (!tensor) {
+ throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
+ }
+ return tensor;
}
struct ggml_tensor * get_tensor_meta(int i) const {
return tensor;
}
- struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
+ const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
if (cur == NULL) {
{
bool is_ok = true;
- for (size_t i = 0; i < ne.size(); ++i) {
- if (ne[i] != cur->ne[i]) {
+ for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
+ if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
is_ok = false;
break;
}
}
}
+ return cur;
+ }
+
+ struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
+ const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
+
+ if (cur == NULL) {
+ return NULL;
+ }
+
return create_tensor_for(ctx, cur);
}
+ struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
+ const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
+
+ if (cur == NULL) {
+ return NULL;
+ }
+
+ if (cur->type != base->type) {
+ throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
+ }
+
+ std::array<int64_t, GGML_MAX_DIMS> dims;
+ for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
+ dims[i] = i < ne.size() ? ne[i] : 1;
+ }
+
+ struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
+ dims[0], dims[1], dims[2], dims[3],
+ cur->nb[1], cur->nb[2], cur->nb[3],
+ offset);
+
+ ggml_set_name(tensor, name.c_str());
+
+ n_created++;
+
+ return tensor;
+ }
+
void done_getting_tensors() const {
if (n_created != n_tensors) {
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
mmaps_used.reserve(files.size());
for (const auto & file : files) {
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
- mmaps_used.emplace_back(std::make_pair(mapping->size, 0));
+ mmaps_used.emplace_back(mapping->size, 0);
if (mlock_mmaps) {
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
mlock_mmap->init(mapping->addr);
*last = 0;
*addr = mapping->addr;
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
- const auto & w = get_weights(ggml_get_name(tensor));
- if (w.idx != idx) {
- continue;
+ try {
+ const auto * weight = get_weight(ggml_get_name(tensor));
+ if (!weight) {
+ continue;
+ }
+ if (weight->idx != idx) {
+ continue;
+ }
+ *first = std::min(*first, weight->offs);
+ *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
+ } catch(...) {
+ // the tensor is not in the model
}
- *first = std::min(*first, w.offs);
- *last = std::max(*last, w.offs + ggml_nbytes(tensor));
}
}
// for backwards compatibility, does not support ggml-backend
void load_data_for(struct ggml_tensor * cur) const {
- const auto & w = get_weights(ggml_get_name(cur));
+ const auto & w = require_weight(ggml_get_name(cur));
if (use_mmap) {
const auto & mapping = mappings.at(w.idx);
std::vector<no_init<uint8_t>> read_buf;
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
+ const auto * weight = get_weight(ggml_get_name(cur));
+ if (weight == nullptr) {
+ // this can happen with split experts models
+ continue;
+ }
+
if (progress_callback) {
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
return false;
}
}
- const auto & w = get_weights(ggml_get_name(cur));
size_t n_size = ggml_nbytes(cur);
if (use_mmap) {
- const auto & mapping = mappings.at(w.idx);
+ const auto & mapping = mappings.at(weight->idx);
ggml_backend_buffer_t buf_mmap = nullptr;
- if (bufs_mmap.count(w.idx)) {
- buf_mmap = bufs_mmap.at(w.idx);
+ if (bufs_mmap.count(weight->idx)) {
+ buf_mmap = bufs_mmap.at(weight->idx);
}
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
if (buf_mmap && cur->data == nullptr) {
- ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + w.offs);
+ ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
if (lmlocks) {
- const auto & lmlock = lmlocks->at(w.idx);
- lmlock->grow_to(w.offs + ggml_nbytes(cur));
+ const auto & lmlock = lmlocks->at(weight->idx);
+ lmlock->grow_to(weight->offs + ggml_nbytes(cur));
}
- auto & mmap_used = mmaps_used[w.idx];
- mmap_used.first = std::min(mmap_used.first, w.offs);
- mmap_used.second = std::max(mmap_used.second, w.offs + n_size);
+ auto & mmap_used = mmaps_used[weight->idx];
+ mmap_used.first = std::min(mmap_used.first, weight->offs);
+ mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else {
- ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + w.offs, 0, n_size);
+ ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
}
} else {
- GGML_ASSERT(w.idx < files.size());
- const auto & file = files.at(w.idx);
+ GGML_ASSERT(weight->idx < files.size());
+ const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
- file->seek(w.offs, SEEK_SET);
+ file->seek(weight->offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
} else {
read_buf.resize(ggml_nbytes(cur));
- file->seek(w.offs, SEEK_SET);
+ file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), ggml_nbytes(cur));
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
}
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_XVERSE:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ case 80: model.type = e_model::MODEL_65B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_COMMAND_R:
{
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
