]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
Rename Olmo1124 to Olmo2 (#10500)
authorShane A <redacted>
Mon, 25 Nov 2024 18:36:09 +0000 (10:36 -0800)
committerGitHub <redacted>
Mon, 25 Nov 2024 18:36:09 +0000 (19:36 +0100)
convert_hf_to_gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama.cpp

index 80a179b86af7e8d151a787ca8eb480c141102b06..b931049d11e2d42bd7d12ef4f0ea5ffcf783d31c 100755 (executable)
@@ -3040,9 +3040,9 @@ class OlmoModel(Model):
         return [(self.map_tensor_name(name), data_torch)]
 
 
-@Model.register("Olmo1124ForCausalLM")
-class Olmo1124Model(Model):
-    model_arch = gguf.MODEL_ARCH.OLMO_1124
+@Model.register("Olmo2ForCausalLM")
+class Olmo2Model(Model):
+    model_arch = gguf.MODEL_ARCH.OLMO2
 
 
 @Model.register("OlmoeForCausalLM")
index d83b72f761951efe76e2aa6968923d3fdc39de31..7df23371cc100e9884e66d3c68a41914f9f696b3 100644 (file)
@@ -243,7 +243,7 @@ class MODEL_ARCH(IntEnum):
     COMMAND_R    = auto()
     DBRX         = auto()
     OLMO         = auto()
-    OLMO_1124    = auto()
+    OLMO2        = auto()
     OLMOE        = auto()
     OPENELM      = auto()
     ARCTIC       = auto()
@@ -405,7 +405,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.COMMAND_R:      "command-r",
     MODEL_ARCH.DBRX:           "dbrx",
     MODEL_ARCH.OLMO:           "olmo",
-    MODEL_ARCH.OLMO_1124:      "olmo_1124",
+    MODEL_ARCH.OLMO2:          "olmo2",
     MODEL_ARCH.OLMOE:          "olmoe",
     MODEL_ARCH.OPENELM:        "openelm",
     MODEL_ARCH.ARCTIC:         "arctic",
@@ -1071,7 +1071,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
-    MODEL_ARCH.OLMO_1124: [
+    MODEL_ARCH.OLMO2: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
         MODEL_TENSOR.OUTPUT,
index 4cbd39e03e9427423de2daa07e7965aa4766659a..1b6a3f4add875f1b1231bb26f9585c44e4901940 100644 (file)
@@ -13,7 +13,7 @@ class TensorNameMap:
             "transformer.wte",                           # gpt2 gpt-j mpt refact qwen dbrx jais exaone
             "transformer.word_embeddings",               # falcon
             "word_embeddings",                           # bloom
-            "model.embed_tokens",                        # llama-hf nemotron olmoe olmo_1124
+            "model.embed_tokens",                        # llama-hf nemotron olmoe olmo2
             "tok_embeddings",                            # llama-pth
             "embeddings.word_embeddings",                # bert nomic-bert
             "language_model.embedding.word_embeddings",  # persimmon
@@ -54,7 +54,7 @@ class TensorNameMap:
         # Output
         MODEL_TENSOR.OUTPUT: (
             "embed_out",                 # gptneox
-            "lm_head",                   # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo_1124
+            "lm_head",                   # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2
             "output",                    # llama-pth bloom internlm2
             "word_embeddings_for_head",  # persimmon
             "lm_head.linear",            # phi2
@@ -66,7 +66,7 @@ class TensorNameMap:
         MODEL_TENSOR.OUTPUT_NORM: (
             "gpt_neox.final_layer_norm",               # gptneox
             "transformer.ln_f",                        # gpt2 gpt-j falcon jais exaone
-            "model.norm",                              # llama-hf baichuan internlm2 olmoe olmo_1124
+            "model.norm",                              # llama-hf baichuan internlm2 olmoe olmo2
             "norm",                                    # llama-pth
             "transformer.norm_f",                      # mpt dbrx
             "ln_f",                                    # refact bloom qwen gpt2
@@ -145,7 +145,7 @@ class TensorNameMap:
 
         # Attention query
         MODEL_TENSOR.ATTN_Q: (
-            "model.layers.{bid}.self_attn.q_proj",                       # llama-hf nemotron olmoe olmo_1124
+            "model.layers.{bid}.self_attn.q_proj",                       # llama-hf nemotron olmoe olmo2
             "layers.{bid}.attention.wq",                                 # llama-pth
             "encoder.layer.{bid}.attention.self.query",                  # bert
             "transformer.h.{bid}.attn.q_proj",                           # gpt-j
@@ -157,7 +157,7 @@ class TensorNameMap:
 