const int64_t n_layer = hparams.n_layer;
const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
+ bool use_mmap_buffer = true;
// there is very little benefit to offloading the input layer, so always keep it on the CPU
model.buft_input = llama_default_buffer_type_cpu(true);
// create one context per buffer type
size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
+
+ // for moe merged tensors
+ ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer;
+
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) {
struct ggml_init_params params = {
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_vocab_type = hparams.n_vocab_type;
const int64_t n_ff = hparams.n_ff;
+ const int64_t n_expert = hparams.n_expert;
+
+ if (n_expert > 0 && hparams.n_expert_used == 0) {
+ throw std::runtime_error("model has expert layers but no expert layers are used");
+ }
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false);
-
- if (layer.ffn_gate_inp == nullptr) {
- GGML_ASSERT(hparams.n_expert == 0);
- GGML_ASSERT(hparams.n_expert_used == 0);
-
+ if (n_expert == 0) {
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
} else {
- GGML_ASSERT(hparams.n_expert > 0);
- GGML_ASSERT(hparams.n_expert_used > 0);
-
- // MoE branch
- for (uint32_t x = 0; x < hparams.n_expert; ++x) {
- layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
- layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
- layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
+ if (layer.ffn_gate_exps) {
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ } else {
+ // merge split expert into a single tensor for compatibility with older models
+ // requires disabling mmap
+ use_mmap_buffer = false;
+
+ ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
+
+ layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
+ layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
+ layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
+
+ ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
+
+ for (uint32_t x = 0; x < n_expert; ++x) {
+ // the individual experts are loaded into a view of the merged tensor
+ ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
+ }
}
}
}
} break;
case LLM_ARCH_GROK:
{
+ if (n_expert == 0) {
+ throw std::runtime_error("Grok model cannot have zero experts");
+ }
+
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd});
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
- GGML_ASSERT(hparams.n_expert > 0);
- GGML_ASSERT(hparams.n_expert_used > 0);
-
- // MoE branch
- for (uint32_t x = 0; x < hparams.n_expert; ++x) {
- layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
- layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
- layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
+ if (layer.ffn_gate_exps) {
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ } else {
+ // merge split expert into a single tensor for compatibility with older models
+ // requires disabling mmap
+ use_mmap_buffer = false;
+
+ ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
+
+ layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
+ layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
+ layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
+
+ ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
+
+ for (uint32_t x = 0; x < n_expert; ++x) {
+ // the individual experts are loaded into a view of the merged tensor
+ ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
+ }
}
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
case LLM_ARCH_MPT:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
// output
{
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
+ layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
+
+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
+ layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
+
// AWQ ScaleActivation layer
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
}
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
}
} break;
+ case LLM_ARCH_XVERSE:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+ auto & layer = model.layers[i];
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
case LLM_ARCH_COMMAND_R:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
ml.done_getting_tensors();
- ml.init_mappings(true, &model.mlock_mmaps);
+ ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
model.mappings.reserve(ml.mappings.size());
// create the backend buffers
// only the mmap region containing the tensors in the model is mapped to the backend buffer
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
+ if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
void * addr = nullptr;
size_t first, last;
}
}
#ifdef GGML_USE_METAL
- else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
+ else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
const size_t max_size = ggml_get_max_tensor_size(ctx);
void * addr = nullptr;
}
}
- for (auto & mapping : ml.mappings) {
- model.mappings.emplace_back(std::move(mapping));
+ if (use_mmap_buffer) {
+ for (auto & mapping : ml.mappings) {
+ model.mappings.emplace_back(std::move(mapping));
+ }
}
// loading time will be recalculate after the first eval, so
GGML_ASSERT(kv.size == n_ctx);
// compute the transposed [n_tokens, n_embd] V matrix
- struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
- //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
+ assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
+ struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
cb(v_cur_t, "v_cur_t", il);
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
for (int i = 0; i < n_expert_used; ++i) {
ggml_tensor * cur_expert;
- ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
+ ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
cb(cur_up, "ffn_moe_up", il);
- ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
+ ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
cb(cur_gate, "ffn_moe_gate", il);
cur_gate = ggml_silu(ctx0, cur_gate);
cb(cur_gate, "ffn_moe_silu", il);
- cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
+ cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
cb(cur_expert, "ffn_moe_gate_par", il);
- cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
+ cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
cb(cur_expert, "ffn_moe_down", il);
cur_expert = ggml_mul(ctx0, cur_expert,
return gf;
}
+ struct ggml_cgraph * build_xverse() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ // positions of the tokens in the KV cache
+ struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_falcon() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
for (int i = 0; i < n_expert_used; ++i) {
ggml_tensor * cur_expert;
- ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
+ ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
cb(cur_up, "ffn_moe_up", il);
- ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
+ ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
cb(cur_gate, "ffn_moe_gate", il);
//GeLU
cur_gate = ggml_gelu(ctx0, cur_gate);
cb(cur_gate, "ffn_moe_gelu", il);
- cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
+ cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
cb(cur_expert, "ffn_moe_gate_par", il);
- cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
+ cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
cb(cur_expert, "ffn_moe_down", il);
cur_expert = ggml_mul(ctx0, cur_expert,
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
+ struct ggml_tensor * pos;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// positions of the tokens in the KV cache
struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
+ if (model.pos_embd) {
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+ pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
+ cb(pos, "pos_embd", -1);
+
+ inpL = ggml_add(ctx0, inpL, pos);
+ cb(inpL, "inpL", -1);
+ }
+
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * attn_norm;
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ // Q/K Layernorm
+ if (model.layers[il].attn_q_norm) {
+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
+ model.layers[il].attn_q_norm,
+ model.layers[il].attn_q_norm_b,
+ LLM_NORM, cb, il);
+ cb(Qcur, "Qcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
+ model.layers[il].attn_k_norm,
+ model.layers[il].attn_k_norm_b,
+ LLM_NORM, cb, il);
+ cb(Kcur, "Kcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ } else {
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
}
if (il == n_layer - 1) {
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
struct ggml_tensor * attn_out = cur;
{
result = llm.build_mamba();
} break;
+ case LLM_ARCH_XVERSE:
+ {
+ result = llm.build_xverse();
+ } break;
case LLM_ARCH_COMMAND_R:
{
result = llm.build_command_r();
// grammar - internal
//
-struct llama_partial_utf8 {
- uint32_t value; // bit value so far (unshifted)
- int n_remain; // num bytes remaining; -1 indicates invalid sequence
-};
-
-struct llama_grammar {
- const std::vector<std::vector<llama_grammar_element>> rules;
- std::vector<std::vector<const llama_grammar_element *>> stacks;
-
- // buffer for partially generated UTF-8 sequence from accepted tokens
- llama_partial_utf8 partial_utf8;
-};
-
-struct llama_grammar_candidate {
- size_t index;
- const uint32_t * code_points;
- llama_partial_utf8 partial_utf8;
-};
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
-static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
+std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
const std::string & src,
llama_partial_utf8 partial_start) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
-static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
+std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
const std::vector<std::vector<llama_grammar_element>> & rules,
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
const uint32_t chr) {
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
// for getting the current layer as I initially thought, and we need to resort to parsing the
// tensor name.
- n_layer /= n_expert;
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
}
kv_overrides = v->data();
}
llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
- ml.init_mappings(false); // no prefetching?