         # Attention key
         MODEL_TENSOR.ATTN_K: (
-            "model.layers.{bid}.self_attn.k_proj",                     # llama-hf nemotron olmoe olmo_1124
+            "model.layers.{bid}.self_attn.k_proj",                     # llama-hf nemotron olmoe olmo2
             "layers.{bid}.attention.wk",                               # llama-pth
             "encoder.layer.{bid}.attention.self.key",                  # bert
             "transformer.h.{bid}.attn.k_proj",                         # gpt-j
@@ -170,7 +170,7 @@ class TensorNameMap:
 
         # Attention value
         MODEL_TENSOR.ATTN_V: (
-            "model.layers.{bid}.self_attn.v_proj",                       # llama-hf nemotron olmoe olmo_1124
+            "model.layers.{bid}.self_attn.v_proj",                       # llama-hf nemotron olmoe olmo2
             "layers.{bid}.attention.wv",                                 # llama-pth
             "encoder.layer.{bid}.attention.self.value",                  # bert
             "transformer.h.{bid}.attn.v_proj",                           # gpt-j
@@ -188,7 +188,7 @@ class TensorNameMap:
             "transformer.blocks.{bid}.attn.out_proj",                       # mpt
             "transformer.h.{bid}.self_attention.dense",                     # falcon
             "h.{bid}.self_attention.dense",                                 # bloom
-            "model.layers.{bid}.self_attn.o_proj",                          # llama-hf nemotron olmoe olmo_1124
+            "model.layers.{bid}.self_attn.o_proj",                          # llama-hf nemotron olmoe olmo2
             "layers.{bid}.attention.wo",                                    # llama-pth
             "encoder.layer.{bid}.attention.output.dense",                   # bert
             "transformer.h.{bid}.attn.out_proj",                            # gpt-j
@@ -215,7 +215,7 @@ class TensorNameMap:
         ),
 
         MODEL_TENSOR.ATTN_POST_NORM: (
-            "model.layers.{bid}.post_attention_layernorm",     # gemma2 olmo_1124
+            "model.layers.{bid}.post_attention_layernorm",     # gemma2 olmo2
         ),
 
         # Rotary embeddings
@@ -250,7 +250,7 @@ class TensorNameMap:
 
         # Post feed-forward norm
         MODEL_TENSOR.FFN_POST_NORM: (
-            "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo_1124
+            "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
         ),
 
         MODEL_TENSOR.FFN_GATE_INP: (
@@ -273,7 +273,7 @@ class TensorNameMap:
             "transformer.blocks.{bid}.ffn.up_proj",                   # mpt
             "transformer.h.{bid}.mlp.dense_h_to_4h",                  # falcon
             "h.{bid}.mlp.dense_h_to_4h",                              # bloom
-            "model.layers.{bid}.mlp.up_proj",                         # llama-hf refact nemotron olmo_1124
+            "model.layers.{bid}.mlp.up_proj",                         # llama-hf refact nemotron olmo2
             "layers.{bid}.feed_forward.w3",                           # llama-pth
             "encoder.layer.{bid}.intermediate.dense",                 # bert
             "transformer.h.{bid}.mlp.fc_in",                          # gpt-j
@@ -314,7 +314,7 @@ class TensorNameMap:
 