+ ml.init_mappings(false); // no prefetching
llama_model model;
llm_load_arch(ml, model);
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
++qs.n_attention_wv;
- } else if (name.find("ffn_down") != std::string::npos) {
- ++qs.n_ffn_down;
- } else if (name.find("ffn_gate") != std::string::npos) {
- ++qs.n_ffn_gate;
- } else if (name.find("ffn_up") != std::string::npos) {
- ++qs.n_ffn_up;
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
}
}
- if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t) qs.n_attention_wv != model.hparams.n_layer) {
- LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",
- __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer);
- }
+
+ qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
+
+ // sanity checks
+ GGML_ASSERT(qs.n_attention_wv == (int)model.hparams.n_layer && "n_attention_wv != n_layer is unexpected");
size_t total_size_org = 0;
size_t total_size_new = 0;
// placeholder for the meta data
::zeros(fout, meta_size);
+ const auto tn = LLM_TN(model.arch);
+
for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * tensor = ml.get_tensor_meta(i);
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
- // quantize only 2D tensors
- quantize &= (ggml_n_dims(tensor) == 2);
+ // quantize only 2D and 3D tensors (experts)
+ quantize &= (ggml_n_dims(tensor) >= 2);
quantize &= params->quantize_output_tensor || name != "output.weight";
quantize &= !params->only_copy;
if (it == imatrix_data->end()) {
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
} else {
- if (it->second.size() == (size_t)tensor->ne[0]) {
+ if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
imatrix = it->second.data();
} else {
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
- int(it->second.size()), int(tensor->ne[0]), tensor->name);
+ int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
+
+ // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
+ // this is a significant error and it may be good idea to abort the process if this happens,
+ // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
+ // tok_embd should be ignored in this case, since it always causes this warning
+ if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
+ throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
+ int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
+ }
}
}
}
new_data = work.data();
const int n_per_row = tensor->ne[0];
- const int nrows = nelements / n_per_row;
+ const int nrows = tensor->ne[1];
static const int min_chunk_size = 32 * 512;
const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
- const int nchunk = (nelements + chunk_size - 1)/chunk_size;
+ const int nelements_matrix = tensor->ne[0] * tensor->ne[1];
+ const int nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
- new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix, workers, nthread_use);
+ // quantize each expert separately since they have different importance matrices
+ new_size = 0;
+ for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
+ const float * f32_data_03 = f32_data + i03 * nelements_matrix;
+ void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
+ const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
+
+ new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
+ }
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
}
total_size_org += ggml_nbytes(tensor);
}
}
#elif defined(GGML_USE_VULKAN)
- if (model->n_gpu_layers > 0) {
+ if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
+ ggml_backend_t backend = ggml_backend_vk_init(0);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ } else {
for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
ggml_backend_t backend = ggml_backend_vk_init(device);
if (backend == nullptr) {
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
+ case LLM_ARCH_XVERSE:
case LLM_ARCH_COMMAND_R:
return LLAMA_ROPE_TYPE_NORM;
ss << message->content << "</s>";
}
}
+ } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
+ // openchat/openchat-3.5-0106,
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content << "<|end_of_turn|>";
+ } else {
+ role[0] = toupper(role[0]);
+ ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
+ }
+ }
+ if (add_ass) {
+ ss << "GPT4 Correct Assistant:";
+ }
+ } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
+ // eachadea/vicuna-13b-1.1 (and Orca variant)
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ // Orca-Vicuna variant uses a system prefix
+ if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
+ ss << "SYSTEM: " << message->content << "\n";
+ } else {
+ ss << message->content << "\n\n";
+ }
+ } else if (role == "user") {
+ ss << "USER: " << message->content << "\n";
+ } else if (role == "assistant") {
+ ss << "ASSISTANT: " << message->content << "</s>\n";
+ }
+ }
+ if (add_ass) {
+ ss << "ASSISTANT:";
+ }
+ } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
+ // deepseek-ai/deepseek-coder-33b-instruct
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content;
+ } else if (role == "user") {
+ ss << "### Instruction:\n" << message->content << "\n";
+ } else if (role == "assistant") {
+ ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
+ }
+ }
+ if (add_ass) {
+ ss << "### Response:\n";
+ }
} else {
// template not supported
return -1;