         # Feed-forward gate
         MODEL_TENSOR.FFN_GATE: (
-            "model.layers.{bid}.mlp.gate_proj",           # llama-hf refact olmo_1124
+            "model.layers.{bid}.mlp.gate_proj",           # llama-hf refact olmo2
             "layers.{bid}.feed_forward.w1",               # llama-pth
             "transformer.h.{bid}.mlp.w2",                 # qwen
             "transformer.h.{bid}.mlp.c_fc2",              # jais
@@ -346,7 +346,7 @@ class TensorNameMap:
             "transformer.blocks.{bid}.ffn.down_proj",                 # mpt
             "transformer.h.{bid}.mlp.dense_4h_to_h",                  # falcon
             "h.{bid}.mlp.dense_4h_to_h",                              # bloom
-            "model.layers.{bid}.mlp.down_proj",                       # llama-hf nemotron olmo_1124
+            "model.layers.{bid}.mlp.down_proj",                       # llama-hf nemotron olmo2
             "layers.{bid}.feed_forward.w2",                           # llama-pth
             "encoder.layer.{bid}.output.dense",                       # bert
             "transformer.h.{bid}.mlp.fc_out",                         # gpt-j
@@ -383,7 +383,7 @@ class TensorNameMap:
         MODEL_TENSOR.ATTN_Q_NORM: (
             "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
             "model.layers.{bid}.self_attn.q_layernorm",                       # persimmon
-            "model.layers.{bid}.self_attn.q_norm",                            # cohere olmoe chameleon olmo_1124
+            "model.layers.{bid}.self_attn.q_norm",                            # cohere olmoe chameleon olmo2
             "transformer.blocks.{bid}.attn.q_ln",                             # sea-lion
             "encoder.layer.{bid}.attention.self.layer_norm_q",                # jina-bert-v2
             "transformer.layers.{bid}.attn.q_norm",                           # openelm
@@ -392,7 +392,7 @@ class TensorNameMap:
         MODEL_TENSOR.ATTN_K_NORM: (
             "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
             "model.layers.{bid}.self_attn.k_layernorm",                       # persimmon
-            "model.layers.{bid}.self_attn.k_norm",                            # cohere olmoe chameleon olmo_1124
+            "model.layers.{bid}.self_attn.k_norm",                            # cohere olmoe chameleon olmo2
             "transformer.blocks.{bid}.attn.k_ln",                             # sea-lion
             "encoder.layer.{bid}.attention.self.layer_norm_k",                # jina-bert-v2
             "transformer.layers.{bid}.attn.k_norm",                           # openelm
index 571cb68e2885495865707ac9c30cee5099ba3399..af5e686e07eda9c1748b694343ff114e4663858e 100644 (file)
@@ -179,7 +179,7 @@ enum llm_arch {
     LLM_ARCH_COMMAND_R,
     LLM_ARCH_DBRX,
     LLM_ARCH_OLMO,
-    LLM_ARCH_OLMO_1124,
+    LLM_ARCH_OLMO2,
     LLM_ARCH_OLMOE,
     LLM_ARCH_OPENELM,
     LLM_ARCH_ARCTIC,
@@ -233,7 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_COMMAND_R,       "command-r"    },
     { LLM_ARCH_DBRX,            "dbrx"         },
     { LLM_ARCH_OLMO,            "olmo"         },
-    { LLM_ARCH_OLMO_1124,       "olmo_1124"    },
+    { LLM_ARCH_OLMO2,           "olmo2"        },
     { LLM_ARCH_OLMOE,           "olmoe"        },
     { LLM_ARCH_OPENELM,         "openelm"      },
     { LLM_ARCH_ARCTIC,          "arctic"       },
@@ -1210,7 +1210,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
         },
     },
     {
-        LLM_ARCH_OLMO_1124,
+        LLM_ARCH_OLMO2,
         {
             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
@@ -5900,7 +5900,7 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
-        case LLM_ARCH_OLMO_1124:
+        case LLM_ARCH_OLMO2:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 
@@ -8593,7 +8593,7 @@ static bool llm_load_tensors(
                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                     }
                 } break;
-            case LLM_ARCH_OLMO_1124:
+            case LLM_ARCH_OLMO2:
                 {
                     model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
 
@@ -14483,7 +14483,7 @@ struct llm_build_context {
         return gf;
     }
 
-    struct ggml_cgraph * build_olmo_1124() {
+    struct ggml_cgraph * build_olmo2() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
 
         // mutable variable, needed during the last layer of the computation to skip unused tokens
@@ -16799,9 +16799,9 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_olmo();
             } break;
-        case LLM_ARCH_OLMO_1124:
+        case LLM_ARCH_OLMO2:
             {
-                result = llm.build_olmo_1124();
+                result = llm.build_olmo2();
             } break;
         case LLM_ARCH_OLMOE:
             {
@@ -20084,7 +20084,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
         case LLM_ARCH_QWEN:
         case LLM_ARCH_QWEN2:
         case LLM_ARCH_QWEN2MOE:
-        case LLM_ARCH_OLMO_1124:
+        case LLM_ARCH_OLMO2:
         case LLM_ARCH_OLMOE:
         case LLM_ARCH_PHI2:
         case LLM_ARCH_PHI3: